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Systems of linear equations

Lecture 2

Solving the linear systems of algebraic equations 
with direct methods 

outline

● remainder of some basic properties of matrices
● norms of vectors & matrices
● Gauss elimination method 
● LU factorization of square matrix
● LDLT & LLT factorizations for symmetric matrices
● LU factorization of tridiagonal matrix
● Gram-Schmidt orthogonalization & QR factorization
● overdetermined systems of linear equations

● examples:  
● solution of Poisson equation with finite difference method 
● shaping polynomial function

● short survey over linear algebra numerical packages: BLAS & LAPACK
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Systems of linear equations

Basic properties of matrices

Matrix - it is an ordered set of real or complex number placed in 2D array,
 each element has two indices (row & column) allowing for its localization in array 

rank(A) – the number of linearly independent columns, 
       full rank square matrix is nonsingular and invertible  
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Systems of linear equations

Transposition of matrix –  we change the order of indices of matrix elements, 
(for square matrix  it is rotation about its diagonal) 

properties:

Nonsingular / invertible matrix – nonsingular matrix is invertible

properties:
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Systems of linear equations

Symmetry of square matrix – knowledge of symmetry allows to use dedicated factorization/diagonalization methods 
      which can work faster, be more accurate and stable

Orthogonal matrix -  column vectors or row vectors are mutually orthogonal (euclidean norm),
matrix can be rectangular or square

example: rotation matrix in 2D & 3D

← if columns/rows are normalized



5

Systems of linear equations
Vector norms

● norms are used for quantitative descriptions of vectors and matrices

● vector (matrix) norm is a function which assigns single nonnegative real number for each vector
defined in vector space Cn (Cmxn)

For any two vectors and a number such as 

vector norm must fullfill the following axioms

nonnegative:

triangle inequality:

multiply by number:

For n-dimensional vectors we use family of p-norms example norms:

Remark: in numeriacal algorithms in nearly all cases we use p=2 (euclidean) norm, 
               other norms are exploited in more theoretical applications
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Systems of linear equations

Among all vector norms, the 2-norm (Euclidean) is the most often used. It is closely related 
to vector scalar (inner) product which can be symbolically written in few ways (and worth to 
remember) depending on the scientific field 

● mathematicians notation 

● computer science notation (the „rule” derived from matrix-vector multiplication)

● physicists (Dirac) notation 
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Matrix norms

Matrix norms must obey the followig axioms 

Compatible norms – matrix norm is generated by vector norm as follows

shorthand notation:
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Systems of linear equations

- the largest sum of elements’ modulus in columns

examples of matrix norms:

- spectral norm

-the largest sum of elements’ modulus in rows

-the largest modulus of single element 
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Systems of linear equations
Gauss elimination method 

Our aim is to find the solution of system of linear equations (SLE). 
SLE expressed in square form can not be solved directly, it must be first transformed to the triangle form
which then allows to find elements of solution vector sequentially one by one.

original SLE in full square form: transformed SLE in triangular form:STEP 1 
Gauss 

elimination
method

STEP 2
backward 
substitution

we start from xn, then 
calculate xn-1, xn-2,...,x1

solution

how to get triangular form of SLE?

● we must eliminate all matrix elements 
below the diagonal

● elimination is done iteratively, 
only elements in single column are cancelled
per single iteration

● iterative process starts at the first column  
and end in n-1 column
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but for our numerical purposes it will be expressed rather in matrix form

Here we use SLE in explicit form

another shorthand notation concerns parts of matrix A

● k-th row of matrix Ak,*

● m-th column of matrix A*,m
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Systems of linear equations
Elimination process

column: 1,   rows: i=2,...,n 

we get SLE with different (changed) coefficients aij
(2) and bi

(2)

we get SLE with coefficients aij
(3) and bi

(3)

after n-1 iterations we get the trangular SLE
with different coeficients aij and bi

original SLE

column: 2,   rows: i=3,...,n 

Remark: to avoid division by 0 (1) rows or (2) rows & columns can be permuted – partial/full selection of main element
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Systems of linear equations

LU factorization

The Gauss elimination method is an iterative process which transforms SLE, 
if we write SLE in matrix form we will see that elimination transforms the matrix of SLE 

upper triangular matrix

Process of transformation of the matrix is called factorization and any kind of factorization
may be useful as it makes the problem of solving SLE much easier. 

The Gauss eliminiation is very popular method utilized to find LU factorization,
namely, we wish to express the matrix A as product of two matrices: L-lower triangle and U-upper triangle
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Systems of linear equations

Applications of LU factorization

● solving single SLE forward 
substitution

backward
substitution

● finding the value of determinant of matrix A (e.g. to check the invertibility of matrix)

● finding the inverse of matrix A (we should avoid it if possible)

lets define the right side of SLE as Euclidean basis vector e i

we may solve such sinlge SLE using LU

as well as a set of n such SLEs
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Systems of linear equations

LU factorization of tridiagonal matrix

Tridiagonal matrices very often appear in 1D differential problems with derivatives approximated with finite differences.
We can exploit the spectial structure of a matrix i.e. operations can be performed for non-zero elements only

All we need to do is to find the two diagonal vectors of elements l i and ui  (ci are the same as in T).

tridiagonal 
matrix:
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Systems of linear equations

The elements li and ui are computed sequentially

Having LU we fast find the solution of SLE by performing forward and backward substitutions
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Systems of linear equations
LU factorization is general and can be applied to any square matrix A. 

However, for symmetric matrices we have other dedicated factorizations which:

●  work 2 times faster
● need only half the space (upper or lower matrix A is needed by numerical procdeure)

●  LLT (Cholesky factorization)  - used for symmetric/hermitean, positively defined matrix,
(L is lower triangular matrix)

positively defined matrix:

factorization:

solution of SLE:

● LDLT – used for symmetric/hermitean if we don’t know if the matrix is positively defined,
(L and D are the lower triangular and the diagonal matrix, respectively)

factorization:

solution of SLE:
we solve 3 SLEs:
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Systems of linear equations

Correctness of the SLE solution  → residual vector

We must keep in mind that transformation/factorization of original matrix and then forward & backward substitutions
are made within in-exact arithmetic (real numbers are represented by the floating-point ones → rounding errors).
Rounding errors may perturb to some extent the solution vector. 

Routinely we shall check the level of perturbation of the solution vector calculating the residual vector

● exact solution

● numerical/perturbed solution

Residual vector can be used to improve the solution, we shall just solve one more SEL

solution is not exact because solution 
of second SLE is also perturbed

Remark: solution shall be only one or two times improved and no more, 
rounding errors do not allow for fixing „largely broken solution”,
usually iterative improvement is implicitly done by numerical package we have used to solve the SEL 
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Systems of linear equations
Conditioning of the SLE matrix

Conditioning means how the rounding errors influence on the solution of SLE, 
namely we can define perturbation of solution as dependent on:

● perturbation of the matrix element

● perturbation of the right hand side vector elements
 

Both expressions are linked by the scaling factor known as condition number 

Remark 1: condition number is an inherent property of matrix 

Remark 2: large condition number (e.g.  > 106-108) may lead to largely perturbed (inaccurate) solutions 
which can not be accepted, on the other hand, the small number increases our chance for 
finding good solution i.e. with small residual vector

Remark 3: even for large condition number we still can solve SLE, we can minimize perturbations
δA and δb by exploting stronger floating-point arithmetic 

perturbations δA and δb
stand for rounding errors
which occur during factorization
or forward/backward substitution
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Systems of linear equations

Example 1: Solution of Poisson equation with Finte Difference Method (FDM)

● general form of Poisson equation:

● we consider one-dimensional case
with Dirichlet boundary conditions

V – potential (electric/gravitational)
ρ – source of field 
      (electric charge/ graviatational mass)

Because  FDM will be used, which defines derivative for a set of distinct points homogenously 
located in 1D space, we define the mesh of points 
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Now we may discretize Poisson equation by rewriting it only for the mesh points 
approximating the derivative with finite difference formula, in the following we use 
abbreviations

Lets multiply last expresson by Δ2 and write it for each mesh point, starting from the 1-st

The points  V0 and Vn+1 do not belong to mesh points and must be skipped.
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We get SLE which comfortably may be defined in matrix form

Finally we need the boundary condition (BC) to be embedded into SLE, these are given for V1 and Vn  
i.e. these rows (equations) shall be changed in such a way to fullfill BC. This can be simpy done in 
firstly, canceling all elements in these rows, secondly make diagonal elements equal one,  and third, 
put in the right vector required values of potentials V1 and Vn.

The final SLE matrix has tridiagonal nonsymmetric form. 
Muliplying V-vector by 1-st or n-th row we get VL or VR  boundary values. 
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Example 2: use of SLE to find the coefficients of polynomial shaping function 

Low-degree shaping polyniomials are used in interpolation of curves, surfaces or to solve ODE/PDE with
the finite element methods. This popularity results from severals factors, they are easily differentated, integrated 
and last but not least  shape of polynomial can be modelled according to some local requirements. 
Lets consider the last property. 

First, we introduce set of collocation points at which required properties will be defined

There are 4 points but 6 conditions. The unique polynomial which fullfills these condition is 5-th order
because it has six free parameters 

hence we are looking for coefficients vector

for the monomial basis functions
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Lets assume following conditions:

How to construct SLE?  And how it looks like?
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Systems of linear equations

One may notice that expression defining the polynomial is linear with respect to its coefficients.
By writing down set of conditions for this general form of polynomial we get the system of linear equations
 

SLE in matrix form:

In order to solve this problem the LU factorization must be used because the matirx is not symmetric. 
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assumed conditions

solution

Remark:  coefficient a0=0 vanishes due to first condition f(x0)=0, 
it means that monomial x0 is not needed in monomial basis 

at collocation points, polynomial
exactly fullfills conditions,
but between them it smoothly adapts 
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Systems of linear equations

Gram-Schmidt orthogonalization

Our task:     
transform linearly independent vector basis into 
the basis containing orthogonal and normalized vectors

Graphical interpretation of basis transformation 
of two-vector basis

● first, we must set the direction of 
the first vector q1, usually is the same as u1 
(additionally q1 is normalized)

● from figure we infer the following relation
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Systems of linear equations

QR factorization

Any matrix                                        with linearly independent columns spans n-dimensional subspace,
i.e. the set of column-vectors forms the basis which can be orthogonalized with Gram-Schmidt method,
by retaining also the information about the scalar products we get the new so called QR factorization
    
remark: QR factorization applies to both, square and rectangular matrices 

● Q is an orthogonal matrix  while R is an upper triangular matrix retaining the scalar products  

q-vectors are not normalized
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Least square problem

We know how to construct usual SLE i.e. defined by square matrix → solution SLE: LU, LLT, LDLT factorization

However, if we add to standard SLE a set of additional conditions in form of equations, 
we get SLE with number of equations greater than number of unknows.
It has ractangular matrix and is called overdetermined SLE 

Immediately we may ask two important questions

Q1:  does any solution of such SLE exists?

Q2:  how to find the solution?

A1: In most cases there is no exact solution of SLE, all we can do is looking for „the best approximated solution” 

A2: we can find the approximated solution by applying the QR factorization
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If we find any solution of overdetermined SLE (by any means) we can always check it correctness 
by calculating  the residual vector and its Euclidean (p=2) norm

Obviously we are looking for the solution which minimizes the norm of residual vector, 
because this norm is non-negative we may analyze its square as well

This kind of numerical task is called the least square problem.

Because we seek the minimum of square of residual vector which depends on all elements of x vector,
we shall calculate the gradient  of the square and from equaling it to zero-valued vector get conditions
for the solution.
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● first, lets define n-dimensional quadratic function for the least square problem

● second, find its explicit dependence on the solution x

● third, calculate the gradient of F to localize the minimum

the task defined as least square problem 
has solution and we know how to find it
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QR factorization to solve least square problem

● solution of LSP can be found in standard way i.e. by first, multiplying both sides SLE by AT and then solving 
transformed SLE by means  LLT factorization (ATA is square symmetric/hermitean matrix), 

● however, multiplication of two matrices would introduce additional rounding errors to the solution 
due to much larger condition number and for this reason should be avoided

● for rectangular matrix we still can use QR factorization and exploit properties of Q and R matrices

Remark: (i) QR factorization is very stable due to orthogonalization,

(ii) QR factorization we can use for solving standard SLE with
       square matrix but such attempt has drawbacks:

● QR needs more space reserved in memory for both matrices
● finding QR factorization requires more time than other methods

(not economical if not needed)

get rid of Q → 

get rid of D → 

backward substitution → 
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Linear algebra numerical packages

BLAS  - Basic Linear Algebra Subprograms, C/C++/Fortran and other, freely-available 
highly optimized collection of 3-level subroutines for basic 

● level 1: scalar, vector, vector-vector operations
● level 2: matrix-vector operations
● level 3: matrix-matrix operations

LAPACK – Linear Algebra PACKage, C/C++/Fortran and other, freely-available highly-optimized 
(based on BLAS subroutines) software for advanced tasks like e.g.

● solving systems of linear equations
● solving least-squares problem
● solving eigenvalue problems

● matrix factorizations: LU, LLT, LDLT, QR, SVD, Schur

● both are available at:     www.netib.org

● each Linux-based systems can install them (and already has) from its own package-repository 
since they are required by many applications to work

● numerical routines are provided for single/double precision & real/complex numbers

● BLAS and LAPACK are provided with other freely-available packages 
for e.g. Math Kernel Library (Intel), GNU Scientific Library 

(these are used at computer classes)

http://www.netib.org/
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Example CBLAS-1 routines (Intel MKL)

double cblas_ddot (const MKL_INT n, const double *x, const MKL_INT incx, const double *y, 
const MKL_INT incy);

● ordinary dot-product of real vectors (double)

● dot-product in Hibert space (double complex)

void cblas_ddotc_sub (const MKL_INT n, const void *x, const MKL_INT incx, 
   const void *y, const MKL_INT incy, void *dotc);

Example CBLAS-2 routines (Intel MKL)

● general matrix-vector multiplication (double)

void cblas_dgemv (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE trans, const MKL_INT
m, const MKL_INT n, const double alpha, const double *a, const MKL_INT lda, const
double *x, const MKL_INT incx, const double beta, double *y, const MKL_INT incy);
Example CBLAS-3 routines (Intel MKL)

● matrix-matrix- product with general (non-symmetric) matrices  (double)

void cblas_dgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *c, const MKL_INT ldc);

Layout – indicate on row-wise storage 
               or column-wise storage

      of matrix elements
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Example of LAPACK routines   (taken from Intel MKL)

● LU factorization (double)

lapack_int LAPACKE_dgetrf (int matrix_layout , lapack_int m , lapack_int n , 
lapack_complex_double * a , lapack_int lda , lapack_int * ipiv );

● Cholesky factorization (double)

lapack_int LAPACKE_dpotrf (int matrix_layout , char uplo , lapack_int n , 
lapack_complex_double * a ,  lapack_int lda );

● solving SLE using LU factorization (zegtrf has to be called before) for many right-hand sides (double)

lapack_int LAPACKE_dgetrs (int matrix_layout , char trans , lapack_int n , lapack_int nrhs , 
const double * a ,lapack_int lda , const lapack_int * ipiv , double * b , lapack_int ldb );

● solving SLE using Cholesky factorization (dpotrf has to be called before) for many right-hand sides (double)

lapack_int LAPACKE_dpotrs (int matrix_layout , char uplo , lapack_int n , lapack_int nrhs , 
const double * a ,lapack_int lda , double * b , lapack_int ldb );

● matrix inversion (dgetrf has to be called before ) (double)

lapack_int LAPACKE_dgetri (int matrix_layout , lapack_int n , double * a , lapack_int lda ,
  const lapack_int * ipiv );
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● QR factorization (double) – matrix Q is not formed explicitly

lapack_int LAPACKE_dgeqrf (int matrix_layout, lapack_int m, lapack_int n, double* a, 
   lapack_int lda, double* tau);

● decoding explicit form of Q matrix passed from dgeqrf  (double)

lapack_int LAPACKE_dorgqr (int matrix_layout, lapack_int m, lapack_int n, lapack_int k,
double* a, lapack_int lda, const double* tau);

● solving overdetermined SLE – linear least-squares problem for many 
right-hand sides (double) 
it is a DRIVER – it calls QR routine itself

lapack_int LAPACKE_dgels (int matrix_layout, char trans, lapack_int m, lapack_int n, 
lapack_int nrhs, double* a, lapack_int lda, double* b, lapack_int ldb);


