
ERRATA
to the book

Introduction to Programming with C++ for Engineers

by Bogusław Cyganek

Wiley 2021

First of all, I would like to thank all the people who were so kind and sent me information about the errors and imperfections they noticed in the

text.

Writing a book, including all stages of its production, is a very large and long task, for which I take full responsibility. Therefore, I apologize for

any imperfections, ambiguities or errors that have crept into the text. I will try to correct them and will post corrections, both here and in the code

on github, if necessary.

Table 1. Found errors and their corrections.

Page, lines, what It should be

Pg. 32, code line no. 26

 code line no. 49

if(r <= 0.0 || r >= 100.0) // operator || means the logical OR

if(m <= 0.0 || m > 100)

Pg. 35, code line no. 22

Pg. 38, code line no. 22
if(std::isalpha(c)) // isalpha(c) returns true if c is alphabetic

Pg. 50, third column in the table

“Initialization by assignment …”
Let's notice that first defining a variable, then doing assignment in the second step is neither save, nor efficient.

Pg. 66, text line no. 11 from the top Then, on lines [32–35], the sum of only the non-diagonal elements of m is computed.

Pg. 69, 3rd column, line no. 7 from the top Then, all of the text is joined together by accumulate:

Pg. 98, third column in the table, last line with

code
cout << "Error - Wrong argument" << endl;

Pg. 35, code line no. 11 int main()

Pg. 125, code line no. 3 int FiboRecursive(const int n)

Pg. 125, 1-2 lines in the last paragraph The function does not change anything, so its input parameter is const int

Pg. 128, code line no. 11 [] (const double cm) { return 0.3937 * cm; };

Pg. 129, bullet line no. 1

Figure caption

Capture – Introduces external objects into the scope of the lambda

Lambda expressions are composed of three parts: capture, formal arguments list, and optional

return type. The lambda body is contained within braces {}.

Pg. 131, last line of text capture to bring cert into its scope:

Pg. 132, code line no. 66 // [cert] capture to access a copy of cert

Pg. 132, 2nd line of text from the bottom When using a lambda, it is very important is to properly specify the type of its capture.

Pg. 133-137, 1st pane in the 1st column Capture

Pg. 134, code lines no. 20-21
return static_cast< double >(std::rand()) * max_val // static_cast to make
 / (static_cast< double >(rm) + 1.); // division on double

Pg. 138, the first row in the table Lambda capture variants

Pg. 140, 4th line of text from the bottom There are two more functions. The first, defined on line [10], simply computes the square of

Pg. 150, code line no. 34 for(Dim ac = 0; ac < a_cols; ++ ac)

Pg. 160, the last line of text Which computes the roots of the quadratic equation. Both are implemented outside of the class definition.

Pg. 162, the 3rd line of text from the top However, this does not mean that this class is fully implemented and finished.

Pg. 196, the first bullet lines

Let's introduce an l-value and an r-value:

 l-value – Informally, an object that has a name and can be taken address of, so it can be used on the left side of the

assignment operator (=), e.g. x in const int x = 10; if const is omitted, then x becomes a modifiable l-value;

an l-value can be converted to an r-value, e.g. if placed on the right side of =

 r-value – Not an l-value, such as no-name, temporary, literal constant, with no specific memory location objects;

cannot be on the left side of the assignment, e.g. 10 in const int x = 10; cannot be converted to an l-value

(https://en.cppreference.com/w/cpp/language/value_category)

Pg. 200, 3rd row, 2nd line of code

// [=] capture denotes accessing external objects by value

Lambda functions are used to define local functions. The capture [=] allows the previous lambda to access

Pg. 214, code line no. 13-14 from the top
void SetElem (int c, int r, T v) { * (this->*data_offset)(c, r) = v; }
T GetElem (int c, int r) { return * ((*this).*data_offset)(c, r); }

Pg. 225, code line no. 7 from the top const unsigned short kPoly = 0xE0;

Pg. 225, text line no. 27 from the top

Moreover, when we declare (write) any of the special member functions, such as a destructor, copy constructor, or

assignment operator, then probably we need to deliver all three of them at once - this is the so-called rule of three (or five,

after adding a move constructor and a move assignment, which we'll talk about later).

Pg. 249, text line no. 17 from the top strategy – see Section 4.6).

Pg. 254, text line no. 32 from the top Declaring any special member function except a constructor,

Pg. 254, text line no. 39 from the top rule of five (Section 4.4)

https://en.cppreference.com/w/cpp/language/value_category

Pg. 267, text line no. 20 from the top

text line no. 22 from the top

This time, the code – see lines [1–9]

whereas the declaration goes in the header file

Pg. 283, code line no. 26 // ~TinyCube() {}

Pg. 285, code line no. 27 // ~TinyCube() {}

Pg. 326, the first bullet lines
■ Big endianness – Most significant byte at the lowest address

■ Little endianness – Most significant byte at the highest address

Pg. 328, text line no. 3 from the top This can be achieved by providing the : 4 bit specifier, which defines

Pg. 346, text line no. 20 from the top If providing a custom copy constructor, an assignment operator or destructor, also write all the other special functions.

Pg. 351, 2nd column, text line no. 21 from the top C++ program. Non-local statics are

Pg. 412, 2nd column, ‘depth’ entry Returns the number of directories from the starting to the currently iterated one

Pg. 427, code line no. 120

Pg. 428, code line no. 139
// connect through the class member variable

Pg. 440, code line no. 17

range(const T from, const T end, const T step = 1)

Pg. 444, text line no. 15 from the top These are necessary to obtain a common language definition that allow us to implement

Pg. 452, text line no. 4 from the top reflects the rules of operator precedence and associativity including parentheses.

Pg. 452, text line no. 27 from the top expressions, fulfilling the precedence and associativity rules of operators without using parentheses.

Pg. 452, text line no. 27 from the top
Recall that in the integer representation, the LSB value was 1, so all intermediate values

could be precisely represented. But in the case of a fraction, the LSB value

Pg. 521, text line no. 4 from the bottom example, the associative law may not hold

Pg. 527, text line no. 5 from the top condition in Eq. (7.30) is fulfilled for a certain value of the threshold

Pg. 544, text line no. 3 from the top

 text line no. 20 from the top

starting at index n = 0, provided in its capture.

Only a lambda function declared mutable can change values passed in its capture

Pg. 554, text line no. 10 from the bottom Thread 1 is faster and manages to execute lines [3–6] of its code.

Pg. 564, text line no. 8 from the bottom sincetithisisthetotalsumofalloftheelementsthatareaddedintheloop.

Pg. 571, code line no. 3 from the top // its lowest local value (reduction for min)

Pg. 572, first row in Table 8.3
1

2

0

1

N

i

MSE u i v i
N

Pg. 573, code line 10 from the bottom // Executes simultaneously with the next section

Pg. 574, code line 1 from the top // Executes simultaneously with the previous section

