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Abstract: The alloy design for equiatomic multi-component alloys was rationalized by statistically analyzing the atomic size 
difference, mixing enthalpy, mixing entropy, electronegativity, valence electron concentration among constituent elements in solid 
solutions forming high entropy alloys and amorphous alloys. Solid solution phases form and only form when the requirements of the 
atomic size difference, mixing enthalpy and mixing entropy are all met. The most significant difference between the solid solution 
forming high entropy alloys and bulk metallic glasses lies in the atomic size difference. These rules provide valuable guidance for the 
future development of high entropy alloys and bulk metallic glasses. 
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1 Introduction 
 

The past twenty years have witnessed the fast 
development of bulk metallic glasses (BMGs) [1−3], a 
relatively new type of metallic materials with 
non-crystalline or amorphous structure. Their unique 
mechanical and physiochemical properties have 
stimulated extensive research in the materials community 
[2−6]. High entropy alloys (HEAs), or equiatomic 
multi-component alloys that are often in a single 
solid-solution form, were developed slightly later than 
the bulk metallic glasses and they even share many 
similar properties [7−10], but HEAs were given much 
less attention compared to BMGs. The concept of 
high-entropy bulk metallic glasses (HE-BMGs) which 
appeared very recently [11−13] provides an opportunity 
to compare and study the similarity and difference 
between these two types of multi-component alloys, 
particularly, from the alloy design perspective. A critical 
question relevant to the alloy design for multi-component 
alloys is: for a given composition with known constituent 
elements, can we predict which type of phases 
(amorphous phase, solid solution phase or intermetallic 
phase) will form? Alternatively, are we now capable of 
designing the multi-component alloys with the desired 
phase constitution? 

Unfortunately, it is still too ambitious to answer the 
above two important questions. However, there do have 
some clues obtained over years of alloy development. 
For the alloy design of BMGs, the three empirical rules 
initiated by INOUE [1] have been proven useful: 
multi-component systems, significant atomic size 
difference and negative heats of mixing among 
constituent elements. As traditionally the BMGs have 
only one or two principle elements, the uncertainty of the 
suitable composition for other alloying elements 
complicates the alloy design as there exist too many 
possibilities to be tried out. It is hence not surprised to 
see that currently many, if not most, alloy designs for 
BMGs are based on micro-alloying [14−17] or 
substitution of similar elements [18, 19] for those mature 
BMG formers, which were also developed from 
try-and-error experiments. Along this line of thinking, 
the alloy design in the equiatomic HEAs could be 
relatively easier, as once the alloy elements are chosen 
their compositions are known. However, we now face the 
uncertainty of the resultant types of crystalline phases: 
fcc, bcc, mixed fcc and bcc phases [20]. We also know 
that, in some multi-component alloys with a high mixing 
entropy (so in principle they can also be called HEAs 
even they do not form a single solid solution), 
intermetallics phases can form [20]. As the unique 
properties of HEAs mostly originate from the formation  
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of the multi-component solid solution [7, 10], we need to 
know the rules governing the formation of solid solution 
phases. Although the name of HEAs and the fact that the 
HEAs have large mixing entropy give the impression 
that the mixing entropy is the dominating factor 
controlling the formation of the solid solution phases, 
there exists no solid evidence supporting this argument. 
From the classical Hume-Rothery rule [21] we know that, 
to form a solid solution, the properties of constituent 
alloying elements need to be similar: they shall have 
similar atomic size and similar electronegativity. 
However, the Hume-Rothery rule is apparently not 
applicable to the solid solution formation in HEAs. For 
example, it cannot explain why the equiatomic 
Co(hcp)-Cr(bcc)-Cu(fcc)-Fe(bcc)-Ni(fcc) alloy forms an 
fcc-typed solid solution, and how the addition of fcc-Al 
can eventually change the fcc-type CoCrCuFeNi to a bcc 
structure [22]. 

Nevertheless, the prospect of predicting the phase 
stability from the fundamental properties of the 
constituent elements is still attractive, and using HEAs as 
the starting point is ideal in that one can focus on the 
properties of individual alloying element or their 
interaction without considering the relative amount of 
each element. The idea here is to find out the rules 
governing the phase stability in HEAs by statistically 
analyzing the collective behavior of the constituent 
elements in a large database of HEAs, where different 
phases form, including amorphous phases, solid solution 
phases or intermetallic phases. ZHANG et al [23] made 
the first try along this line of thinking, utilizing the 
atomic size difference, mixing enthalpy and mixing 
entropy (their definitions will be given in the following 
section) and some interesting findings were obtained. 
Solid solution phases are formed when the atomic size 
difference is small, and the mixing enthalpy is either 
slightly positive or not very negative; in addition the 
mixing entropy is high. In contrast, BMGs are formed 
when the atomic size difference is large, and the mixing 
enthalpy and mixing entropy are generally more negative 
and smaller than those of the solid solution forming 
HEAs. One deficiency of their work is, however, in 
terms of formation of amorphous phases or solid solution 
phases, they made the comparison between equiatomic 
HEAs and non-equiatomic BMGs. As mentioned above, 
this complicates the analysis by adding the consideration 
of the relative amount of individual alloying element. In 
this work, data on amorphous phase forming equiatomic 
alloy systems are collected and compared with those 
solid solution forming HEAs, in the hope of finding 
more trustworthy rules governing the formation of 
amorphous phase or solid solution phase. It is noted here 
that the equiatomic alloying systems are not limited to 
have at least five elements (normally HEAs have at least 

five elements), as it is believed by the current authors 
that the mixing entropy is not the determining factor to 
form either the solid solution phase or the amorphous 
phase. This view is also supported by what has been 
found by ZHANG et al [23]. 
 
2 Method 
 

In ZHANG et al’s work [23], three parameters were 
used to characterize the collective behavior of the 
constituent elements in the multi-component alloys: the 
atomic size difference (δ), the mixing enthalpy (∆Hmix) 
and the mixing entropy (∆Smix). They were defined by 
Eqs. (1−3), respectively. 
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where R is the gas constant. 

These three parameters are also adopted in this 
work. In addition, two more parameters are considered. 
One is the electronegativity difference, ∆χ, out of 
consideration from the classical Hume-Rothery’s rule to 
form solid solution phases. It is defined by [24]: 
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= ∑ , iχ  is the Pauling electronegativity 

for the ith element. The other parameter is the valence 
electron concentration, VEC, which has been proven 
useful in determining the phase stability of intermetallic 
compounds [25, 26]. VEC is defined by: 
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where (VEC)i is the VEC for the ith element. It needs to 
be pointed out here that VEC is different to e/a, the 
average number of itinerant electrons per atom in that 
VEC counts the total electrons including the d-electrons 
accommodated in the valence band [27, 28]. Except for 
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the mixing enthalpies of the binary alloys, which can be 
found in Refs. [29, 30], all the required data for 
calculation in this work are listed in Table 1 for an easy 
reference. 
 
3 Results 
 

∆Hmix, δ, ∆χ, ∆Smix and VEC for a series of 
equiatomic or nearly equiatomic alloys were calculated 
and are listed in Table 2. When only an amorphous phase 
forms, the “phase” column in the table shows 
“amorphous (AM)”; when only solid solution phases 
form, including different types of solid solutions like 
mixed fcc and bcc solid solutions, it is marked as “solid 

solution (SS)”; once intermetallic phases form 
(detectable by X-ray diffraction), it is marked as 
“intermetallics (IM)” in the table. Most of these alloys 
were prepared by the conventional casting method and 
the phases we discussed here are hence mostly referring 
to the as-cast state. It is certainly a concern that these 
phases are not necessarily in the equilibrium state; 
however, for many solid solution forming HEAs, it has 
been shown that the phases formed in the as-cast state 
are quite stable and hence not far away from the 
equilibrium state [31−34]. This justifies the motivation to 
compare their phase stability even at the as-cast state. It 
is known that the amorphous phase formation depends 
on the cooling rates and other processing parameters. 

 
Table 1 Atomic radii, Pauling electronegativity and VEC for elements [46−47] 

Element Symbol Atomic No. Radius/Å Pauling electronegativity VEC

Lithium Li 3 1.519 0.98 1 

Beryllium Be 4 1.128 1.57 2 

Boron B 5 0.820 2.04 3 

Carbon C 6 0.773 2.55 4 

Nitrogen N 7 0.750 3.04 5 

Oxygen O 8 0.730 3.44 6 

Sodium Na 11 1.857 0.93 1 

Magnesium Mg 12 1.601 1.31 2 

Aluminum Al 13 1.432 1.61 3 

Silicon Si 14 1.153 1.90 4 

Phosphorus P 15 1.060 2.19 5 

Sulfur S 16 1.020 2.58 6 

Potassium K 19 2.310 0.82 1 

Calcium Ca 20 1.976 1.00 2 

Scandium Sc 21 1.641 1.36 3 

Titanium Ti 22 1.462 1.54 4 

Vanadium V 23 1.316 1.63 5 

Chromium Cr 24 1.249 1.66 6 

Manganese Mn 25 1.350 1.55 7 

Iron Fe 26 1.241 1.83 8 

Cobalt Co 27 1.251 1.88 9 

Nickel Ni 28 1.246 1.91 10 

Copper Cu 29 1.278 1.90 11 

Zinc Zn 30 1.395 1.65 12 

Gallium Ga 31 1.392 1.81 3 

Germanium Ge 32 1.240 2.01 4 

Selenium Se 34 1.400 2.55 6 

Rubidium Rb 37 2.440 0.82 1 

Strontium Sr 38 2.152 0.95 2 

Yttrium Y 39 1.802 1.22 3 

(to be continued) 
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Continue 

Element Symbol Atomic No. Radius/Å Pauling electronegativity VEC

Zirconium Zr 40 1.603 1.33 4 

Niobium Nb 41 1.429 1.60 5 

Molybdenum Mo 42 1.363 2.16 6 

Technetium Tc 43 1.360 1.90 7 

Ruthenium Ru 44 1.338 2.20 8 

Rhodium Rh 45 1.345 2.28 9 

Palladium Pd 46 1.375 2.20 10 

Silver Ag 47 1.445 1.93 11 

Cadmium Cd 48 1.568 1.69 12 

Indium In 49 1.659 1.78 3 

Tin Sn 50 1.620 1.96 4 

Tellurium Te 52 1.452 2.10 6 

Cesium Cs 55 2.650 0.79 1 

Barium Ba 56 2.176 0.89 2 

Lanthanum La 57 1.879 1.10 3 

Cerium Ce 58 1.825 1.12 3 

Praseodymium Pr 59 1.650 1.13 3 

Neodymium Nd 60 1.640 1.14 3 

Promethium Pm 61 1.630 1.13 3 

Samarium Sm 62 1.810 1.17 3 

Europium Eu 63 1.984 1.20 3 

Gadolinium Gd 64 1.801 1.20 3 

Terbium Tb 65 1.781 1.10 3 

Dysprosium Dy 66 1.774 1.22 3 

Holmium Ho 67 1.766 1.23 3 

Erbium Er 68 1.756 1.24 3 

Thulium Tm 69 1.560 1.25 3 

Ytterbium Yb 70 1.700 1.10 3 

Lutetium Lu 71 1.735 1.27 3 

Hafnium Hf 72 1.578 1.30 4 

Tantalum Ta 73 1.430 1.50 5 

Tungsten W 74 1.367 2.36 6 

Rhenium Re 75 1.375 1.90 7 

Osmium Os 76 1.352 2.20 8 

Iridium Ir 77 1.357 2.20 9 

Platinum Pt 78 1.387 2.28 10 

Gold Au 79 1.442 2.54 11 

Thallium Tl 81 1.716 1.62 3 

Lead Pb 82 1.750 2.33 4 

Polonium Po 84 1.530 2.00 6 

Thorium Th 90 1.800 1.30 3 

Protactinium Pa 91 1.610 1.50 3 

Uranium U 92 1.420 1.38 3  
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Table 2 Calculated parameters ∆Hmix, δ, ∆χ, ∆Smix and VEC for alloys used in Figs. 1 and 2 

Material VEC ∆χ δ ∆Hmix/(kJ·mol−1) ∆Smix/(J·K−1·mol−1) Phase Reference 

Cu0.5NiAlCoCrFeSi 7.00 0.12 6.35 −22.58 16.01 AM [48] 

Zr17Ta16Ti19Nb22Si26 4.38 0.20 11.08 −48.64 13.25 AM [49] 

Cu50Zr50 7.50 0.29 11.25 −23.00 5.76 AM [50] 

Ni50Nb50 7.50 0.16 6.84 −30.00 5.76 AM [51] 

PdPtCuNiP 9.20 0.16 9.29 −23.68 13.38 AM [13] 

SrCaYbMgZn 4.20 0.26 15.25 −13.12 13.38 AM [12] 

SrCaYbMgZnCu 5.33 0.35 18.14 −13.11 14.90 AM [12] 

SrCaYb(Li0.55Mg0.45)Zn 4.11 0.26 15.63 −12.15 14.53 AM [12] 

ErTbDyNiAl 4.40 0.30 13.74 −37.60 13.38 AM [12] 

AlCrTaTiZr 4.40 0.11 7.84 −20.00 13.38 AM [35] 

CuNbNiTiZr 6.80 0.22 9.24 −21.28 13.38 AM [52] 

Zr50Ti50 4.00 0.11 4.57 0.00 5.76 AM [53] 

Mg50Cu50 6.50 0.30 11.22 −3.00 5.76 AM [54] 

Zr50Ni50 7.00 0.24 12.50 −49.00 5.76 AM [53] 

Mg50Ni50 6.00 0.30 12.47 −4.00 5.76 AM [55] 

ZrHfTiCuNi 6.60 0.27 10.32 −27.36 13.38 AM [56] 

ZrHfTiCuFe 6.20 0.25 10.42 −15.84 13.38 AM [56] 

ZrHfTiCuCo 6.40 0.26 10.23 −23.52 13.38 AM [56] 

Cu0.5NiAlCoCrFeTi 7.00 0.14 6.99 −17.18 16.01 AM [10] 

Cu0.5NiAlCoCrFe 7.55 0.12 5.51 −7.93 14.70 AM [10] 

AlCrMoSiTi 4.60 0.23 8.68 −34.08 13.38 AM [57] 

AlCrMoTaTiZr 4.67 0.26 9.09 −16.11 14.90 AM [58] 

AlMoNbSiTaTiVZr 4.50 0.24 8.64 −32.19 17.29 AM [59] 

6FeNiCoSiCrAlTi 7.00 0.11 6.56 −21.22 13.21 SS [60] 

WNbMoTa 5.50 0.36 2.31 −6.50 11.53 SS [61] 

WNbMoTaV 5.40 0.34 3.15 −4.64 13.38 SS [61] 

FeCoNiCrCu 8.80 0.09 1.03 3.20 13.38 SS [22] 

FeCoNiCrCuAl0.3 8.47 0.10 3.42 0.16 14.43 SS [22] 

FeCoNiCrCuAl0.5 8.27 0.11 4.17 −1.52 14.70 SS [22] 

FeCoNiCrCuAl0.8 8.00 0.12 4.92 −3.61 14.87 SS [22] 

FeCoNiCrCuAl1.0 7.83 0.12 5.28 −4.78 14.90 SS [22] 

FeCoNiCrCuAl1.5 7.46 0.12 5.89 −7.05 14.78 SS [22] 

FeCoNiCrCuAl2.0 7.14 0.13 6.26 −8.65 14.53 SS [22] 

FeCoNiCrCuAl2.3 6.97 0.13 6.40 −9.38 14.35 SS [22] 

FeCoNiCrCuAl2.8 6.72 0.13 6.57 −10.28 14.01 SS [22] 

FeCoNiCrCuAl3 6.63 0.13 6.61 −10.56 13.86 SS [22] 

FeNi2CrCuAl0.2 8.77 0.10 2.94 0.12 12.01 SS [20] 

FeNi2CrCuAl0.4 8.56 0.11 3.86 −1.70 12.45 SS [20] 

FeNi2CrCuAl0.6 8.36 0.12 4.49 −3.27 12.72 SS [20] 

FeNi2CrCuAl0.8 8.17 0.12 4.96 −4.61 12.88 SS [20] 

FeNi2CrCuAl1.0 8.00 0.12 5.32 −5.78 12.98 SS [20] 

FeNi2CrCuAl1.2 7.84 0.13 5.60 −6.78 13.02 SS [20] 

(to be continued) 
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Continue 
Material VEC ∆χ δ ∆Hmix/(kJ·mol−1) ∆Smix/(J·K−1·mol−1) Phase Reference 

AlCo0.5CrCuFeNi 7.73 0.12 5.45 −4.50 14.70 SS [62] 

AlCoCr0.5CuFeNi 8.00 0.12 5.44 −5.02 14.70 SS [62] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [62] 

AlCoCrCuFe0.5Ni 7.82 0.12 5.40 −5.55 14.70 SS [62] 

AlCoCrCuFeNi0.5 7.64 0.12 5.43 −3.90 14.70 SS [62] 

CoCrCu0.5FeNi 8.56 0.09 0.84 0.49 13.15 SS [62] 

Al0.5CoCrCu0.5FeNi 8.00 0.11 4.37 −4.60 14.53 SS [63] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [63] 

Al1.5CoCrCu0.5FeNi 7.17 0.13 6.12 −10.14 14.53 SS [63] 

Al2CoCrCu0.5FeNi 6.85 0.13 6.46 −11.60 14.23 SS [63] 

AlCrCu0.5FeNi 7.22 0.12 5.92 −7.70 13.15 SS [63] 

AlCo0.5CrCu0.5FeNi 7.40 0.12 5.71 −7.92 14.53 SS [63] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [63] 

AlCo1.5CrCu0.5FeNi 7.67 0.12 5.33 −7.83 14.53 SS [63] 

AlCo2CrCu0.5FeNi 7.77 0.12 5.17 −7.67 14.23 SS [63] 

AlCo3CrCu0.5FeNi 7.93 0.11 4.88 −7.25 13.48 SS [63] 

AlCo3.5CrCu0.5FeNi 8.00 0.11 4.75 −7.03 13.09 SS [63] 

AlCoCu0.5FeNi 7.89 0.11 5.90 −8.69 13.15 SS [63] 

AlCoCr0.5Cu0.5FeNi 7.70 0.12 5.70 −8.32 14.53 SS [63] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [63] 

AlCoCr1.5Cu0.5FeNi 7.42 0.12 5.34 −7.56 14.53 SS [63] 

AlCoCr2Cu0.5FeNi 7.31 0.12 5.18 −7.20 14.23 SS [63] 

AlCoCrCu0.5Ni 7.44 0.13 5.81 −10.17 13.15 SS [63] 

AlCoCrCu0.5Fe0.5Ni 7.50 0.13 5.66 −8.92 14.53 SS [63] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [63] 

AlCoCrCu0.5Fe1.5Ni 7.58 0.12 5.37 −7.14 14.53 SS [63] 

AlCoCrCu0.5Fe2Ni 7.62 0.11 5.23 −6.49 14.23 SS [63] 

AlCoCrCu0.5Fe 7.00 0.12 5.87 −6.12 13.15 SS [63] 

AlCoCrCu0.5FeNi0.5 7.30 0.12 5.68 −7.28 14.53 SS [63] 

AlCoCrCu0.5FeNi 7.55 0.12 5.51 −7.93 14.70 SS [63] 

AlCoCrCu0.5FeNi1.5 7.75 0.12 5.35 −8.28 14.53 SS [63] 

AlCoCrCu0.5FeNi2 7.92 0.12 5.20 −8.43 14.23 SS [63] 

AlCoCrCu0.5FeNi2.5 8.07 0.12 5.06 −8.45 13.87 SS [63] 

AlCoCrCu0.5FeNi3 8.20 0.12 4.93 −8.39 13.48 SS [63] 

CrCuFeMnNi 8.40 0.14 3.20 2.72 13.38 SS [64] 

CoCrFeMnNi 8.00 0.14 3.27 −4.16 13.38 SS [8] 

Al0.3CrCuFeMnNi 8.09 0.14 4.21 −0.27 14.43 SS [64] 

Al0.5CrCuFeMnNi 7.91 0.14 4.66 −1.92 14.70 SS [64] 

Al0.8CrCuFeMnNi 7.66 0.14 5.15 −3.97 14.87 SS [64] 

AlCrCuFeMnNi 7.50 0.14 5.39 −5.11 14.90 SS [64] 

Al0.8CrCu1.5FeMnNi 7.92 0.14 4.96 −1.74 14.74 SS [64] 

Al0.8CrCuFe1.5MnNi 7.68 0.14 5.08 −3.31 14.74 SS [64] 

Al0.8CrCuFeMn1.5Ni 7.60 0.15 5.05 −4.23 14.74 SS [64] 
(to be continued) 
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Continue 

Material VEC ∆χ δ ∆Hmix/(kJ·mol−1) ∆Smix/(J·K−1·mol−1) Phase Reference 

CuAlNiCoCrFeSi 7.29 0.12 6.13 −18.86 16.18 SS [65] 

AlCoCrCuFeMoNiTiVZr 6.60 0.22 8.54 −17.24 19.14 SS [66] 

CoCrFeNiTi 7.40 0.14 6.68 −16.32 13.38 IM [52] 

NbCrFeMnCoNi 7.50 0.14 5.49 −12.00 14.90 IM [8] 

TiCrFeMnCoNi 7.33 0.15 6.29 −13.44 14.90 IM [8] 

TiVCrCuFeMnCoNi 7.50 0.15 5.50 −8.13 17.29 IM [67] 

Ti2CrCuFeCoNi 7.43 0.15 7.24 −14.04 14.53 IM [23] 

AlTiVYZr 3.80 0.16 10.95 −14.88 13.38 IM [23] 

ZrTiVCuNiBe 6.00 0.20 11.48 −24.89 14.90 IM [23] 

CoCrCuFeNiTi0.8 8.14 0.13 5.70 −6.75 14.87 IM [68] 

CoCrCuFeNiTi1.0 8.00 0.14 6.12 −8.44 14.90 IM [68] 

Al0.5CoCrCuFeNiTi0.8 7.73 0.14 6.26 −10.11 16.00 IM [69] 

Al0.5CoCrCuFeNiTi1.0 7.62 0.14 6.54 −11.60 16.01 IM [69] 

Al0.5CoCrCuFeNiTi1.2 7.51 0.14 6.76 −12.89 15.97 IM [69] 

Al0.5CoCrCuFeNiTi1.4 7.41 0.15 6.94 -14.02 15.91 IM [69] 

Al0.5CoCrCuFeNiTi1.6 7.31 0.15 7.09 −15.01 15.82 IM [69] 

Al0.5CoCrCuFeNiTi1.8 7.22 0.15 7.21 −15.86 15.72 IM [69] 

Al0.5CoCrCuFeNiTi2.0 7.13 0.15 7.31 −16.60 15.60 IM [69] 

Al0.5CoCrCuFeNiV0.6 7.95 0.12 4.09 −4.07 15.92 IM [70] 

Al0.5CoCrCuFeNiV0.8 7.86 0.12 4.07 −4.71 16.00 IM [70] 

Al0.5CoCrCuFeNiV1.0 7.77 0.12 4.04 −5.25 16.01 IM [70] 

ZrHfTiAlCuNi 6.00 0.24 9.42 −34.11 14.90 IM [71] 

AlCoCrFeNiTi1.5 6.46 0.15 7.50 −23.91 14.78 IM [72] 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 5.03 0.22 13.96 −35.20 12.18 AM [38] 

Pd40Cu30Ni10P20 9.30 0.14 9.08 −24.88 10.64 AM [38] 

Fe41Co7Cr15Mo14C15B6Y2 6.49 0.30 18.56 −33.35 13.66 AM [38] 

Mg54Cu26.5Ag8.5Gd11 5.26 0.30 11.02 −8.45 9.45 AM [38] 

Cu46Zr42Al7Y5 7.10 0.28 11.84 −24.88 8.79 AM [38] 

Y36Sc20Al24Co20 4.20 0.25 13.55 −34.92 11.26 AM [38] 

Co48Cr15Mo14C15B6Er2 6.90 0.29 18.40 −33.36 12.00 AM [38] 

Ti40Zr25Cu12Ni3Be20 6.54 0.20 16.72 −25.88 11.59 AM [38] 

Pt42.5Cu27Ni9.5P21 9.22 0.17 9.64 −24.94 10.55 AM [38] 

Ca65Mg15Zn20 4.00 0.26 13.47 −14.26 7.37 AM [38] 
AM stands for amorphous phases, SS for solid solution phases and IM for intermetallic phases 

 

However, in this analysis, as long as a single  
amorphous phase can be achieved via ordinary 
preparation processes, the alloys are identified as the 
amorphous phase forming alloys in the table. For 
example, when rods of diameter smaller than 10 mm are 
cast, the equiatomic PdPtCuNiP alloy has a single 
amorphous structure but crystalline phases form at larger 
sizes [13]. PdPtCuNiP is identified as the amorphous 
phase forming alloy in Table 2. Another example is, 
when in the bulk as-cast form, the phases in the 

equiatomic AlCrTaTiZr comprise a bcc solid solution 
plus an Al2Zr compound; however, when it was 
deposited into thin film by the RF magnetron sputtering, 
a single amorphous phase was obtained [35]. AlCrTaTiZr 
is also identified as the amorphous phase forming alloy 
in Table 2. Then a question naturally arises: would those 
solid solution forming alloys form amorphous phases 
when they are deposited into films? To the knowledge of 
the current authors, there is no reported work on this 
topic. On one hand, in principle any alloy even pure 
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metal can become amorphous if sufficiently high cooling 
rate is given when it cools from the liquid state [36], so 
this is actually not a critical question; on the other hand, 
available data show that some equiatomic alloys cannot 
form amorphous phases and instead they form solid 
solution phases using the sputtering method [37]. It 
suggests that the fundamental properties of constituent 
alloying elements do make a difference on forming the 
solid solution phase or amorphous phase at comparable 
preparation conditions. This justifies the classification of 
formed phases in Table 2. For the purpose of comparison, 
∆Hmix, δ, ∆χ, ∆Smix and VEC for some non-equiatomic 
BMGs with good glass forming ability (GFA) [38] were 

also calculated and are listed in the bottom of Table 2. 
For clarity, the data in Table 2 are plotted in Fig. 1, 

to show how the five parameters reflecting the collective 
behavior of the constituent alloying elements, can affect 
the phase stability in HEAs, particularly to reveal the 
rules governing the formation of solid solution phases 
and amorphous phases. From Fig. 1, we can see that 
solid solution phases form when ∆Hmix is slightly 
positive or not very negative and when δ is small, and 
∆Smix is high. Comparatively, amorphous phases 
generally form at more negative ∆Hmix, larger δ and 
smaller ∆Smix, no matter in equiatomic or non-equiatomic 
alloys. This is basically in agreement to the findings by 

 

 

Fig. 1 Effect of ∆Hmix, δ, ∆χ, ∆Smix and VEC on 

phase stability in equiatomic multi-component 

alloys and BMGs. The symbol ○ represents 

equiatomic amorphous phase forming alloys; ● 

represents non-equiatomic amorphous phase 

forming alloys; □ represents solid solution 

phases and △ represents intermetallic phases 
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ZHANG et al [23], but the difference here is that we 
added the data for the equiatomic amorphous phase 
forming alloys. As we mentioned before, this ensures the 
phase stability analysis is compared simply from the 
fundamental properties of the constituent elements, and 
not from their relative amount. ∆χ almost does not have 
an effect on the formation of solid solution phase or 
amorphous phase. VEC also has a weak effect on the 
phase stability between the amorphous phases and solid 
solution phases. It is important to note that, in a previous 
work [20], we have shown that VEC plays a decisive role 
in determining the fcc- or bcc-type solid solution in 
HEAs, and specially larger VEC(≥8) favors the 
formation of fcc-type solid solutions, while smaller 
VEC(<6.87) favors the formation of bcc-type solid 
solutions. 

To better reflect the three main factors governing 
the phase stability, ∆Hmix, δ, and ∆Smix are superimposed, 
as shown in Fig. 2. It clearly shows that solid solution 
phases form and only form when the three parameters, 
∆Hmix, δ, and ∆Smix are in the suitable range: 0≤δ≤8.5, 
−22≤∆Hmix≤7 kJ/mol and 11≤∆Smix≤19.5 J/(K·mol). The 
restrictions for forming amorphous phases from these 
three parameters are much relaxed, as can be seen from 
the distribution of the data points. However, the region 
where BMGs form is limited: δ≥9, −35≤∆Hmix≤−8.5 
kJ/mol and 7≤∆Smix≤14 J/(K·mol). The range for forming 
BMGs could be larger as only some excellent glass 
formers are included here. This will be discussed further 
in the following section. It is surprised to note how the 
atomic size difference, δ, can separate the formation of 
solid solution phases and the BMGs. Interestingly, 
intermetallic phases tend to form at the intermediate 
conditions in terms of these three parameters, particular 
for δ. In the region where solid solution phases form, 
intermetallic phases can also form while only a few 
marginal glass formers are found. Seen from Fig. 2(c), it 
suggests that by decreasing δ to roughly δ<4 while 
keeping ∆Hmix and ∆Smix falling in the solid solution 
forming region, only solid solution phases would form. 
 
4 Discussion 
 
4.1 Indications on solid solution phase formation 

From Fig. 2, it is immediately obvious that only 
satisfying the high mixing entropy requirement is not 
sufficient to form solid solution phases in equiatomic 
multi-component alloys, as is felt from the name of high 
entropy alloys. The mixing entropy reflects the 
complexity of the system, and the higher mixing entropy 
the more confused the system gets to form ordered 
structure [39]. From this perspective, the formation of 
random solid solution or partially ordered solid solution 
is favored by the high mixing entropy. However, another 

 

  
Fig. 2 Superimposed effect of ∆Hmix and δ (a), ∆Smix and δ (b), 
and all three parameters ∆Hmix, δ and ∆Smix (c) on phase 
stability in equiatomic multi-component alloys and BMGs. The 
symbol ○ represents equiatomic amorphous phase forming 
alloys; ● represents non-equiatomic amorphous phase forming 
alloys; □ represents solid solution phases and △ represents 
intermetallic phases. The region delineated by the dash-dotted 
lines in (c) indicates the requirements for solid solution phases 
to form. 
 
possibility when the system gets confused is to form the 
amorphous phase. Naturally, the amorphous phase 
formation needs to be inhibited to form the solid solution 
phases, and here come the other requirements such as 
atomic size difference and mixing enthalpy. The 
requirement on the small size difference can be perceived 
by the notion of topological instability proposed by 
EGAMI [40−42]. Atoms suffer from pressure under the 
atomic size mismatch and this produces the local elastic 
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strain. Above some critical volume strain the system 
becomes topological unstable and glass transition might 
happen. The requirement on the mixing enthalpy could 
be related to the cluster formation in that the more 
negative mixing enthalpy favors the formation of 
chemically ordered clusters that are related to the high 
GFA [43−45], hence not favors the formation of the solid 
solution. To form stable glassy phase, however, the more 
negative enthalpy has to be coupled with the large atomic 
size difference, otherwise intermetallic phases would 
form. This will be discussed further in the coming 
section. 
 
4.2 Indication on non-equiatomic BMGs formation 

As this paper mainly addresses to the phase 
competition between solid solution phases and 
amorphous phases in multi-component alloys, it is 
certainly relevant to discuss the indication of the 
collective behavior of constituent alloying elements on 
the BMG formation, which is another important and 
unsettled topic. In Fig. 3, the effect of ∆Hmix, δ, and ∆Smix 
on the critical cooling rates (Rc) for the non-equiatomic 
metallic glasses with a broad range of GFA is plotted. 
The relevant parameters used in Fig. 3 are given in  
Table 3. Although δ plays a decisive role in determining 
the formation of solid solution or BMGs, it does not have 
a direct impact on the GFA seen from Fig. 3(a). If we 
assume those metallic glasses with Rc≤102 K/s can be 
considered as in the bulk form, it is interesting to note 
that BMGs all have δ≥9, which is in agreement with the 
observation from Fig. 1(b) and Fig. 2. ∆Hmix also has a 
weak correlation to Rc, although generally BMGs have 
more negative ∆Hmix and the range for forming BMGs is 
−40≤∆Hmix≤−5.5 kJ/mol, which is broader than that 
obtained from Fig. 1(a) and Fig. 2, as more alloy systems 
are reflected in Fig. 3(b). Different to δ　and ∆Hmix, 
∆Smix apparently has a reasonable correlation to Rc, and 
the higher ∆Smix the lower Rc. All BMGs with good GFA 
have ∆Smix≥7 J/(K·mol) and again this agrees to the 
conclusion obtained from Fig. 1(d) and Fig. 2. This 
actually justifies the requirement for multiple alloying 
elements for forming BMGs, and basically the 
conclusions from Fig. 3 are all consistent with INOUE’s 
three empirical rules [1]. 
 
4.3 Indication on HE-BMGs formation 

The emergence of HE-BMGs or equiatomic BMGs 
[11−13] is exciting as this would greatly simplify the 
alloy design and it also provides a brand new perspective 
to develop BMGs, different to the traditional alloy design 
for BMGs that are based on one or two principle 
elements. Essentially, those parameters favoring the 
formation of BMGs shall also favor the formation of 

 

 
 
Fig. 3 Effect of δ (a), ∆Hmix (b) and ∆Smix (c) on critical cooling 
rates for metallic glasses 
 
HE-BMGs. This is verified in Fig. 4, where ∆Hmix, δ, and 
∆Smix for the equiatomic amorphous phase forming 
alloys are plotted separately and those BMG formers 
(with size larger than 1 mm) are represented by the 
closed-circle symbols for clarity. It is clear that the 
equiatomic or high-entropy BMGs form when δ≥9, 
−49≤∆Hmix≤−5.5 kJ/mol and 7≤∆Smix≤16 J/(K·mol) 
(indicated by the green dash-dotted line in Fig. 4(c)), at 
almost the exact region where non-equiatomic BMGs 
form. A closer look at Fig. 4(c) suggests that most 
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Table 3 Critical cooling rates Rc, and δ, ∆Hmix, ∆Smix for alloys used in Fig. 3 (Rc data from Ref. [73] and references wherein) 

Material Rc δ ∆Hmix/(kJ·mol−1) ∆Smix/(J·K−1·mol−1)

La55Al25Ni20 6.75×101 16.50 −37.18 8.29 

La55Al25Ni15Cu5 3.45×101 16.35 −35.35 9.23 

La55Al25Ni10Cu10 2.25×101 16.19 −33.60 9.44 

La55Al25Ni5Cu15 3.59×101 16.04 −31.93 9.23 

La55Al25Ni5Cu10Co5 1.88×101 16.17 −32.31 10.02 

Pd40Ni40P20 1.67×10−1 9.17 −22.72 8.77 

Pd40Ni10Cu30P20 1.00×10−1 9.08 −24.88 10.64 

Pd42.5Cu30Ni7.5P20 6.70×10−2 9.15 −25.46 10.32 

Pd43Cu27Ni10P20 9.00×10−2 9.17 −25.17 10.55 

Pd77.5Cu6Si16.5 2.00×102 6.23 −31.49 5.52 

Pd82Si18 1.80×103 6.39 −32.47 3.92 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 1.40×100 13.96 −35.20 12.18 

Zr46.75Ti8.25Cu7.5Ni10Be27.5 2.80×101 14.85 −38.92 11.15 

Zr52.5Cu17.9Ni14.6Al10Ti5 4.50×100 10.38 −35.79 10.87 

Zr55Al19Co19Cu7 1.60×101 9.89 −41.55 9.53 

Zr55Al20Co25 1.65×101 9.96 −45.71 8.29 

Zr55Al22.5Co22.5 1.75×101 9.64 −45.92 8.31 

Zr57Cu15.4Ni12.6Al10Nb5 1.00×101 10.02 −33.61 10.39 

Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 1.75×100 10.08 −34.91 9.98 

Mg65Cu25Y10 5.00×101 10.56 −5.71 7.12 

Cu47Ti34Zr11Ni8 2.50×102 8.61 −15.44 9.70 

Cu50Zr50 2.50×102 11.25 −23.00 5.76 

Fe41.5Ni41.5B17 3.50×105 13.58 −1.94 8.57 

Fe79Si10B11 1.80×105 11.07 −20.71 5.48 

Fe80P13C7 2.80×104 10.82 −27.80 5.24 

Fe83B17 8.30×105 13.52 −14.67 3.79 

Ni62.4Nb37.6 1.40×103 6.74 −28.16 5.50 

Ni75Si8B17 1.10×105 13.60 1.88 5.98 

Co75Si15B10 3.50×105 10.82 −25.14 6.07 

Au77.8Ge13.8Si8.4 7.40×105 7.17 −17.75 5.63 

Pt57.5Cu14.7Ni5.3P22.5 2.80×101 10.24 −26.36 9.07 

Pt60Ni15P25 4.00×103 10.77 −27.68 7.80 

Pr60Cu20Ni10Al10 1.60×102 11.46 −27.52 9.05 

Ca65Mg15Zn20 2.00×101 13.47 −14.26 7.37 

 
HE-BMGs form at a much narrower region indicated by 
the blue dash-dotted line in Fig. 4(c): δ≥9, 
−28≤∆Hmix≤−10 kJ/mol and 13.38≤∆Smix≤14.89 
J/(K·mol). The mixing entropies of 13.38 and 14.89 
J/(K·mol) correspond to the mixing entropy for the 
equiatomic and quinary and senary alloys. This refined 

region could provide a guideline to find more HE-BMGs. 
Although there lack sufficient information to establish 
correlations between the critical cooling rates and the 
parameters like ∆Hmix, δ, or ∆Smix for HE-BMGs, the fact 
that most HE-BMGs fall in the high ∆Smix region 
suggests that the high mixing entropy favors BMG  
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Fig. 4 Superimposed effect of ∆Hmix and δ (a), ∆Smix and δ(b), 
and all three parameters ∆Hmix, δ, ∆Smix (c) on phase stability in 
equiatomic multi-component amorphous alloys. The symbols ○ 
represent marginal glass formers and ● represent bulk glass 
formers. The region delineated by the dash-dotted lines in (c) 
indicates the requirements for BMG formation 
 
formation, in consistent to the conclusion obtained from 
non-equiatomic BMGs (Fig. 3(c)). 
 
5 Conclusions 
 

1) The high mixing entropy is not the only factor 
that controls the solid solution formation in equiatomic 
multi-component alloys. The formation of solid solution 
requires that the mixing enthalpy (∆Hmix), atomic size 
difference (δ) and mixing entropy simultaneously satisfy 
−22≤∆Hmix≤7 kJ/mol, 0≤∆Smix≤8.5, and 11≤∆Smix≤19.5 
J/(K·mol). 

2) The atomic size difference is the critical 
parameter that determines the formation of solid solution 

phases or bulk metallic glasses. BMGs form when δ≥9, 
−49≤∆Hmix≤−5.5 kJ/mol and 7≤∆Smix≤16 J/(K·mol), for 
both equiatomic and non-equiatomic alloys. 

3) In terms of the glass forming ability, the high 
mixing entropy favors the formation of BMGs. 
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