Wprowadzenie do Image Processing Toolbox

1 Operacje I/O

Do wczytywania obrazów w MatLABie służy polecenie imread('nazwa_pliku') np. a=imread('cameraman.tif') oraz [mapa, legenda]=imread(obraz);

Do zapisywania tablic do plików graficznych służy polecenie

imwrite(zmienna, 'nazwa pliku', opcje). Opcje są zależne od wybranego formatu zapisu obrazu. Szczegółowe informacje o możliwych opcjach zawarte są w pomocy tej funkcji.

Do wyświetlania służy polecenie imshow(zmienna, opcje), np.

imshow(a, 'InitialMagnification', 'fit') oraz:

imagesc(x,y, obraz); - dla obrazów poza skalą 0-1.

Dodatkowym poleceniem jest imtool(obraz), które oprócz wyświetlania obrazu, udostępnia wiele narzędzi: pixel region, distance, image intensity, adjust contrast, choose colormap.

Dostępne formaty plików to bmp, cur, gif, hdf, ico, jpg, pbm, pcx, pgm, png, pnm, ppm, ras, tif, xwd.

2 Formaty przechowywania obrazu

W pakiecie MatLAB obrazy są przechowywane na kilka sposobów:

- obraz logiczny, przyjmujący wartości true / false;
- obraz monochromatyczny tablica poziomów szarości. Wartości mogą być typu double (0-1), uint8 (0-255) lub uint16;
- obraz kolorowy RGB potrójna tablica intensywności (3 tablice monochromatyczne);
- obraz kolorowy indeksowany składa się z dwóch części: mapy i legendy, gdzie legenda jest tablicą o wymiarze Nx3 (gdzie N ilość dostępnych kolorów), a mapa jest tablicą z numerami kolorów (numerami odpowiednich wersów w legendzie).
- obrazy sekwencyjne (ruchome) tablica 4D, gdzie czwarty wymiar odpowiada za numer klatki (obrazu w sekwencji).

3 Formaty kodowania koloru

Istnieje wiele sposobów kodowania koloru. Oprócz najpopularniejszego RGB, bazującego na ludzkim sposobie postrzegania barw czy używanym w drukarkach CMYK, istnieją również specyficzne formaty mające na ogół bardzo wąskie zastosowanie. Generalnie podzielić je można ze względu na ilość tablic (kanałów) służących do przechowywania pojedynczego koloru.

- 1. Pojedyncza tablica: Gray
- 2. Potrójna tablica:
 - RGB (Red, Green, Blue)
 - YCbCr, zwane YUV (Luminance, Chrominance)
 - HSV (Hue, Saturation, Value) oparte o stożek: H=0:360; S,V=0:100.
 - CMY

- $L^*a^*b^*$ (Luminance, a i b)
- HLS (Hue, Saturation, Lightness)
- 3. Poczwórna tablica: CMYK (Cyan, Magenta, Yellow, Key (black))
- 4. n-kanałowe.

Przykładowe wartości kolorów przedstawia tab.1.

Tabela 1: Wartości przykładowych kolorów w wybranych kodowaniach koloru (UWA-GA: kolory XYZ, CMY, CMYK zostały określone na podstawie RGB przy użyciu http://www.easyrgb.com/index.php?X=CALC, natomiast HSV, YUV i YIC na podstawie: http://web.forret.com/tools/color.asp)

1 / /	/	/ 1/				
format	czarny	biały	czerwony	zielony	niebieski	
RGB	0, 0, 0	1, 1, 1	1, 0, 0	0, 1, 0	0, 0, 1	
XYZ	0, 0, 0	95.05, 100, 108.9	41.24, 21.26, 1.93	35.76, 71.52, 11.92	18.05, 7.22, 95.05	
CMY	1, 1, 1	0, 0, 0	0, 1, 1	1, 0, 1	1, 1, 0	
CMYK	0, 0, 0, 1	0, 0, 0, 0	0, 100, 100, 0	100, 0, 100, 0	100, 100, 0, 0	
HSV	0, 0, 0	0, 0, 100	0, 100, 100	120,100,100	240, 100, 100	
HSL	0, 0, 0	0, 0, 100	0, 100, 50	120, 100, 50	240, 100, 50	
YUV	0, 0, 0	100, 0, 0	29.9, -14.7, 61.5	58.7, -28.9, -51.5	11.4, 43.6, -10	
YIC	0, 0, 0	100, 0, -62.2	29.0, 59.6, 21.1	58.7, -27.4, -52.3	11.4, -32.1, -31.1	

Konwersji pomiędzy tymi formatami i typami używa się przy wykorzystaniu funkcji o nazwie typ2typ, np.: rgb2gray() czy ycbcr2rgb().

Dla przykładu, przekształcenie RGB->YIQ polega na macierzowym mnożeniu macierzy przekształcenia przez wektor RGB. Macierz przekształcenia przedstawiano jest poniżej. Format YIQ jest powszechnie wykorzystywany przy analizie barwionych szlifów mikroskopowych

Y		0.299	0.587	0.114		$\begin{bmatrix} R \end{bmatrix}$
Ι	=	0.596	-0.275	-0.321		G
Q		0.212	-0.523	-0.311		B

Z kolei przekształcenie RGB->CMY i odwrotne, polega na odjęciu od największej dopuszczalnej wartości danej palety:

CMY = 255 - RGB (dla uint8) i RGB = 1 - CMY (dla double).

4 Palety barw

Do wyświetlania palet służy polecenie rgbplot(nazwa(dynamika)). W MatLABie dostępne są następujące palety:

- hsv (Hue, Saturation, Value)
- Jet przestawione hsv
- Hot ciepłe kolory: czarny, czerwony, żółty, biały
- Cool zimne kolory: odcienie błękitu i purpury
- Gray odcienie szarości
- Bone odcienie niebieskiego
- Cooper odcienie miedzi
- Pink odcienie różu
- Prism kolory: zielony, żółty, czerwony, fiolet, niebieski
- flag kolory: czerwony, biały, niebieski, czarny
- $\bullet\,$ spring, summer, autumn, winter

Narzucanie palety barw na figurę odbywa się przy użyciu polecenie colormap(paleta). Wybrana paleta stosowana jest do wszystkich obrazów logicznych i monochromatycznych na danej figurze.

5 Informacje o obrazie

Do wyświetlania informacji o pliku obrazu: imfinfo('nazwa_pliku');

Innych informacji o obrazie udziela funkcja regionprops(obraz,'all'). Udziela ona o powierzchni, położeniu środka ciężkości, etc.

Do wycinania konkretnego fragmentu służy funkcja imcrop(obraz, rect), gdzie rect = [xmin, ymin, szerokość, wysokość]. Nie podanie opcji rect powoduje, wyznaczenie obszaru wycinku poprzez zaznaczenie urządzeniem wskazującym (np. kursorem myszki).

Do uzyskiwania informacji o kolorze pikseli znajdujących się pod linią (lub łamaną) służy polecenie linia=improfile(obraz, $[x_1 \ x_2]$, $[y_1 \ y_2]$); Do naniesienie owej linii na wyświetlany obraz służy polecenie line($[x_1 \ x_2]$, $[y_1 \ y_2]$, 'color', [R G B]); RGB jest kodowane w wartościach typu double. Do uzyskiwania informacji o wartościach intensywności konkretnego piksela służy polecenie piksel=impixel(obraz, x,y); x nr kolumny, y - nr wiersza. Dany piksel można zaznaczyć na wyświetlanym obrazie np. poleceniem text(x,y, '*', 'color', [R G B]). Należy pamiętać o zmianie kolejności numerowania. Polecenie impixel(obraz, x, y) jest tożsame z komendą obraz(y, x) w wierszu poleceń.

6 Rozdzielczość przestrzenna

Rozdzielczość przestrzenna definiowana jest na wiele sposobów. Jedna z najczęściej spotykanych definicji stanowi, że jest to rozmiar powierzchni jaką zajmuje dany piksel (wielkość terenu). W przypadku wydruków i obrazów często spotykaną miarą rozdzielczości przestrzennej jest DPI (dot per inch) czyli ilość punktów (pikseli) na 1 cal wydruku lub skanu.

Do zmiany rozmiaru (a co za tym idzie rozdzielczości) służy polecenie imresize(obraz, [rozmiar], 'metoda');. W MatLABie istnieją 3 metody interpolacji:

- 'nearest' najbliższego sąsiada,
- 'bilinear' interpolacja dwuliniowa,
- 'bicubic' interpolacja kubiczna (dwukwadratowa).

7 Rozdzielczość barwna

Rozdzielczość poziomów szarości dla obrazów monochromatycznych R_L definiowana jest jako (Wróbel & Koprowski):

$$\frac{1}{R_L} = \frac{l_w - l_n}{P} \tag{1}$$

gdzie:

 l_w i l_n - wysoki i niski poziom szarości

P - liczba naturalna $P \in \{0, 1, 2, ..., 2^{b} - 2, 2^{b} - 1\}$

b - liczba bitów służących do reprezentacji danego poziomu szarości

Do zmiany dynamiki obrazu (ilości wyświetlanych odcieni) służy polecenie:

imapprox(mapa, legenda, dynamika). Na wejściu i wyjściu używane są obrazy indeksowane (konwersja rgb2ind,gray2ind).