Sodium Cobalt Oxide as Functional Thermoelectric Material

J. Plewa^{1,2}, K. Kozlowska^{1,3}, M. Sopicka-Lizer³, A. Mrotzek⁴, E. Müller⁴, I. Brunets¹, H. Altenburg^{1,2}

¹FH Muenster/University of Applied Sciences, Steinfurt, Germany
²SIMa, Steinfurter Initiative fuer Materialforschung, Steinfurt, Germany
³Silesian University of Technology, Katowice, Polen
⁴Duetsche Luft- und Raumfahrt Anstalt, Koeln, Germany

Abstract.

Cobaltite compounds with a layered structure have a functional properties; $LiCoO_2$ as electrode and Na_xCoO_2 as thermoelectric material. In recent years they have been extensive studied as new electroceramic materials [1-2]. Na_xCoO_2 for instance was discovered to posses a very high electric conductivity and large Seebeck coefficient.

The great ability of cobalt to adopt various oxidation state has influenced on the physical and chemical properties and specially on the thermoelectrical properties. In this respect determination of cobalt valence is interest for monitoring of quality of samples. Na_xCoO₂ powder has been prepared by the solid state reaction of Co₃O₄ and carbonate on multi-step calcination and presintering process. Products were investigated by XRD and TG/DTA analysis. The content of cobalt on different oxidation state in sodium cobaltites were measured with three chemical methods: iodometric, complexometric with Cr³⁺ and with EDTA. Results determined by different redox reaction (iodometric, chromatic and H₂ reduction) were in a good accordance. The all samples content of Co³⁺ and Co⁴⁺, some sample (second quality samples) also Co²⁺. The ratio of Co³⁺/Co⁴⁺ are close between 1,1 and 1,8. These values are correlated with electrical properties [3].

 Na_xCoO_2 exhibits promise good thermoelectric properties: thermopower up to 150 μ V/K, electrical conductivity 300 S/cm and thermal conductivity up to 2 W/m*K. The Pb substituted samples shows enhancement of the thermoelectric properties [4].

Introduction

Thermoelectric power generation, direct energy conversion from heat to electrical power, has very good perspectives in applications, if high-temperature heat source makes the output power and efficiency raised by large temperature difference. Cobaltites with delafossite-type structures show good chemical stability up to high temperature combined with a large Seebeck coefficient and small resistivity as well as thermal conductivity. Four of these cobaltites: Na_xCoO₂, Ca₂Co₂O₅, Ca₃Co₄O₉ and Ca₃Co₂O₆ are known to be good thermoelectrics, because of their metallic conductivites and high thermoelectric power. These layered cobaltites show a common structural component: the CoO₂ planes, in which a two-dimensional-triangular lattice of Co ions is formed by a network of edge-sharing CoO₆ octahedra. The attractive physical properties of layered cobaltates are strongly dependent upon overall oxygen content as well as local, or longer range, ordering. Electronic and ionic conductivity is known to be strongly affected by the related Co³⁺/Co⁴⁺ ratio and distribution.

Progress in the application of thermoelectric cobaltites for thermogenerator is due to the improvement of good quality materials. Manufacturing of technically applicable thermoelectric cobaltites requires well-defined preparation technique to obtain chemical homogen, dense ceramic bulk materials.

Preparation and characterization of sodium cobaltate

Polycrystalline samples of Na_xCoO_2 were prepared by a conventional solid-state reaction. Starting materials, Na_2CO_3 (Merck) and Co_3O_4 (Chempur) were mixed in a molar ratio of Na:Co = 0,6-1,0:1, calcined at 750 °C for 12 h, repeated mixed and sintered at 800 °C for 12 h. Black homogeneity powder was obtained. After sintering the samples consisted only Na_xCoO_2 phase for the starting x-value 0,8-1,0 and with small amount of Co_3O_4 for the starting x-value 0,6-0,7 (fig.1).

The stability of Na_xCoO₂ (starting x-value 0,8) was investigated by thermal analysis (fig.2). Na_xCoO₂ was not stable at the temperature higher than 1000°C and showed decomposition and melting. The endothermic reaction was observed at about 1000 °C, the weight loss during this step can be attributed to the oxygen. The thermograph for the pure phase did not show peaks from Co₃O₄ (main impurities of cobaltities). These TG curve indicated a rapid loss of weight at round 1000 °C (about $\Delta m=8,9$ %), which can be attributed to the desorption of oxygen and a sodium evaporation from the Na_xCoO₂ phase during the heating process. These value of weight loss to correspond of x=0,78 (for ignoring of valatilization of the sodium).

Fig.2 Thermograph of pure Na_xCoO₂ sample Sintering temperature 900 °C, duration 12 h

It can be seen that decomposition and melting process is complete at a temperature close to the endothermic peak at 983 °C as determined by the DTA trace. The TG/DTA data of these sample show that Na_xCoO_2 were single phase and that from XRD data had the hexagonal γ structure.

Thermoelectric properties of Na_xCoO₂

After intermediate milling and palletizing, the green body was sintered at 900 °C. The samples containing various amounts of Na, because of Na evaporate during firing of pellets. The AAS analysis was used for quantitative determination of sodium. For example: the pellets sintered at 900 °C for 12 h to contain 14,4 % Na (Na_{0,66}CoO₂), after 24 h 11,4 % Na (Na_{0,51}CoO₂), after 168 h 12,1 % Na (Na_{0,53}CoO₂), and after 336 h only 10,2 % Na (Na_{0,45}CoO₂).

Fig.3 Surface and breach of the Na_xCoO_2 tablet sintered at 900 for 12 h This sample consists of plate-like Na_xCoO_2 grains, where some Co_3O_4 round particles were trapped. The larger plate-like grains were produced as a results of significant grain growth with duration time [5,6]. Unfortunately with duration of sintering time samples losses of sodium.

The functional properties of Na_xCoO₂ - ceramics are development at high temperature. The thermopower shown in fig.4 is less obviously affected by cobaltite modification and oxygen content. α -, α '- and γ -phase exhibited the same characteristic temperature dependence S(T) with an nearly linearity increasing S(T) of the γ -phase and broad minima in S(T) of the α - and α '-phases [5]. The positive Seebeck coefficient indicates holes as the main charge carriers for each sample regardless of composition and crystal structure. The Seebeck coefficient generally increased with the rising Na content from γ - via α ' to α -phase. This succession is correlated to the decrease of the electrical conductivity.

Fig.4. Temperature dependent Seebeck coefficient in μ V/K with electrical conductivity in S/cm and thermal conductivity κ in W/m*K of the modifications Na_xCoO₂

It is evident that the Na content x affected of the electrical conductivity regardless of the oxidation sates of Co in cobaltite. The $\text{Co}^{3+}/\text{Co}^{4+}$ ratio is of 1,8 in γ -phase and in α -phase (x \approx 1) oxidation state resulting of +3 for Co. Reducing x in Na_xCoO₂ increases the average oxidation state of Co and increase the electrical conductivity (creates defect electrons in the valence band [4]). The change of electrical conductivity are measured for doped samples (tab.1)

Μ	Ti	V	Cr	Mo	W	Fe	Ni	Cu	Al	Ga	Pb
σ (S/cm)	15	110	150	220	170	115	200	270	175	135	210

The thermal conductivity of different phases of Na_xCoO_2 are similar (fig.4). After addition of glass frit the thermal conductivity was significantly increased (and porosity decreased). Na_xCoO_2 ceramics with big grains (sintering duration of 7 day) exhibits electrical conductivity 300 S/cm and thermal conductivity up to 2 W/mK. The Pb substituted samples shows enhancement of the thermoelectric properties [6].

Summarizes the measured values of the thermopower for Na_xCoO_2 samples and comparition with the partial substituted one ($Na_xCo_{1-y}M_yO_2$) shows that the partial substitution of Co by Pb enhanced significantly the ZT of γ - $Na_{0,5}CoO_2$ mostly due to on increased conductivity and reduced thermal conductivity

composition	S(500°C), μV/K	ZT(500°C)
$Na_{0.5}CoO_2$ (γ -phase)	134	0,115
$Na_{0.9}CoO_2$ (α -phase)	360	0,026
Na _{0,5} Co _{0,95} Pb _{0,05} O ₂ (γ-phase)	106	0,075
$Na_{0.95}Co_{0.95}Pb_{0.05}O_2$ (α -phase)	270	0,130 (300°C)

Tab.2. Seebeck coefficient and ZT- values of Na_xCoO₂ samples

Conclusion

Ceramic thermoelectric material with composition of Na_xCoO_2 showed structure with platelike grains. These materials are different Na content, because sodium evaporated at high temperatures during of formation of this compounds and during of sintering of ceramic. The plate-like grains grew with sintering duration and the electrical conductivity was high. Similar effect were obtained by doping with Pb. These ceramic shows the thermoelectric figure of merit ZT(500°C)>0,1.

Literature

- 1 I. Terasaki, Physica B 328 (2003) 63
- 2 W. Shin, N. Murayama, K. Ikeda, S. Sago, in Oxide Thermoelectrics (K. Koumoto, I. Terasaki, N. Murayama, Eds.), 2002, 193
- 3 K. Kozlowska, M. Sopicka-Lizer, I. Brunets, J. Plewa, H. Altenburg, Chemical route for monitoring of synthesis of cobaltites (in press)
- 4 A. Mrotzek, E. Müller, J. Plewa, H. Altenburg, Influence of partial substitution of co by Pb on the microstructure and thermoelectric properties of Na_xCo_{1-v}Pb_vO₂ (in press)
- 5 A. Mrotzek, C. Drasar, E. Müller, J. Plewa, H. Altenburg, in Proc. 21th Int. Conf. on Thermoelectric, Long Beach, USA, 2002, 215
- 6 J. Plewa, K. Kozlowska, A. Mrotzek, E. Müller, M. Sopicka-Lizer, H. Altenburg, Ceramic Powder Synthesis: Preparation of thermoelecctric Cobalate, III Int. Sci. Technol. Conf. Polish Ceramics'2004, Proc.