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Abstract

We consider a multi-agent scenario, where the preferences of several agents are modelled via
soft constraint problems and need to be aggregated to compute a single ”socially optimal”
solution. We study the resistance of various ways to compute such a solution to influence the
result, such as those based on the notion of bribery. In doing this, we link the cost of bribing
an agent to the effort needed by the agent to make a certain solution optimal, by only changing
preferences associated to parts of the solution. This leads to the definition of four notions of
distance from optimality of a solution in a soft constraint problem. The notions differ on the
amount of information considered when evaluating the effort.

1 Introduction
Often agents need to cooperate, rather than compete, in order to take a collective decision. By doing
this, the decision can be better than what they would have chosen had they reasoned in isolation.
Examples are collections of experts that submit their suggestions on what to do, which are then
aggregated to obtain a single suggestion. Such experts could be, for example, classifiers in machine
learning tasks, or web page rankers in web search. To make a very concrete example, when looking
for a hotel in a certain city, often we use systems that exploit several different search engines, each
one reporting a hotel ranking. Such rankings are usually reported to the user as they are, while it
would be more useful if they were aggregated to get a collective hotel ranking from where to choose.

In this paper we study such scenarios, modelled by a collection of agents that express their
preferences over a common set of solutions to a problem. We assume that such preferences are
modelled by soft constraints. To consider concrete instances of soft constraints, we focus on fuzzy
and weighted constraints. The agents’ preferences are then aggregated to compute a single ”socially
optimal” solution. To model this, we consider some voting rules. Although voting rules have been
defined and studied in the context of political elections, they do exactly what we want: aggregating
individual’s preferences into a single collective ”winner”. We then study the resistance of this set-
ting, considering different voting rules, to external or internal attempts to influence the result. This
happens often in political elections, but it could occur also in our settings.

For example, when voting on a Doodle event to choose a date for a meeting, if one participant
sees how the others have voted (and thus can compute the result by considering these votes and her
true vote), she could vote in a strategic way (that is, differently to what her true vote would say)
to get a better result for her. This example is an instance of the so-called manipulation, where one
or more agents may misreport their votes to get a better solution. Other attempts to influence the
result, usually referred to as ”control”, may come from a chair of the voting process, who can have
the power, to set the number of voters, or the candidate decisions, or the voting rule to use.

A third kind of attempt may come from an external agent, usually called the ”briber”, who has a
preferred solution, and tries to get that solution as the result of the voting process, by paying some
agents to vote in a certain way, and by doing this while staying within its budget. In defining bribing
scenarios, it is thus necessary to decide what the briber can ask an agent to do (for example, just
making a certain candidate optimal, or changing more of its preference ordering) and how costly it
is for the briber to submit a certain request. The cost usually represents the effort the agent has to
make to satisfy the briber’s request.

Classical results on voting theory tell us that every voting rule can be influenced by such at-



tempts. However, for some voting rules, it may be computationally difficult for the manipulators,
or the chair, or the briber to understand how to design the attempt. Such rules are then said to be
resistant to these attempts.

In this paper we study whether our soft constraint aggregation scenarios are resistant to bribery.
We consider two main approaches to aggregating the preferences: a sequential one, where agents
vote on each variable at a time, and a one-step approach, where agents vote just once on entire
solutions. We then define five cost schemes to compute the cost of satifying a briber’s request. We
find out that the one-step approach (which uses the Plurality voting rule) is not resistant to bribery:
it is computationally easy for a briber to know whom to bribe and what to ask for, in order to make
its preferred candudate win (if possible). On the other hand, the sequential approaches (which are
based on voting rules such as Plurality, Approval, and Borda), are all resistant to bribery. This is very
interesting, since the sequential approaches are also better in terms of complexity of determining the
collective solution. As noted above, the cost schemes used in the bribery setting can be seen as
a measure of the effort for an agent to respond to a briber’s request. If the request is related to
making a certain solution, say A, optimal (which means voting for it, if we use Plurality), then
the cost can be considered a measure of how much the agent needs to change in its soft constraint
problem in order to makeA optimal. We assume that the agents want to do this by modifying just the
preferences of parts of A, since otherwise also other solutions would be unnecessarily moved from
their position in the preference ordering. We notice that studying resistance to bribing in constraint-
based preference aggregation is interesting and useful in itself, but it has also a wider applicability
within typical constraint programming tasks, such as computing the top k solutions and encoding
solution preferences.

2 Background
Soft constraints. A soft constraint [15] involves a set of variables and associates a value from a
(partially ordered) set to each instantiation of its variables. Such a value is taken from a c-semiring1,
which is defined by 〈A,+,×, 0, 1〉, where A is the set of preference values, + induces an ordering
over A (where a ≤ b iff a + b = b), × is used to combine preference values, and 0 and 1 are
respectively the worst and best element. A Soft Constraint Satisfaction Problem (SCSP) is a tuple
〈V,D,C,A〉 where V is a set of variables, D is the domain of the variables, C is a set of soft
constraints (each one involving a subset of V ), A is the set of preference values.

An instance of the SCSP framework is obtained by choosing a specific c-semiring. For in-
stance, a classical CSP [15] is just an SCSP where the c-semiring is SCSP = 〈{false, true}, ∨,∧,
false, true〉. Choosing SFCSP = 〈[0, 1], max,min, 0, 1〉 instead means that preferences are in
[0,1] and we want to maximize the minimum preference. This is the setting of fuzzy CSPs (FCSPs)
[15], that we will use in the examples of this paper. In the paper we will also consider the setting
of weighted CSPs (WCSPs), where the c-semiring is SWCSP = 〈R+, min,+, +∞, 0〉, i.e., pref-
erences are interpreted as costs from 0 to +∞, and we want to minimize the sum of the costs. We
note that SCSPs generalize CSPs.

Figure 1 shows the constraint graph of an FCSP where V = {x, y, z}, D = {a, b} and C =
{cx, cy, cz, cxy, cyz}. Each node models a variable and each arc models a binary constraint, while
unary constraints define variables’ domains. For example, cy associates preference 0.4 to y = a and
0.7 to y = b. Default constraints such as cx and cz will often be omitted in the following examples.

Solving an SCSP means finding some information about the ordering induced by the constraints
over the set of all complete variable assignments. In the case of FCSPs and WSCSPs, such an
ordering is a total order with ties. In the example above, the induced ordering has (x = a, y =
b, z = b) and (x = b, y = b, z = b) at the top, with preference 0.5, (x = a, y = a, z = a) and
(x = b, y = a, z = a) just below with 0.4, and all others tied at the bottom with preference 0.2. An

1This is just a semiring with additional properties motivated by constraint reasoning.
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Figure 1: A tree-shaped FCSP.

optimal solution, say s, of an SCSP is then a complete assignment with an undominated preference
(thus (x = a, y = b, z = b) or (x = b, y = b, z = b) in this example). Given a variable x, we write
s ↓ x to denote the value of x in s.

Given an FCSP Q and a preference α, we will denote as cutα(Q) the CSP obtained from Q
allowing only tuples with preference greater than or equal to α. The set of solutions of Q with
preference greater than or equal to α coincides with the set of solutions of cutα(Q).

Finding an optimal solution is an NP-hard problem, unless certain restrictions are imposed,
such as a tree-shaped constraint graph. Constraint propagation may help the search for an optimal
solution. Given a variable ordering o, an FCSP is directional arc-consistent (DAC) if, for any two
variables x and y linked by a fuzzy constraint, such that x precedes y in the ordering o, we have
that, for each a in the domain of x, fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))), where fx,
fy , and fxy are the preference functions of cx, cy and cxy . This definition can be generalized to any
instance of the SCSP approach by replacing max with + and min with ×. Therefore, for WCSPs
it is sufficient to replace max with min and min with sum.

DAC is enough to find the preference level of an optimal solution when the problem has a
tree-shaped constraint graph and the variable ordering is compatible with the father-child relation
of the tree [15]. In fact, such an optimum preference level is the best preference level in the domain
of the root variable.

Voting rules. A voting rule allows a set of voters to choose one among a set of candidates.
Voters need to submit their vote, that is, their preference ordering (or part of it) over the set of
candidates, and the voting rule aggregates such votes to yield a final result, usually called the
winner. In the classical setting [2], given a set of candidates C, a profile is a collection of total
orderings over the set of candidates, one for each voter. Given a profile, a voting rule maps it onto a
single winning candidate (if necessary, ties are broken appropriately). In this paper, we will often
use a terminology which is more familiar to multi-agent settings: we will sometimes call “agents”
the voters, “solutions” the candidates, and “decision” or “best solution” the winning candidate.

Some examples of widely used voting rules, that we will study in this paper, are:

• Plurality: each voter states a single preferred candidate, and the candidate who is preferred
by the largest number of voters wins;

• Borda: given m candidates, each voter gives a ranking of all candidates, the ith ranked candi-
date gets a score of m− i, and the candidate with the greatest sum of scores wins;

• Approval: given m candidates, each voter approves between 1 and m− 1 candidates, and the
candidate with most votes of approval wins.

We know that every voting rule is manipulable [2]. However, if it is computationally difficult
to influence the result by using a certain voting rule, we can say that the voting rule is resistant to
such attempts. Thus the computational complexity of various attempts to influence the result of the



voting process has been studied [3, 11, 6, 14, 12]. Besides manipulation, which refers to scenarios
where there is a voter (or a group of voters) who can get a better result by lying about its preference
ordering, another kind of attempt to influence the result is called bribery: there is an outside agent,
called the briber, that wants to affect the result of the election by paying some voters to change their
votes, while being subject to a limitation of its budget.

Sequential preference aggregation. Assume to have a set of agents, each one expressing
its preferences over a common set of objects via an SCSP whose variable assignments correspond
to the objects. Since the objects are common to all agents, this means that all the SCSPs have the
same set of variables and the same variable domains but they may have different soft constraints,
as well as different preferences over the variable domains. In [8] this is the notion of soft profile,
which is formally defined as a triple (V,D, P ) where V is a set of variables (also called issues),
D is a sequence of |V | lexicographically ordered finite domains, and P a sequence of m SCSPs
over variables in V with domains in D2. A fuzzy profile (resp., weighted profile) is a soft profile
with fuzzy (resp., weighted) soft constraints. An example of a fuzzy profile where V = {x, y},
Dx = Dy = {a, b, c, d, e, f, g}), and P is a sequence of seven FCSPs, is shown in Fig. 2.
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Figure 2: A fuzzy profile.

The idea proposed in [8, 7] to aggregate the preferences in a soft profile in order to compute
the winning variable assignment is to sequentially vote on each variable via a voting rule, possibly
using a different rule for each variable. Given a soft profile (V,D, P ), assume |V | = n, and consider
an ordering of the variables O = 〈v1, . . . , vn〉, and a corresponding sequence of voting rules R =
〈r1, . . . , rn〉 (that will be called “local rules”). The sequential procedure is a sequence of n steps,
where at each step i,

• All agents are first asked for their preference ordering over the domain of variable vi, yielding
profile pi over such a domain. To do this, the agents achieve DAC on their SCSP, considering
the ordering O.

• Then, the voting rule ri is applied to profile pi, returning a winning assignment for variable vi,
say di. If there are ties, the first one following the given lexicographical order will be taken.

• Finally, the constraint vi = di is added to the preferences of each agent and DAC is achieved
to propagate its effect considering the reverse ordering of O.

After all n steps have been executed, the winning assignments are collected in the tuple 〈v1 =
d1, . . . , vn = dn〉, which is declared the winner of the election. This is denoted by SeqO,R(V,D, P ).

2Notice that a soft profile consists of a collection of SCSPs over the same set of variables, while a profile (as in the
classical social choice setting) is a collection of total orderings over a set of candidates.



A sequential approach similar to this one has been considered in [13], where however agents’
preferences are expressed via CP-nets.

In the soft profile shown in Figure 2, assume the variable ordering is 〈x, y〉 and ri = Approval
for all i = 1, 2. In step 1, agents achieve DAC. This changes the preferences of the agents over x.
For example, in P1 and P2, x = a maintains preference 1, x = b gets preferences 0.9, and all other
domain values get preference 0, while in P3, x = a and x = c maintain preference 1, x = b gets
preference 0.9, while all other values get preference 0. Then, Approval is applied on the profile over
x where the sets of approved values are all the optimals: {a} for the first two voters and respectively
{c, a}, {d, a}, {e, a}, {f, b}, and {g, b} for the others. Thus, x = a is chosen and the constraint
x = a is added to all SCSPs, and its effect is propagated by achieving DAC on the domain of y. In
step 2, achieving DAC does not modify any preference (since y is the last variable) and the set of
approved values for y is {a, b} for P1 and P2 and {b} for the other agents. Thus the elected solution
with the sequential procedure is s = (x = a, y = b), which has preference 0.7 for P1 and P2, 1 for
P3, P4, and P5, and 0.9 for P6 and P7.

An alternative to this sequential procedure would be to generate the preference orderings for
each voter from their FCSPs, and then to aggregate them in one step via a voting rule, for example
Approval. In our example, (x = a, y = b) gets 3 votes (that is, it is optimal for 3 agents), (x =
a, y = a) and (x = b, y = a) each gets 2 votes, (x = f, y = f), (x = d, y = d), (x = c, y = c),
(x = e, y = e), and (x = g, y = g) each gets 1 vote, while all other solutions get no vote. Thus the
winner is (x = a, y = b).

3 The bribery problem
We consider scenarios where a collection of agents need to take a decision, by selecting it out of
a set of possible decisions, that are described by the Cartesian product of the domains of a set of
variables. These variables are shared by all agents. Each agent has its own preferences over such
decisions, described via a set of soft constraints and charges the briber for changing his preferences
according to a cost scheme. In this paper, by soft constraints we mean either fuzzy or weighted
constraints. Also, we assume that all agents have tree-shaped soft constraints problems. Note that
the set of solutions of such constraint problems (that is, the set of decisions among which to choose
one) is in general exponentially large w.r.t. the size of the soft constraint problems. We also assume
that the number of such solutions is exponentially large w.r.t. the number of agents. We now define
the bribery problem of which we will study the computational complexity:

Definition 1 Given a voting rule V and a cost scheme C, we denote by (V,C)-Bribery the problem
of determining if it is possible to make a preferred candidate win, when voting rule V is used, by
bribing agents and by spending less than a certain budget according to cost scheme C.

3.1 Winner determination
It makes sense to consider only winner determination approaches which are polynomial to compute:
if it is difficult to compute the winning decision, it is also difficult for a briber to compute how to
bribe the agents (since he needs to know who the winner is without the bribery). We consider two
main approaches: sequential and one-step. For the sequential approach, we employ the sequential
voting procedure described in the previous section. We have an ordering O over the variables, and
we are going to consider each variable in turn in such an ordering. At each step, each agent provides
some information about the considered variable, say X , which depends on the voting rule we use:

• Sequential Plurality (SP): one best value for X;

• Sequential Approval (SA): all best values for X;



• Sequential Borda (SB): a total order (possibly with ties) over the values of X , along with the
preference values for each domain element.

We then choose one value for the considered variable, as follows:

• SP and SA: the value voted by the highest number of agents;

• SB: the value with best score, where the score of a value is the sum of its preferences over all
the agents; notice that ”best” here means maximal in the case of fuzzy constraints, while it is
the minimal in the case of weighted constraints.

Once a value is chosen for a variable, this value is broadcasted to all agents, who fix variable
X to this value in their soft constraints and achieve DAC in the reverse ordering w.r.t. O. We then
continue with the next variable, and so on until all variables have been handled.

The alternative to a sequential approach is a one-step approach, where each agent votes over
decisions regarding all variables, not just one at a time. In this case, a possible voting rule to use
is what we call One-step Plurality (OP), where each agent provides an optimal solution of his soft
constraint problem, and then we select the solution which is provided by the highest number of
agents.

For all the voting rules we consider (SP, SA, SB, and OP), it is computationally easy for an agent
to vote. An approach like OP is however less satisfactory that the sequential approaches in terms
of ballot expressiveness: since the number of solutions is exponentially large with respect to the
number of agents, there is an exponential number of solutions which are not voted by any agent.
However, if we want agents to be able to compute their vote in polynomial time, we need to set a
bound to the number of solutions they can vote for, and this means that in all cases an exponentially
large number of solutions will not be voted. So there is trade-off between easiness of computing
votes and ballot expressiveness.

We don’t consider one step Approval since voting could require exponential time due to the fact
that each agent may have an exponential size set of optimals.

3.2 Bribery actions and cost schemes
If we use Plurality to determine the winner, either in its sequential or one-step version, the most
natural request a briber can have for an agent is to ask the agent to make a certain solution (or a
certain value in the sequential case) optimal in his soft constraint problem. In order to do this, the
agent can modify the preference values inside its variable domains and/or constraints.

To define the cost of a briber’s request, which is to make a certain solution A optimal, we
consider the following approaches:

• Cequal: The cost is fixed (without loss of generality, we will assume it is 1), no matter how
many changes are needed to make A optimal;

• Cdo: The cost is the distance from the preference of A, denoted with pref(A), to the optimal
preference of the soft constraint problem of the agent, denoted with opt. If we are dealing
with fuzzy numbers and we may prefer to have integer costs, the cost will be defined as
Cdo = (opt − pref(A)) ∗ l, where l is the number of different preference values allowed.
With weighted constraints, if costs are natural numbers, we may defineCdo = pref(A)−opt,
since opt is the smallest cost.

• Cdon: The cost is determined by considering both the distance between the preference of
A and the optimal preference, and the number of parts of A, say t, that correspond to the
projections ofA over the constraints, that must be modified in order to makeA optimal. Thus,
if we have n variables, with fuzzy constraints we may define Cdon = ((opt− pref(A)) ∗ l ∗



M) + t, where M is a large integer and 1 ≤ t ≤ 2n − 1. If instead we consider weighted
constraints, we define Cdon = ((pref(A)− opt) ∗M) + t. In both cases, the role of M is to
assure a higher bribery cost for a less preferred candidate: we want that the highest cost at a
given preference level for A, that is, d ∗M + 2n− 1, where d = (opt− pref(A)) ∗ l and n
is the number of variables, to be smaller than the lowest cost at the next preference level, that
is, (d+ 1)M + 1. This yields M > 2n− 2.

• Cdow: The cost is computed by considering the same as in Cdon, but each preference to be
modified is associated with a cost proportional to the change required on that preference. If we
denote by ti any tuple ofA with preference≤ opt, then the cost will be ((opt−pref(A))∗ l∗
M)+

∑
ti
(opt− pref(ti)) ∗ l for fuzzy constraints, where the role of M is similar to the one

in Cdon. For weighted constraints, we analogously define Cdow = ((pref(A)− opt) ∗M) +∑
ti
(pref(ti)− opt). However, it is easy to see that

∑
ti
(pref(ti)− opt) = pref(A)− opt,

thus we have Cdow = ((pref(A)− opt) ∗ (M + 1)).

• Cdonw: The cost is the combination of Cdon and Cdow. For fuzzy constraints: Cdonw =
((opt− pref(A)) ∗ l ∗M) + t ∗M ′ +

∑
ti
(opt− pref(ti)) ∗ l, where M ′ has a similar role

as M w.r.t. the second and third component of the sum. For weighted constraints: Cdonw =
((pref(A)− opt) ∗M) + t (by simplifying as in Cdow).

4 Winner and cost determination are both computationally easy
We are now ready to prove formally that, for all the voting rules we consider, winner determina-
tion is computationally easy. As noted earlier, if it were computationally difficult, bribery would
necessarily be computationally difficult, so it would not be interesting to study the complexity of
bribery. If instead winner determination is computationally easy, we may wonder if the voting rule
is resistant to bribery (that is, bribery is computationally difficult) or not.

Theorem 1 Winner determination takes polynomial time for SP, SA, SB, and OP when agents’ pref-
erences are tree-shaped fuzzy or weighted CSPs.

Proof: For each variable, SP (resp., SA) requires most preferred value(s) in the domain of that vari-
able. SB instead requires an ordering over such values. The fact that we are considering tree-shaped
soft constraint problems ensures that voting, in all these cases, can be done in polynomial time by
achieving DAC. Winner determination is then polynomial as well, since it just requires a number
of polynomial steps which equals the number of variables. For OP, computing an optimal solution
is polynomial on tree-shaped soft constraint problems, so voting is polynomial. Determining the
winner requires just counting the number of votes for each of the voted candidates (which are in
polynomial number), so it is polynomial as well. 2

It is polynomial also to compute the cost to respond to a briber’s request, for all our cost schemes.

Theorem 2 Given a tree-shaped fuzzy or weighted CSP and an outcome A, determining the cost to
make A an optimal outcome takes polynomial time for Cequal, Cdo, Cdon, Cdow, and Cdonw .

Proof: We can check if A is already optimal in polynomial time by first computing the optimal
preference opt and then checking if it coincides with the preference of A, denoted pref(A). If so,
the cost is 0. Otherwise, with Cequal the cost is always 1. To compute the cost according to Cdo,
Cdon, Cdow, and Cdonw, we need to compute opt, the numbers of tuples of A with preference worse
than opt, and the distance of their preferences from opt. All of these components can be computed
in polynomial time for tree-shaped problems. 2



5 Resistance to bribery when voting with SP, SA, and SB
We can now study the resistance to bribery of the voting rules we consider, that is, SP, SA, SB, and
OP. Here we consider SP, SA, and SB. We recall that agents vote with tree-shaped fuzzy or weighted
CSPs.

Theorem 3 (V,C)-Bribery is NP-complete (and also W[2]-complete with parameter being the bud-
get) for V ∈ {SP, SA, SB} and C ∈ {Cequal, Cdo}.

Proof: Membership in NP is easy to prove. To show completeness, we provide a polynomial
reduction from the OPTIMAL LOBBYING (OL) problem [5]. In this problem, we are given an m×n
0/1 matrix E and a 0/1 vector ~x of length n where each column of E represents an issue and each
row of E represents a voter. We say E is a binary approval matrix with 1 corresponding to a “yes”
vote and ~x is the target group decision. We then ask if there a choice of k rows of the matrix E such
that these rows can be edited so that the majority of votes in each column matches the target vector
~x. This problem is shown to be W [2]-complete with parameter k. By giving a polynomial reduction
from OL to our bribery problem, we show that our problem is NP-complete (actuallyW [2]-complete
with parameter being the budget B). Given an instance (E, ~x, k) of OL, we construct an instance of
(V-Cdo)-Bribery, where V ∈ {SP, SA, SB}, containing constraints with only independent binary
variables. The number of variables, n, is equal to the number of columns in E. For each row
of E, we create a voter with the preferences over the n variables as described in the row of E.
In particular, for each variable the value indicated in the row will be associated with preference 1
while the other value will be associated with preference 0. Thus, each voter has a unique most
preferred solution with preference 1 and all other complete assignments have preference 0. We set
the preferred outcome A = ~x. This means that according to Cdo, all voters not voting for A have
the same cost to be bribed, which is (opt − pref(A)) ∗ 2 = (1 − 0) ∗ 2 = 2. Finally, we set the
budget B = 2k. With Cequal, the cost is always 1 if A is not already voted for. We note that since
we have only two values for each variable, SP, SA and SB coincide with sequential majority, thus A
wins the election if and only if there is a selection of k rows of E such that ~x becomes the winning
agenda of the OL instance. Since both fuzzy and weighted CSPs generalize CSPs, the result holds
also for such classes of soft constraints. 2

Theorem 4 (V,C)-Bribery is NP-complete (and also W[2]-complete) for V ∈ {SP, SA, SB} and
C ∈ {Cdon, Cdow, Cdonw}, if M > n ∗m, where n is the number of variables and m the number
of voters.

Proof: We use a reduction similar to the one described for Thm. 3 from the optimal lobbying
problem. In particular the structure of the soft profile is the same. The only things that vary are
the costs for each voter and the budget. With fuzzy constraints, assume that we have l different
levels of preferences and let us denote with di the positive integer (opti − pref(A)) ∗ l, were
i varies over the voters. For Cdon, the cost for voter i is di ∗ M + ti where ti is the number
of tuples where the candidate voted by voter i differs from A. For Cdow, the cost is di ∗ M +∑
t∈Diffi(A)(opti− pref(t)), where Diffi(A) is the set of tuples in the soft constraint problem of

agent i which not belong to A. Let us define budget B to be B = kl(M + n) for fuzzy constraints
and B = k(M + n) for weighted constraints. Since we have only binary variables, SP, SA and SB
coincide with sequential majority. There is a bribery strategy that does not exceed B if and only if
there is a way to change at most k rows to solve the OL problem. We note that requiring M > n∗m
is of key importance for the connection between the budget B and the modifications of k rows. For
Cdonw, the cost is di ∗M + ti ∗M ′+

∑
ti∈Diffi(A)(opti−pref(ti)). Here a similar constraint for

M ′ would work for the reduction. For weighted constraints, a similar reasoning works as well. 2



6 Resistance to bribery when voting with OP
We now consider the one-step approach to aggregate the soft constraint problems, via voting rule
OP. In the proof of our main theorem we need to compute n cheapest alternative candidates for an
agent to vote for. We will thus start by studying the computational complexity of this task.

6.1 Computing the k cheapest candidates
We start by consideringCdo and by showing that computing a set of k cheapest candidates according
to this cost scheme is computationally easy. This will then be used also to compute a set of k cheapest
candidates according to Cequal.

Theorem 5 Given a tree-shaped fuzzy or weighted CSP, computing a set of k cheapest outcomes
according to Cdo and Cequal is in P when k is given in unary.

Proof: The cost of an outcome according to Cdo is an integer proportional to the distance between
the preference of the outcome and the preference of an optimal outcome. In order to compute
k cheapest solutions, we assume to have a linear order over the variables and the values in their
domains. Such linear orders can be provided by the agent or can be chosen by the system. They
do not need to be the same for all agents. For tree-shaped fuzzy CSPs, it has been shown in [4]
that, given such linear orders and an outcome s, it is possible to compute, in polynomial time, the
outcome following s in the induced lexicographic linearization of the preference ordering over the
outcomes. The procedure that performs this is called Next. Thus, in order to compute k cheapest
according to Cdo, we compute the first optimal outcome according to the linearization and then we
generate the set of k cheapest candidates by applying Next k − 1 times (each time on the outcome
of the previous step). Similarly, computing the k best solutions of a weighted CSP can be done in
polynomial time by using the procedure suggested in [9]. If we consider Cequal, an agent will not
charge the briber for changing his vote to another optimal candidate and will charge a fixed cost to
change his vote in favor of any other (non-optimal) candidate. Thus any of the above procedures can
be used (although, if k exceeds the cardinality of the set of optimal solutions, the remaining ones
could, in principle, be generated randomly in a much faster way). 2

Theorem 6 Given a tree-shaped weighted CSP, computing a set of k cheapest outcomes according
to Cdow is in P when k is given in unary.

Proof: This result follows immediately from the fact that, for weighted CSPs, Cdow is proportional
to Cdo. 2

We now consider the other cost schemes. We start by describing a general algorithm, which we
callKCheapest, that will work forCdon, as well as forCdow and forCdonw via small modifications.
In what follows we assume that a voter represents his preferences with a tree-shaped fuzzy CSP. The
input to KCheapest is a tree-shaped fuzzy CSP P , an integer k, and a cost scheme C. The output
is a set of k cheapest solutions of P according to C. KCheapest performs the following steps:

1. Find k optimal solutions of P , or all optimal solutions if they are less than k. If the number
of solutions found is k, we stop, otherwise let k′ be the number of remaining solutions to be
found.

2. Look for the remaining top solutions within non-optimal solutions. More in detail, until
k′ best solutions have been found or all solutions of P have been exhausted, consider each
preference pl associated to some tuple in P in decreasing order and, for each tuple t of P with
preference pl, perform the following:

(a) Compute the new fuzzy CSP, Pt, obtained by fixing the tuple in the constraint (that is,
by forbidding all other tuples in that constraint).



(b) Compute a new soft CSP, say Pwt , associated to Pt, defined as follows:

i. the constraint topology of Pwt and Pt coincide;
ii. each tuple with a preference greater than or equal to opt in Pt has weight 0 in Pwt ;

iii. each tuple with a preference pt such that pl ≤ pt < opt in Pt has weight c in
Pwt defined as follows: c = 1 if C = Cdo, c = pt − opt if C = Cdow and
c = (1, pt− opt) if C = Cdonw;

iv. each tuple with preference less than pl in Pt has weight +∞ in Pwt .

Thus, Pwt is a weighted CSP if C = Cdon or C = Cdow, while it is a SCSP defined on
the Cartesian product of two weighted semirings if C = Cdonw.

(c) Compute the k′ best solutions of all the solutions if they are less than k′ of Pwt .

Take the k′ top solutions (or all solutions if less than k′) among the sets of best solutions
computed for Pwt , ∀t such that pref(t) = pl.

Theorem 7 Given a tree-shaped fuzzy CSP P , computing a set of k cheapest outcomes according
to Cdon, Cdow, and Cdonw is in P when k is given in unary.

The above statement can be proven by showing that the solutions returned by algorithm
KCheapest are indeed the k cheapest (or all the solutions if the k exceeds the total number of
solutions) according to the selected cost scheme (depending on how the weights are defined in step
(iii)) and that KCheapest runs in polynomial time.

6.2 Bribery with OP is easy
Faliszewski [10] shows that bribery when voting with plurality in single variable elections with
non-uniform cost schemes is in P through the use of flow networks. The algorithm requires the
enumeration of all candidates as part of the construction of the flow network. In our model, the
number of candidates can be exponential in the size of the input, so we cannot use that construction
directly. However, we show that a similar technique works by considering only a polynomial number
of candidates.

Theorem 8 (OP,C)-Bribery is in P for C ∈ {Cequal, Cdo, Cdon, Cdow, Cdonw} when agents vote
with tree-shaped fuzzy CSPs and for C ∈ {Cequal, Cdo, Cdow} when agents vote with tree-shaped
weighted CSPs.

Proof: We consider all r ∈ {1, . . . , n} and ask if the bribers’ favorite candidate A can be made a
winner with exactly r votes without exceeding its budget B. If there is at least one r such that this
is possible, then it means that the answer to the bribery problem is yes, otherwise it is no. We show
that, for each r, the corresponding decision problem can be solved in polynomial time. This means
that the overall bribery problem is in P . To solve the decision problem for a certain r, we transform
this problem to a minimum-cost flow problem [1]. The network has a source s, a sink t, and three
“layers” of nodes.

The first layer has one node for each voter v1, . . . , vn. There are also n edges (s, vi), with
capacity 1 and cost 0.

For the second layer of nodes, for each voter in the given profile, we add in this second layer
nodes corresponding to A, to all the candidates with at least one vote (at most n), and to the n
non-voted cheapest candidates for this voter, according to the cost scheme, thus adding at most
2n + 1 candidates for each voter. Intuitively, this second layer models the profile modified by the
bribery, where each voter can change its vote or also maintain the previous one. The important
point is that the non-voted candidates that we do not include in the second layer can be avoided
since not using them does not increase the cost of the bribery. Providing n non-voted candidates for



each voter is enough, since there are n voters and in the worst case each of them has to vote for a
different candidate. For each node Sij in the second layer corresponding to voter vi, we add an edge
from vi to Sij with capacity +∞ and cost equal to the cost of bribing vi to vote for the candidate
corresponding to node Sij . Finding such candidates, and the cost for the voter to vote for them,
takes polynomial time, no matter the cost scheme. Finding the voted candidates is easy since finding
the optimal outcome in tree-shaped fuzzy or weighted CSPs takes polynomial time. Finding the n
cheapest non-voted candidates, can be done by applying the procedures described in Section 6.1. In
general, it is sufficient to compute the 2n cheapest candidates in order to make sure we have at least
n non-voted candidates. Moreover, given a voter, computing the cost for such a voter to vote for one
of the candidates is easy for both voted and non-voted candidates given the results in Section 4.

In the third layer of the network, we add a node for each candidate who already appears some-
where in the network (up to n2 + n+ 1). One of these nodes represents A. These third layer nodes
are the nodes that enforce the constraint that no candidate besides A can receive more than r votes.
These nodes have an edge from the nodes of the second layer representing the same candidate, with
zero cost and infinite capacity. The output link from each of the third layer nodes to the sink has
capacity r. The cost is 0 for the edge from A to the sink, while for all other candidates it is a large
integer M to force as much flow through the node A as possible.

If we had included nodes for all the candidates in the second layer, we would have used a network
equivalent to the one used in the proof of Theorem 3.1 in [10], which shows that there is a minimum
cost flow of value n if and only if there is a way to solve the bribery problem. However, since we
have a number of candidates which is superpolynomial in the size of the input, we would not have a
polynomial algorithm. By including only the cheapest n alternative candidates for each voter, along
with A and all the voted candidates, the result still holds. In fact, assume there is a minimum-cost
flow in the larger network which goes through one of the nodes which we omit. This means that a
voter has been forced to vote for another, more expensive, non-voted candidate since all its cheapest
candidates had already r votes each. However, this is not possible, since we have only a total of
n − 1 votes that can be given by the other voters, and we provide n non-voted candidates. We will
build, at worst, n networks with O(n2) nodes and O(n3) edges. Since minimum-cost feasible flow
problem can be solved in polynomial time in the number of nodes and edges using for example the
Edmonds-Karp algorithm [1], the overall running time of this method is polynomial. 2

7 Conclusions
Our results about the resistance to bribery of our ways to aggregate the preferences of a collection of
agents, when they are modelled via soft constraints, can be seen in Table 1. We can see that OP is not
resistant to bribery, since it is computationally easy for the briber to compute who to bribe and what
to ask for, and to check whether he can do it within its budget. On the other hand, the sequential
approaches (SP, SA, and SB) are all resistant to bribery, if agents compute costs according to Cequal,
Cdo, Cdon, Cdow or Cdonw . Thus, it is clear that sequential approaches should be preferred if
resistance to bribery is an important feature. Notice that, when a problem is polynomial for soft
constraints, it is also so for CSPs. Thus, OP is easy to bribe also when agents use CSPs.
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