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Abstract

We characterize single-crossing preference profiles in terms of two forbidden sub-
structures, one of which contains three voters and six (not necessarily distinct) al-
ternatives, and one of which contains four voters and four (not necessarily distinct)
alternatives. We also provide an efficient way to decide whether a preference profile
is single-crossing.

1 Introduction

Restricted domains of preferences. Single-peaked and single-crossing preferences have
become standard domain restrictions in many economic models. Preferences are single-
peaked if there exists a linear ordering of the alternatives such that any voter’s preference
relation along this ordering is either always strictly increasing, always strictly decreasing,
or first strictly increasing and then strictly decreasing. Preferences are single-crossing if
there exists a linear ordering of the voters such that for any pair of alternatives along this
ordering, there is a single spot where the voters switch from preferring one alternative above
the other one. In many situations, these assumptions guarantee the existence of a strategy-
proof collective choice rule, or the existence of a Condorcet winner, or the existence of an
equilibrium.

Single-peaked preferences go back to the work of Black [5] and have been studied ex-
tensively over the years. Single-peakedness implies a number of nice properties, as for
instance non-manipulability (Moulin [19]) and transitivity of the majority rule (Inada [14]).
Single-crossing preferences go back to the seminal paper of Roberts [20] on income taxa-
tion. Grandmont [12], Rothstein [21], and Gans & Smart [11] analyze various aspects of
the majority rule under single-crossing preferences. Furthermore, single-crossing preferences
play a role in the areas of income redistribution (Meltzer & Richard [18]), coalition forma-
tion (Demange [8]; Kung [15]), local public goods and stratification (Westhoff [24]; Epple &
Platt [9]), and in the choice of constitutional voting rules (Barberà & Jackson [3]). Saporiti
& Tohmé [23] study single-crossing preferences in the context of strategic voting and the
median choice rule, and Saporiti [22] investigates them in the context of strategy proof
social choice functions. Barberà & Moreno [4] develop the concept of top monotonicity as
a common generalization of single-peakedness and single-crossingness (and of several other
domain restrictions).

Forbidden substructures. Sometimes mathematical structures allow characterizations
through forbidden substructures. For example, Kuratowski’s theorem [16] characterizes
planar graphs in terms of forbidden subgraphs: a graph is planar if and only if it does not
contain a subdivision ofK5 orK3,3. For another example, Hoffman, Kolen & Sakarovitch [13]
characterize totally-balanced 0-1-matrices in terms of certain forbidden submatrices. In a
similar spirit, Lekkerkerker & Boland [17] characterize interval-graphs through five (infinite)
families of forbidden induced subgraphs.

In the area of social choice, a beautiful result by Ballester & Haeringer [2] characterizes
single-peaked preference profiles in terms of two forbidden substructures. The first forbidden
substructure concerns three voters and three alternatives, where each of the voter ranks



another one of the alternatives worst. The second forbidden substructure concerns two
voters and four alternatives, where (sloppily speaking) both voters rank the first three
alternatives in opposite ways with the second alternative in the middle, but prefer the
fourth alternative to the second one.

Contribution of this paper. Inspired by the approach and by the results of Ballester &
Haeringer [2], we present a forbidden substructure characterization of single-crossing prefer-
ence profiles. One of our forbidden substructures consists of three voters and six alternatives
(as described in Example 2.4) and the other one consists of four voters and four alternatives
(as described in Example 2.5). We stress that the (six respectively four) alternatives in
these forbidden substructures are not necessarily distinct: the substructures only partially
specify the preferences of the involved voters; hence by identifying and collapsing some of
the involved alternatives we can easily generate a number of smaller forbidden substructures
(which of course are just special cases of our larger forbidden substructures). Finally, we will
discuss the close relation of single-crossing preference profiles to consecutive ones matrices.
A 0-1-matrix has the consecutive ones property if its columns can be permuted such that
the 1-values in each row are consecutive. We hope that our results will turn out useful for
future research on single-crossing profiles.

In Section 2 we summarize the basic definitions and provide some examples. In Section 3
we formulate and prove our main result (Theorem 3.1). In Section 4 we discuss the tightness
of our characterization, and we argue that there does not exist a characterization that works
with smaller forbidden substructures. Finally in Section 5 we show how to recognize the
single-crossing property in polynomial time by using the connection to consecutive ones
matrices.

2 Definitions, notations, and examples

Let a1, . . . , am be m alternatives and let V1, . . . , Vn be n voters. A preference profile specifies
the preference orderings of the voters, where voter Vi ranks the alternatives according to
a strict linear order �i. For alternatives a and b, the relation a �i b means that voter Vi
strictly prefers a to b.

An unordered pair of two distinct alternatives is called a couple. A subset V of the voters
is mixed with respect to couple {a, b}, if V contains two voters one of which ranks a above
b, whereas the other one ranks a below b. If V is not mixed with respect to {a, b}, then it
is said to be pure with respect to {a, b}. Hence, an empty set of voters is pure with respect
to any pair of alternatives. A couple {a, b} separates two sets V1 and V2 of voters from
each other, if no voter in V1 agrees with any voter in V2 on the relative ranking of a and
b; in other words, sets V1 and V2 must both be pure with respect to {a, b}, and if both are
non-empty then their union V1 ∪ V2 is mixed.

An ordering of the voters is single-crossing with respect to couple {a, b}, if the ordered list
of voters can be split into an initial piece and a final piece that are separated by {a, b}. An
ordering of the voters is single-crossing, if it is single-crossing with respect to every possible
couple. Finally a preference profile is single-crossing, if it allows a single-crossing ordering
of the voters. It is easy to see that single-crossing is a monotone property of preference
profiles:

Lemma 2.1 Let P be a preference profile, and let P ′ result from P by removing some
alternatives and/or voters. If P is single-crossing, then also P ′ is single-crossing. �

In the remaining part of this section we present several instructive examples of preference



V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

1 1 1 1 5 5 5 5 5 5 5
2 2 2 5 1 1 1 4 4 4 4
3 3 5 2 2 2 4 1 1 3 3
4 5 3 3 3 4 2 2 3 1 2
5 4 4 4 4 3 3 3 2 2 1

Figure 1: A single-crossing preference profile with 11 voters and 5 alternatives.

profiles that are single-crossing (Section 2.1) respectively that are not single-crossing (Sec-
tion 2.2).

2.1 Profiles from weak Bruhat orders

Let Sm denote the set of permutations of 1, . . . ,m. We specify permutations π ∈ Sm by list-
ing the entries as π = 〈π(1), π(2), . . . , π(n)〉. The identity permutation 〈1, 2, . . . ,m〉 arranges
the integers in increasing order, and the order reversing permutation 〈m,m− 1, . . . , 2, 1〉 ar-
ranges them in decreasing order. A descent in π is a pair (π(i), π(i+1)) of consecutive entries
with π(i) > π(i + 1). We write π C ρ, if permutation π can be obtained from permutation
ρ by a series of swaps, each of which interchanges the two elements of a descent.

The partially ordered set (Sm,C) is known as weak Bruhat order ; see for instance
Bóna[6]. The weak Bruhat order has the identity permutation as minimum element and
the order reversing permutation as maximum element. Every maximal chain (that is: every
maximal subset of pairwise comparable permutations) in the weak Bruhat order has length
1
2m(m− 1) + 1 and contains the identity permutation and the order reversing permutation.

The following example illustrates the well-known connection between weak Bruhat orders
and single-crossing preference profiles; we refer the reader to Abello [1] or Galambos &
Reiner [10] for more information.

Example 2.2 Let C = (π1 C π2 C · · · C πn) be a maximal chain with n = 1
2m(m − 1) + 1

permutations in the weak Bruhat order (Sm,C). We construct a profile by using 1, . . . ,m as
alternatives, and by interpreting every permutation π as preference ordering π(1) � π(2) �
. . . � π(n) over the alternatives. Voter Vi has preference ordering πi. See Figure 1 for an
illustration with m = 5 alternatives and n = 11 voters.

The resulting profile is single-crossing: any two alternatives a and b start off in the
right order in the identity permutation π1, eventually are swapped into the wrong order,
and then can never be swapped back again at later steps. Furthermore, the profile contains
n = 1

2m(m− 1) + 1 voters with pairwise distinct preference orderings. �

If one starts the construction in Example 2.2 from arbitrary (not necessarily maximal!)
chains in the weak Bruhat order, then one can generate this way every possible single-
crossing preference profile (up to isomorphism). This is another well-known connection,
which follows from the fact that π C ρ if and only if every inversion of permutation π also
is an inversion of permutation ρ.

2.2 Some profiles that are not single-crossing

We next present three examples of profiles that are not single-crossing. The first example
is due to Saporiti & Tohmé [23] and shows a profile that is single-peaked but fails to be
single-crossing. The other two examples introduce two principal actors of this paper.



Example 2.3 Consider four alternatives 1, 2, 3, 4 and three voters V1, V2, V3 with the fol-
lowing preference orders:

Voter V1: 2 �1 3 �1 4 �1 1

Voter V2: 4 �2 3 �2 2 �2 1

Voter V3: 3 �3 2 �3 1 �3 4

It can be verified that this profile is not single-crossing but single-peaked (with respect to the
ordering 1 < 2 < 3 < 4 of alternatives, for instance). �

Example 2.4 (γ-Configuration)
A profile with three voters V1, V2, V3 and six (not necessarily distinct) alternatives
a, b, c, d, e, f is a γ-configuration, if it satisfies the following:

Voter V1: b �1 a and c �1 d and e �1 f

Voter V2: a �2 b and d �2 c and e �2 f

Voter V3: a �3 b and c �3 d and f �3 e

This profile is not single-crossing, as none of the three voters can be arranged between the
other two: the couple {a, b} prevents us from putting V1 into the middle, the couple {c, d}
forbids voter V2 in the middle, and the couple {e, f} forbids V3 in the middle. �

The observations stated in Example 2.4 provide a cheap proof that the profile in Exam-
ple 2.3 is not single-crossing, as this profile contains a γ-configuration with a = 3, b = c = 2,
d = e = 4, and f = 1.

Example 2.5 (δ-Configuration)
A profile with four voters V1, V2, V3, V4 and four (not necessarily distinct) alternatives
a, b, c, d is a δ-configuration, if it satisfies the following:

Voter V1: a �1 b and c �1 d

Voter V2: a �2 b and d �2 c

Voter V3: b �3 a and c �3 d

Voter V4: b �4 a and d �4 c

This profile is not single-crossing: the couple {a, b} forces us to place V1 and V2 next to each
other, and to put V3 and V4 next to each other; the couple {c, d} forces us to place V1 and
V3 next to each other, and to put V2 and V4 next to each other. Then no voter can be put
into the first position. �

3 A characterization through forbidden configurations

Examples 2.4 and 2.5 demonstrate that preference profiles that contain a γ-configuration or
a δ-configuration cannot be single-crossing. It turns out that these two configurations are
the only obstructions for the single-crossing property.

Theorem 3.1 A preference profile P is single-crossing if and only if P contains neither a
γ-configuration nor a δ-configuration.

The rest of this section is dedicated to the proof of Theorem 3.1. The (only if) part
immediately follows from the monotonicity of the single-crossing property (Lemma 2.1) and
from the observations stated in Examples 2.4 and 2.5.



For the (if) part, we first introduce some additional definitions and notations. An or-
dered partition 〈X1, . . . , Xp〉 of the voters V1, . . . , Vn satisfies the following properties: every
partXi is non-empty, distinct parts are disjoint, and the union of all parts is the set of all vot-
ers. The trivial ordered partition has p = 1 and hence consists of a single part {V1, . . . , Vn}.
We let {ak, bk} with 1 ≤ k ≤ 1

2m(m− 1) be an enumeration of all the possible couples, and
we define Ck as the set containing the first k couples in this enumeration.

Now let us prove the (if) part of the theorem. We consider some arbitrary preference
profile P that neither contains a γ-configuration nor a δ-configuration. Our argument is
algorithmic in nature. We start from the trivial partition X (0) of the voters, and then
step by step refine this partition while working through 1

2m(m − 1) phases. The kth such
phase generates an ordered partition X (k) = 〈X(k)

1 , . . . , X(k)
p 〉 of the voters that satisfies the

following two properties.

(i) For 1 ≤ j ≤ p − 1, the union of parts X(k)

1 , . . . , X(k)

j is separated from the union of

parts X(k)

j+1, . . . , X
(k)
p by one of the couples in Ck.

(ii) For every couple in Ck, there is a j with 1 ≤ j ≤ p− 1 such that the couple separates
the union of X(k)

1 , . . . , X(k)

j from the union of X(k)

j+1, . . . , X
(k)
p .

Note that property (ii) implies that every part X(k)

j is pure with respect to every couple in
Ck. The following four lemmas summarize some useful combinatorial observations on the
ordered partition X (k) and how it relates to couple {ak+1, bk+1}.

Lemma 3.2 At most one part in the ordered partition X (k) is mixed with respect to cou-
ple {ak+1, bk+1}.

Proof. Suppose for the sake of contradiction that the parts X(k)
s and X(k)

t with 1 ≤ s < t ≤ p
both are mixed with respect to couple {ak+1, bk+1}. In other words, part X(k)

s contains a
voter V ′1 with ak+1 � bk+1 and another voter V ′2 with bk+1 � ak+1, and part X(k)

t contains
a voter V ′3 with ak+1 � bk+1 and another voter V ′4 with bk+1 � ak+1.

Property (i) yields the existence of a couple {x, y} ∈ Ck that separates the union of
parts X(k)

1 , . . . , X(k)
s from the union of the parts X(k)

s+1, . . . , X
(k)
p . In particular, this couple

separates X(k)
s from X(k)

t . This implies that voters V ′1 and V ′2 agree on couple {x, y} (say,
with x � y), whereas voters V ′3 and V ′4 have the opposite ranking (say y � x). Then the
four voters V ′1 , V ′2 , V ′3 , and V ′4 together with the four alternatives ak+1, bk+1, x, and y form
a δ-configuration; this yields the desired contradiction. �

Lemma 3.3 Consider s and t with 2 ≤ s < t ≤ p. If some voter V ′1 in part X(k)

1 ranks
ak+1 � bk+1 and if some voter V ′2 in part X(k)

s ranks bk+1 � ak+1, then every voter V ′3 in
part X(k)

t ranks bk+1 � ak+1.

Proof. Suppose for the sake of contradiction that the voter V ′3 ranks ak+1 � bk+1. Then the
couple {ak+1, bk+1} separates V ′2 from V ′1 and V ′3 . Property (i) yields a couple {x, y} ∈ Ck
that separates X(k)

1 from X(k)
s ∪X

(k)

t ; this couple separates V ′1 from V ′2 and V ′3 . Property (i)
yields also a couple {u, v} ∈ Ck that separates X(k)

t from X(k)

1 ∪X(k)
s ; this couple separates

V ′3 from V ′1 and V ′2 .
Then the three voters V ′1 , V ′2 , and V ′3 together with the six alternatives ak+1, bk+1, x, y,

u, and v form a γ-configuration; a contradiction. �

The statement of the following lemma is symmetric to the statement of Lemma 3.3, and
it can be proved by symmetric arguments.



Lemma 3.4 Consider s and t with 1 ≤ s < t ≤ p− 1. If some voter V ′2 in part X(k)

t ranks
ak+1 � bk+1 and some voter V ′3 in part X(k)

p ranks bk+1 � ak+1, then every voter V ′1 in
part X(k)

s ranks ak+1 � bk+1. �

Lemma 3.5 There exists an index ` with 1 ≤ ` ≤ p such that the couple {ak+1, bk+1}
separates the union of parts X(k)

1 , . . . , X(k)

`−1 from the union of parts X(k)

`+1, . . . , X
(k)
p .

Proof. If p = 1 or if all voters in the profile agree on the relative ranking of ak+1 and bk+1,
the choice ` = 1 works. Hence we assume that p ≥ 2 and that there are two voters who
disagree on the ranking of ak+1 and bk+1. By Lemma 3.2 the parts X(k)

1 and X(k)
p cannot

both be mixed with respect to {ak+1, bk+1}.
If the first part X(k)

1 is pure with respect to {ak+1, bk+1}, we pick an arbitrary voter V ′1
from X(k)

1 . We choose ` as the smallest index for which X(k)

` contains some voter V ′2 who
ranks ak+1 versus bk+1 differently from voter V ′1 . Then Lemma 3.3 yields that every voter V ′3
in the parts X(k)

`+1, . . . , X
(k)
p must rank ak+1 versus bk+1 differently from voter V ′1 . Hence

the chosen index ` has all the desired properties, and this case is closed. In the remaining
case the last part X(k)

p is pure with respect to {ak+1, bk+1}; this case can be settled in a
symmetric fashion while using Lemma 3.4. �

Now let us finally describe how to construct the ordered partition X (k+1) in the (k+1)th
phase. Our starting point is the ordered partition X (k), and we determine an index ` as
defined in Lemma 3.5. If part X(k)

` is pure with respect to {ak+1, bk+1}, then we make the
new partition X (k+1) coincide with the old partition X (k); properties (i) and (ii) are satisfied
in X (k+1). If part X(k)

` is mixed with respect to {ak+1, bk+1}, then we subdivide it into two
parts Y and Z so that {ak+1, bk+1} separates the union of parts X(k)

1 , . . . , X(k)

`−1, Y from the

union of parts Z,X(k)

`+1, . . . , X
(k)
p . Then the resulting partition

X (k+1) = 〈X(k)

1 , . . . , X(k)

`−1, Y, Z, X
(k)

`+1, . . . , X
(k)

p 〉

satisfies properties (i) and (ii) by construction.
We keep working like this and complete phase after phase, until in the very last phase

k = 1
2m(m−1) we generate the final partition X ∗ = 〈X∗1 , . . . , X∗q 〉. We construct an ordering

π∗ of the voters that lists the voters in every part X∗j before all the voters in part X∗j+1

(1 ≤ j ≤ q − 1). Property (ii) guarantees that every couple separates an initial piece of
partition X ∗ from the complementary final piece, which implies that the ordering π∗ for the
voters in P is single-crossing. This completes the proof of Theorem 3.1.

We conclude this section with several comments on the above proof.
(1) Let 〈X(k)

1 , . . . , X(k)
p 〉 be the ordered partition determined in phase k, and consider

an ordering σ of the voters that lists the voters in every part X(k)

j before all the voters in

the succeeding part X(k)

j+1. Let ordering σ− list the voters in reverse order to σ. Then σ

and σ− are single-crossing with respect to all couples in Ck. In fact, any ordering that is
single-crossing with respect to all couples in Ck can be constructed in that fashion. This can
be established by an inductive argument.

(2) By property (ii), every part X∗j in the final partition X ∗ is pure with respect to
every possible couple of alternatives. This means that all voters in part X∗j have identical
preference orderings, and that the ordering π∗ is uniquely determined except for swapping
voters with identical preference orderings.

(3) The preceding two comments imply the following. Let P be a preference profile in
which distinct voters always have distinct preference orderings. If P is single-crossing, then
there exist exactly two single-crossing orderings of the voters and these two orderings are
mirror images of each other.



(4) By property (i), every two consecutive parts X∗j and X∗j+1 must be separated by

one of the couples. Since there are only 1
2m(m − 1) distinct couples, there are at most

1
2m(m − 1) + 1 parts in the final partition. This shows that a single-crossing preference
profile contains at most 1

2m(m − 1) + 1 voters with distinct preference orderings. (This
bound of course is already known from the connection between single-crossing profiles and
weak Bruhat orders as indicated in Section 2.1.)

4 The size of forbidden configurations

Throughout this short section, we speak of preference profiles with m alternatives and
n voters as m × n configurations. Theorem 3.1 characterizes single-crossing preference
profiles through certain forbidden 6 × 3 and 4 × 4 configurations. Are there perhaps other
characterizations that work with smaller forbidden configurations? The following lemma
shows that this is not the case, and hence our characterization uses the smallest possible
forbidden configurations.

Lemma 4.1 Every characterization of single-crossing preference profiles through forbidden
configurations must forbid (a) some m × n configuration with m ≥ 6 and n ≥ 3 and (b)
some m× n configuration with m ≥ 4 and n ≥ 4.

Proof. Consider an arbitrary characterization of single-crossing profiles with forbidden con-
figurations F1, . . . , Fk. Consider the following 6× 3 configuration C.

Voter V1: b �1 a �1 c �1 d �1 e �1 f

Voter V2: a �2 b �2 d �2 c �2 e �2 f

Voter V3: a �3 b �3 c �3 d �3 f �3 e

This profile contains a γ-configuration and thus is not single-crossing. If we remove any al-
ternative from C, the resulting 5×3 configuration is single-crossing and cannot be forbidden.
And if we remove any voter from C, the resulting 6×2 configuration is again single-crossing
and again cannot be forbidden. Hence the only possibility for correctly recognizing C as
not single-crossing is by either forbidding C itself or by forbidding appropriate larger con-
figurations that contain C. This proves (a). The proof of (b) is based on the following 4× 4
configuration C ′ which contains a δ-configuration.

Voter V1: a �1 b �1 c �1 d

Voter V2: a �2 b �2 d �2 c

Voter V3: b �3 a �3 c �3 d

Voter V4: b �4 a �4 d �4 c

Since the argument is analogous to the one in (a), we omit the details. �

5 Recognizing the single-crossing property

In this section, we sketch how to produce all (if any) single-crossing orderings of the voters
by utilizing the PQ-tree algorithm as developed by Booth & Lueker [7]. The PQ-tree
algorithm was designed to recognize, inter alia, consecutive ones matrices. A 0-1-matrix has
the consecutive ones property, if its columns can be permuted such that the ones in each
row are consecutive (and hence form an interval).

Hence let us consider an arbitrary preference profile P, and let us transform it into a
corresponding 0-1-matrix M(P) in the following way. For each voter, the matrix M(P)



contains a corresponding column. For each ordered pair 〈a, b〉 of alternatives, matrix M(P)
has a corresponding row with value 1 at column j if voter j prefers alternative a to alterna-
tive b, and value 0 otherwise. For a preference profile with n voters and m alternatives, the
resulting 0-1-matrix M(P) has n columns and m(m− 1) rows. Example 5.1 illustrates this
construction for a concrete profile with four voters and three alternatives.

Example 5.1 (A single-crossing profile and its 0-1-matrix representation)
Suppose that there are four voters V1, V2, V3, and V4 voting over three alternatives 1, 2, and
3. The preference orderings of the voters are as follows:

Voter V1: 3 �1 1 �1 2

Voter V2: 2 �2 3 �2 1

Voter V3: 2 �3 1 �3 3

Voter V4: 3 �4 2 �4 1

Our construction yields the following 0-1-matrix corresponding to this profile.

V1 V2 V3 V4

〈1, 2〉 1 0 0 0
〈2, 1〉 0 1 1 1
〈1, 3〉 0 0 1 0
〈3, 1〉 1 1 0 1
〈2, 3〉 0 1 1 0
〈3, 2〉 1 0 0 1

By applying the PQ-tree algorithm of Booth & Lueker [7], one can find all permutations of
the columns with the consecutive ones property. One possible consecutive ones permutation
of the columns is 〈V1, V4, V2, V3〉. As one can easily verify, this is also a single-crossing
ordering of the voters in the original profile. �

Lemma 5.2 A preference profile P is single-crossing if and only if the corresponding 0-1-
matrix M(P) has the consecutive ones property.

Proof. An ordering of the voters is single-crossing for P if and only if this ordering permutes
the columns of M(P) so that the ones in each row are consecutive. �

The PQ-algorithm [7] solves the consecutive ones matrix problem in O(x+ y + z) time,
where x and y are respectively the number of columns and rows, and z is the total number
of 1s in the matrix. Hence, single-crossing profiles can be recognized in O(m2 +n+nm2) =
O(nm2) time.

6 Conclusion

In this paper, we give an equivalent characterization of single-crossing preferences through
two minimal forbidden substructures: γ- and δ-configurations. We demonstrate the close
relation between single-crossing preferences and weak Bruhat orders. Futhermore, we can
find all single-crossing orderings of a preference profile by transforming them into a binary
matrix and asking whether this matrix has the consecutive ones property. This process needs
subquadratic time and utilizes the consecutive ones matrix problem. Hence, searching for a
direct and more efficient way of detecting the single-crossing property would be an interesting
challenge.
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