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Abstract
An ordinal preference domain is a subset of preference orders that

the voters are allowed to cast in an election. We introduce and study

the notion of outer diversity of a domain and evaluate its value for

a number of well-known structured domains, such as the single-

peaked, single-crossing, group-separable, and Euclidean ones.
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1 Introduction
In the standard, ordinal model of elections, each voter considers

a set of candidates and ranks them from the one that he or she

likes most to the one that he or she likes least. In principle, a voter

may order the candidates in any arbitrary way, but some of these

rankings appear more natural (or, more rational) than others. For

example, in the political setting it would be expected that a voter

would rank the candidates with respect to their proximity to his

or her political stance, but a ranking with the most right-wing

candidate and the most left-wing one on two top positions would

be surprising. Various rationality conditions for ordinal rankings

are expressed as so-called structured domains, i.e., sets of rankings

that can be cast in a given setting. Such domains include, e.g.,

the single-peaked one [5], which captures preferences based on

proximity to some ideal, the single-crossing ones, introduced in

the context of taxation [31, 34], or group-separable ones [25, 26],

where voters derive rankings of candidates from preferences over

their features [18, 27]. We introduce a new measure of diversity

of such domains, provide algorithms for computing its value, and

analyze diversity of a number of structured domains.

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,

2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

Somewhat surprisingly, analysis of diversity for structured do-

mains has only recently started to receive more focused atten-

tion [1, 21, 28], with a few authors also considering diversity of

elections [17, 19, 23]. Two commonly used approaches are:

Richness Diversity. The overarching idea is that a domain is

diverse if it contains many different substructures in its rank-

ings (these substructures are sometimes also called attributes,

as the approach builds on the theory of attribute diversity of

Nehring and Puppe [32]). For example, one might consider

howmany votes appear in the domain, howmany candidates

are ever ranked on top, or—for each triple of candidates—

how many ways of ranking these candidates appear in the

domain. This approach is taken, e.g., by Ammann and Puppe

[1] and Karpov et al. [28]

Inner Diversity. In this case, we say that a domain is diverse

if its rankings do not form clear clusters. This approach was

taken by Faliszewski et al. [17, 19, 21], who introduced the

𝑘-Kemeny problem to quantify the difficulty of clustering

rankings (briefly put, one tries to optimally partition the

rankings into a given number of groups, measuring their

cohesiveness using the classic Kemeny rule [29]).

We propose a third approach, which we refer to as outer diversity:

Outer Diversity. A domain is diverse if, on average, a random

ranking from the space of all possible ones is similar to

some ranking from the domain. In particular, we measure

similarity between rankings using the number of swaps of

adjacent candidates that transform one into the other.

Inner and outer diversity seem to capture the same basic intuition,

but the inner approach focuses on the rankings within the domain,

whereas the outer one focuses on those outside.

We believe that all the above approaches to measuring domain

diversity are meaningful and are worth studying, but outer diversity

has some advantages. First, it has a very clear interpretation: If a

domain has high diversity, then it covers the space of all possible

rankings well; if one wanted to cast a ranking from the domain but

had one that did not belong to it, then the closest member of the

domain would not be too far off from his or her original ranking.

Second, outer diversity of a given domain is a single number.

On the other hand, in case of richness diversity one has to choose

from many different substructures to count, and in case of inner

diversity one either has to choose the number of clusters to con-

sider (for which there is no clear solution) or somehow aggregate



obtained values for different numbers of clusters, which is not ob-

vious (indeed, the works we cite with respect to inner diversity do

not provide fully satisfying recommendations).

Third, while in principle computing outer diversity may require

exponential time, we provide efficient algorithms for computing

it using sampling: Our algorithms compute the distance from a

given ranking to the closest one in a given domain of interest, such

as the single-peaked, single-crossing, and group-separable ones.

Hence, we can sample random votes, compute their distances to

the domains, and output the average of the obtained values. On the

other hand, even the heuristics that Faliszewski et al. [17] proposed

for inner diversity (i.e., for 𝑘-Kemeny) require exponential time if a

given domain contains exponentially many rankings (as is the case

for, e.g., the single-peaked and group-separable ones).

Our main contributions are as follows:

(1) We introduce the notion of outer diversity and providemeans

of computing its values for a number of domains, including

the single-peaked, single-crossing, and group-separable ones,

but also many others (including variants of the single-peaked

domain, as well as Euclidean domains). However, we also find

that for some natural domains, the sampling-based approach

requires solving an NP-hard problem.

(2) We evaluate outer diversity across a number of domains. We

find that ranking the domains with respect to outer diversity

gives similar results as doing so with respect to the inner

one. Further, while analyzing outer diversity of our domains,

we note a number of their interesting features.

(3) We compute domains of given sizes, whose outer diversity

is (close to) the highest possible, and we analyze how close

are various structured domains to these maximal values.

One of the takeaway messages of our work is that the domain of

group-separable preferences based on caterpillar trees (see Sec-

tion 2) is the most diverse one among those that we study, and has

many features that other domains often lack. Consequently, and

strengthening the message of Faliszewski et al. [21], we believe

that this domain should be used in numerical experiments on elec-

tions. Even if it does not capture reality in a given setting, it is so

special that studying it may lead to the discovery of hard-to-spot

phenomena.

We discuss related work throughout the paper, whenever rele-

vant. Omitted proofs are available in the appendix.

2 Preliminaries
For a positive integer 𝑡 , by [𝑡] wemean the set {1, 2, . . . , 𝑡}. Given an
undirected graph𝐺 , by𝑉 (𝐺) and 𝐸 (𝐺) we mean its sets of vertices

and edges, respectively. We use the Iverson bracket notation, i.e., for

a logical formula 𝜑 , by [𝜑] we mean 1 if 𝜑 is true, and 0, otherwise.

Preference Orders, Domains, and Elections. Let 𝐶 be a set

of𝑚 candidates. By L(𝐶) we denote the set of all𝑚! linear orders

over 𝐶 , typically referred to as preference orders, votes, or rankings.

For each such ranking 𝑣 and two candidates 𝑎, 𝑏 ∈ 𝐶 , we write

𝑎 ≻𝑣 𝑏 to indicate that 𝑣 ranks 𝑎 ahead of 𝑏 (i.e., according to 𝑣 ,

𝑎 is preferred to 𝑏). A preference domain (over 𝐶) is a subset 𝐷 of

L(𝐶). In particular, L(𝐶) is the general domain. For a ranking 𝑣

and candidate 𝑐 , by pos𝑣 (𝑐) we mean the position of 𝑐 in 𝑣 ; the top

candidate has position 1, the next one has position 2, and so on.

An election is a pair 𝐸 = (𝐶,𝑉 ), where 𝐶 = {𝑐1, . . . , 𝑐𝑚} is a set
of candidates and 𝑉 = (𝑣1, . . . , 𝑣𝑛) is a collection of voters, each of

whom has a vote from L(𝐶). To streamline the discussion, we use

the same symbol 𝑣𝑖 to refer both to the given voter and to his or

her vote. The exact meaning will always be clear from the context.

Given a domain 𝐷 ⊆ L(𝐶), we say that 𝐸 = (𝐶,𝑉 ) is a 𝐷-election
if all the voters in 𝑉 have votes from 𝐷 .

Sometimes it is convenient to treat a domain 𝐷 ⊆ L(𝐶) as an
election that contains a single voter for each of its preference orders.

In particular, we write UN to mean an election that contains one

copy of every possible order (so UN is simply L(𝐶), viewed as an

election). For other domains, we typically do not introduce a second

name, but UN has already been used in preceding literature in the

context of the map of elections [35].

For two rankings 𝑢, 𝑣 ∈ L(𝐶), their swap distance (also known
as Kendall’s 𝜏 distance) is a number of pairs of candidates in 𝐶 on

whose ordering 𝑢 and 𝑣 disagree, i.e.:

swap(𝑢, 𝑣) = |{𝑎, 𝑏 ∈ 𝐶 : 𝑎 ≻𝑢 𝑏 ∧ 𝑏 ≻𝑣 𝑎}|.

The value swap(𝑢, 𝑣) can be computed in time𝑂 (𝑚
√︁
log𝑚) [8]. For

a domain 𝐷 ⊆ L(𝐶), we let swap(𝐷, 𝑣) = min𝑢∈𝐷 swap(𝑢, 𝑣).

Structured Domains. Let us fix a size-𝑚 set of candidates 𝐶 =

{𝑐1, . . . , 𝑐𝑚}. Below, we describe the preference domains over 𝐶

whose diversity we want to analyze.

Consider a connected, undirected graph 𝐺 , such that 𝑉 (𝐺) = 𝐶
(we refer to such graphs as SP-graphs, or SP-trees in case 𝐺 is also

acyclic). A ranking 𝑣 ∈ L(𝐶) is single-peaked with respect to 𝐺

if for every 𝑡 ∈ [𝑚], the subgraph induced by the 𝑡 top-ranked

candidates from 𝑣 is connected. SP(𝐺) is the domain that consists

of all rankings that are single-peaked with respect to 𝐺 (see, e.g.,

the work of Elkind et al. [12]). We focus on the following variants:

(1) SP is the classic single-peaked domain that consists of rank-

ings single-peaked with respect to a path (often called an

axis and denoted 𝑐1 ▷ 𝑐2 ▷ · · · ▷ 𝑐𝑚). In politics, the axis

may, e.g., indicate the progression from the most left-wing

candidate to the most right-wing one. SP is due to Black [5].

(2) SPOC, introduced by Peters and Lackner [33], consists of

rankings single-peaked with respect to a cycle. SPOC pref-

erences appear, e.g., when people located in different time

zones want to choose a convenient time for an online meet-

ing. The name SPOC stands for single-peaked on a circle.

(3) SP/DF is a domain introduced by Faliszewski et al. [21] and

consists of votes single-peaked with respect to a tree that

we obtain by taking a path and adding four vertices: two di-

rectly connected to one end of the path, and two directly con-

nected to the other end. The name SP/DF stands for single-
peaked/double-forked. Domains of rankings single-peaked

with respect to trees were introduced by Demange [10].

Whenever we speak of SP, SPOC, or SP/DF the exact number of

candidates and their positions in respective graphs will be clear

from the context (or will be irrelevant). We use this convention for

the other domains as well, omitting such details from their names.

A domain is single-crossing if it is possible to list its members as

𝑣1, 𝑣2, . . . , 𝑣𝑛 , so that, as we consider them from 𝑣1 to 𝑣𝑛 , the relative



ordering of each pair of candidates 𝑎 and 𝑏 changes at most once.

Single-crossingness is due to Mirrlees [31] and Roberts [34].

(4) By SC, we mean a single-crossing domain sampled from

the space of all such domains using the algorithm of Szufa

et al. [35]: We generate votes iteratively, starting with some

arbitrary vote 𝑣0. In each iteration, given vote 𝑣𝑖 , we form 𝑣𝑖+1
by taking 𝑣𝑖 ’s copy and swapping a randomly selected pair

of adjacent candidates that were not swapped in preceding

iterations. Altogether, we generate rankings 𝑣0, . . . , 𝑣 (𝑚
2
) that

form our domain.

Note that the algorithm of Szufa et al. [35] does not sample single-

crossing domains uniformly at random (so far, the only known

algorithm for such uniform sampling requires exponential time).

Let𝑇 be an ordered, rooted tree, where each internal node has at

least two children and each leaf is labeled with a unique candidate

from 𝐶 (we refer to such trees as GS-trees). A frontier of 𝑇 is the

ranking of the candidates, obtained by reading the leaves of 𝑇

from left to right. Domain GS(𝑇 ) consists exactly of those rankings

𝑣 ∈ L(𝐶) that are either a frontier of 𝑇 or a frontier of a tree

obtained from 𝑇 by reversing the order of some nodes’ children.

A domain 𝐷 is group-separable if 𝐷 = GS(𝑇 ) for some 𝑇 . We are

particularly interested in the following two such domains:

(5) GS/bal is a group-separable domain defined by balanced

binary trees, i.e., binary trees where each internal node has

exactly two children and for each two leaves, their distance

from the root differs at most by 1.

(6) GS/cat is a group-separable domain defined by caterpillar

binary trees, i.e., trees where each internal node has exactly

two children, of which at least one is a leaf.

Group-separable domains were introduced by Inada [25, 26], but

the above tree-based definition is due to Karpov [27].

Let 𝑑 be some positive integer, and let 𝑥 : 𝐶 → R𝑑 be a function

that associates the candidates with distinct points in R𝑑 . A ranking

𝑣 ∈ L(𝐶) is consistent with 𝑥 if there is a point 𝑥𝑣 ∈ R𝑑 such that

for each two candidates 𝑎, 𝑏 ∈ 𝐶 such that 𝑎 ≻𝑣 𝑏 it holds that

the Euclidean distance between 𝑥𝑣 and 𝑥 (𝑎) is smaller than that

between 𝑥𝑣 and 𝑥 (𝑏). 𝐷 (𝑥) is the domain that includes exactly the

rankings consistent with 𝑥 . Such domains are called Euclidean and

were studied, e.g., by Enelow and Hinich [14, 15]. We focus on:

(7) 1D-Int., 2D-Square, and 3D-Cube, where the position of each

candidate is sampled uniformly at random from, respectively,

[−1, 1], [−1, 1]2, and [−1, 1]3.
It is well-known that 1D-Int. is also a single-crossing domain, and

all its votes are single-peaked with respect to the axis obtained by

sorting the positions of the candidates.

SP, SC, all group-separable domains, and 1D-Int. are examples

of so-called Condorcet domains. That is, for every election with odd

number of votes from one of these domains, there is a ranking 𝑣

of the candidates such that if 𝑣 ranks some candidate 𝑎 over some

other candidate 𝑏, then a strict majority of voters prefers 𝑎 to 𝑏.

Distance Between Elections. Isomorphic swap distance be-

tween two elections (with the same numbers of candidates and

the same numbers of voters) is a measure of their structural simi-

larity, introduced by Faliszewski et al. [20]. We extend it to apply to

elections with different numbers of voters (in essence, we pretend

to duplicate the votes so that the elections appear to be equal-sized).

Definition 2.1. For two elections 𝐸 = (𝐶,𝑉 ) and 𝐹 = (𝐵,𝑈 ) such
that |𝐶 | = |𝐵 |, where 𝑉 = (𝑣1, . . . , 𝑣𝑛) and 𝑈 = (𝑢1, . . . , 𝑢𝑘 ), their
isomorphic swap distance is defined as follows (the indices of the

votes from 𝑉 are taken modulo 𝑛, and the indices of the votes from

𝑈 are taken modulo 𝑘):

𝑑swap (𝐸, 𝐹 ) =
1

𝑛𝑘
min

𝜋 :[𝑛𝑘 ]→[𝑛𝑘 ]
min

𝜎 :𝐶→𝐵

∑︁
𝑖∈[𝑛𝑘 ]

swap(𝜎 (𝑣𝑖 ), 𝑢𝜋 (𝑖 ) ),

where 𝜋 and 𝜎 are bijections, and by 𝜎 (𝑣𝑖 ) we mean vote 𝑣𝑖 where

each candidate 𝑐 ∈ 𝐶 is replaced with candidate 𝜎 (𝑐) ∈ 𝐵.

𝒌-Kemeny and Inner Diversity. Let 𝐸 = (𝐶,𝑉 ) be an election

and let 𝑅 = {𝑟1, . . . , 𝑟𝑘 } be a set of preference orders from L(𝐶). By
the Kemeny score of 𝑅 with respect to election 𝐸, we mean:

kem𝐸 (𝑅) =
∑
𝑣∈𝑉 swap(𝑅, 𝑣).

In other words, it is the sum of the swap distances of the election’s

votes to their closest rankings from 𝑅. The 𝑘-Kemeny score of an

election 𝐸, denoted 𝑘-kem(𝐸), is the smallest Kemeny score of a

size-up-to-𝑘 set of rankings for this election. By Kemeny score we

mean the 1-Kemeny score. Computing the Kemeny score of a given

election is well-known to be hard [3, 24], even for the case of four

voters [4, 11]. The notion of the Kemeny score was the original

idea of Kemeny [29], whereas the extension to collections of rank-

ings was put forward by Faliszewski et al. [17], in the context of

election diversity. Specifically, they claimed that the appropriately

normalized weighted sum of an election’s 𝑘-Kemeny scores (for

varying 𝑘) captures its diversity. Indeed, the larger an election’s

𝑘-Kemeny score, the more difficult it is to cluster its votes into 𝑘

groups, meaning that its votes are quite different from one another.

Consequently, these votes are diverse. The same view was taken

by Faliszewski et al. [19] and was recently applied to measure the

diversity of preference domains by Faliszewski et al. [21]. Specifi-

cally, given domain 𝐷 over size-𝑚 candidate set, they defined its

Kemeny vector to be:

kem(𝐷) = (1-kem(𝐷)/|𝐷 |, 2-kem(𝐷)/|𝐷 |, . . . ,𝑚-kem(𝐷)/|𝐷 |)
and they said that a given domain 𝐷1 is more diverse than another

domain 𝐷2 (both over equal-sized candidate sets) if kem(𝐷1) domi-

nates kem(𝐷2) or is close to dominating it; they did not formalize

this notion as they considered only a few domains.

We broadly refer to measures of diversity based on the difficulty

of clustering as capturing inner diversity.

3 Outer Diversity
Let 𝐶 be a set of candidates and let 𝐷 ⊆ L(𝐶) be a domain over 𝐶 .

By the average normalized swap distance of 𝐷 , denoted ansd(𝐷),
we mean the expected swap distance between a vote chosen from

L(𝐶) uniformly at random and the closest vote in 𝐷 , divided by the

maximal possible distance between two votes in L(𝐶). Formally:

ansd(𝐷) = 1

𝑚!

∑
𝑢∈L(𝐶 ) swap(𝐷,𝑢)/

(𝑚
2

)
.

The largest possible value of ansd(𝐷) is 0.5, obtained when 𝐷

consists of a single vote, and the smallest one is 0, obtained for the

general domain. To ensure that outer diversity of a domain 𝐷 is



Table 1: For each domain we give its size and the complexity
of finding its closest member (in terms of swap distance) to a
given input ranking. Running times marked with ∗ do not
include the time needed for preprocessing.

Complexity of Finding

Domain Size Closest Ranking from 𝐷

GS(𝑇 ) ≤ 2
𝑚−1 𝑂 (𝑚2)

GS/cat 2
𝑚−1 𝑂 (𝑚 log𝑚)

GS/bal 2
𝑚−1 𝑂 (𝑚 log𝑚)

SP 2
𝑚−1 𝑂 (𝑚2)

SP/DF 2
𝑚+1 − 16 𝑂 (𝑚4)

SPOC 𝑚2
𝑚−2 𝑂 (𝑚2)

SP(𝑇 ) — 𝑂 (𝑘𝑚𝑘 )
𝑘 = number of𝑇 ’s leaves

SP(𝐺) — NP-com.

SC 1 +𝑚 (𝑚−1)/2 𝑂 (𝑚2)∗

1D-Int. 1 +𝑚 (𝑚−1)/2 𝑂 (𝑚2)∗
2D-Square 𝑂 (𝑚4) 𝑂 (𝑚4)∗
3D-Cube 𝑂 (𝑚6) 𝑂 (𝑚6)∗

between 0 and 1 (where 0 means complete lack of diversity and 1

means full diversity), we define it as the following linear transfor-

mation of ansd(𝐷).

Definition 3.1. For a domain 𝐷 ⊆ L(𝐶), its outer diversity is

defined as out-div(𝐷) = 1 − 2 · ansd(𝐷) .

While outer- and inner diversity notions are based on different

principles, they are interrelated in several ways. For example, in-

ner diversity, as defined by Faliszewski et al. [17, 19, 21], relies on

analyzing 𝑘-Kemeny scores of given elections or domains, whereas

ansd(𝐷) is simply the normalized 𝑘-Kemeny score of the input do-

main𝐷 , with respect to the UN election. Considered from a different

perspective, ansd(𝐷) is equal to the smallest possible isomorphic

swap distance between UN and a 𝐷-election.

Proposition 3.2. For every domain 𝐷 ⊆ L(𝐶), it holds that
ansd(𝐷) = min𝐸 is a 𝐷-election

𝑑swap (UN, 𝐸)/
(𝑚
2

)
.

Since Faliszewski et al. [17] have shown that proximity to UN is

highly correlated with their form of inner diversity, we conclude

that both approaches are capturing the same high-level idea.

4 Computing Outer Diversity
For domains over sufficiently small candidate sets, it is possible to

compute outer diversity exactly. In the most basic approach, given a

domain 𝐷 over candidate set𝐶 , we could simply compute the swap

distance between every vote in𝐷 and every vote inL(𝐶). Naturally,
this is very inefficient and computing outer diversity of, say, SP

with𝑚 candidates would require time𝑂 (𝑚! · 2𝑚−1 ·𝑚
√︁
log𝑚); the

general domain has𝑚! rankings, SP has 2
𝑚−1

of them, and it takes

𝑂 (𝑚
√︁
log𝑚) time to compute the swap distance [8]. Fortunately,

there is a faster approach that given a domain 𝐷 , for each 𝑖 forms a

set 𝐷𝑖 of rankings at swap distance 𝑖 from 𝐷 .

Proposition 4.1. There is an algorithm that given domain 𝐷

over 𝑚 candidates (represented by listing its members), computes

out-div(𝐷) in time 𝑂 (𝑚2 ·𝑚!).
To compute outer diversity for larger candidate sets, we resort to

sampling. Namely, given a domain 𝐷 over a size-𝑚 candidate set 𝐶 ,

we fix a number𝑁 , sample𝑁 rankings fromL(𝐶), for each sampled

ranking 𝑣 we compute swap(𝐷, 𝑣) and output the average of these

values, divided by

(𝑚
2

)
. This gives an estimate for ansd(𝐷), based

on which we obtain out-div(𝐷). However, to implement this idea

efficiently, we need fast algorithms for the following problem: Given

a ranking 𝑣 and a domain 𝐷 , compute swap(𝐷, 𝑣). We dedicate the

rest of this section to seeking algorithms for this problem for various

domains, and to establishing its complexity.

On the outset, the problem can be even NP-hard. For example,

for each set of 4𝑚 candidates 𝐶 = {𝑐𝑖, 𝑗 : 𝑖 ∈ [4], 𝑗 ∈ [𝑚]}, let the
4-alignment domain contain each vote of the form {𝑐1,1, . . . , 𝑐1,𝑚}≻
{𝑐2,1, . . . , 𝑐2,𝑚} ≻ {𝑐3,1, . . . , 𝑐3,𝑚} ≻ {𝑐4,1, . . . , 𝑐4,𝑚}, in which the

order of the candidates, based on their second indices, is identical

in each block. Then we have the following hardness result (in

essence, for this domain the problem of finding a closest vote in

the domain becomes the problem of computing Kemeny score for 4

voters, known to be NP-hard [4, 11]).

Theorem 4.2. Let 𝐷 be the 4-alignment domain. Given vote 𝑣 and

integer 𝑑 ∈ N it is NP-complete to decide whether swap(𝐷, 𝑣) ≤ 𝑑 .
Despite this negative result, for most of our domains we find

efficient algorithms for computing the distance to a given vote (see

Table 1). In the following, we always use𝐶 = {𝑐1, . . . , 𝑐𝑚} to denote
the set of𝑚 candidates in the domain under consideration.

4.1 Single-Peaked Domains
Let us first consider the family of single-peaked domains. We note

that Faliszewski et al. [16, Theorem 4.5.] already gave a polynomial-

time algorithm for computing the distance between SP and a given

ranking, but their approach—based on dynamic programming—

required 𝑂 (𝑚3) time. We improve this algorithm to run in 𝑂 (𝑚2)
time. The main idea is to use dynamic programming to iteratively

compute the distance between a given ranking 𝑣 and votes that

rank more and more bottom candidates as required by SP.

Assume that we are given a vote 𝑣 and a societal axis 𝑐1 ▷ 𝑐2 ▷
· · · ▷ 𝑐𝑚 . For each ℓ, 𝑟 ∈ {0, 1, 2, . . . ,𝑚} such that ℓ + 𝑟 ≤ 𝑚, let

𝐶ℓ,𝑟 denote the set of the first ℓ and the last 𝑟 candidates according

to ▷. Formally, we have 𝐶ℓ,𝑟 = {𝑐1, . . . , 𝑐ℓ } ∪ {𝑐𝑚+1−𝑟 , . . . , 𝑐𝑚}; by
convention, for ℓ = 0 we have {𝑐1, . . . , 𝑐ℓ } = ∅, and for 𝑟 = 0 we

have {𝑐𝑚+1−𝑟 , . . . , 𝑐𝑚} = ∅. Then, by𝑈ℓ,𝑟 we denote the set of all
votes 𝑢 ∈ L(𝐶) in which (a) candidates from𝐶ℓ,𝑟 are in the bottom

ℓ + 𝑟 positions, and (b) for each 𝑡 ∈ {𝑚,𝑚 − 1, . . . ,𝑚 − ℓ − 𝑟 + 1},
the top 𝑡 candidates of 𝑢 form an interval within ▷. Observe that
𝑈0,0 = L(𝐶), whereas if ℓ + 𝑟 = 𝑚, then 𝑈ℓ,𝑟 = SP. We write

𝐴ℓ,𝑟 to denote the minimal swap distance between 𝑣 and 𝑢 ∈ 𝑈ℓ,𝑟 .
As we will show, all values of 𝐴ℓ,𝑟 can be computed efficiently in

Algorithm 1, using a recursive formula.

Theorem 4.3. Algorithm 1 computes the distance between a given

vote and a single-peaked domain in time 𝑂 (𝑚2).

Proof. For the running time, observe that each of our loops is

over at most𝑚 elements, and we have at most two levels of nested



Algorithm 1 Distance between a ranking and SP

Input: Ranking 𝑣 ∈ L(𝐶), societal axis 𝑐1 ▷ · · · ▷ 𝑐𝑚
Phase 1, Precomputation:

1: for 𝑖 ∈ [𝑚] do
2: 𝐿𝑖,𝑖 ← 0, 𝑅𝑖,𝑖 ← 0

3: for 𝑗 ∈ {𝑖 + 1, . . . ,𝑚} do 𝐿𝑖, 𝑗 ← 𝐿𝑖, 𝑗−1 + [𝑐𝑖 ≻𝑣 𝑐 𝑗 ]
4: for 𝑗 ∈ {𝑖 − 1, . . . , 1} do 𝑅 𝑗,𝑖 ← 𝑅 𝑗+1,𝑖 + [𝑐𝑖 ≻𝑣 𝑐 𝑗 ]

Phase 2, Main Computation:

5: 𝐴0,0 ← 0

6: for ℓ ∈ [𝑚 − 1] do 𝐴ℓ,0 ← 𝐴ℓ−1,0 + 𝐿ℓ,𝑚
7: for 𝑟 ∈ [𝑚 − 1] do
8: 𝐴0,𝑟 ← 𝐴0,𝑟−1 + 𝑅1,𝑚+1−𝑟
9: for ℓ ∈ [𝑚 − 𝑟 − 1] do
10: 𝐴ℓ,𝑟 ← min(𝐴ℓ−1,𝑟 + 𝐿ℓ,𝑚−𝑟 , 𝐴ℓ,𝑟−1 + 𝑅ℓ+1,𝑚+1−𝑟 )
11: return minℓ∈[𝑚] 𝐴ℓ−1,𝑚−ℓ

loops. Each individual iteration can be completed in time𝑂 (1). The
final minimum in line 11 requires 𝑂 (𝑚) time.

Let us now analyze the correctness of the algorithm. For each

𝑖, 𝑗 ∈ [𝑚], with 𝑖 ≤ 𝑗 , we let 𝐿𝑖, 𝑗 be the number of candidates in

{𝑐𝑖 , 𝑐𝑖+1, . . . , 𝑐 𝑗 } that 𝑣 ranks below 𝑐𝑖 . Consequently, we have that

𝐿𝑖,𝑖 = 0 and, if 𝑖 < 𝑗 , then either 𝐿𝑖, 𝑗 = 𝐿𝑖, 𝑗−1 + 1 (if 𝑣 ranks 𝑐𝑖 ahead
of 𝑐 𝑗 ) or 𝐿𝑖, 𝑗 = 𝐿𝑖, 𝑗−1 (otherwise). Similarly, for 𝑗 ≤ 𝑖 , 𝑅𝑖, 𝑗 is the
number of candidates in {𝑐 𝑗 , 𝑐 𝑗+1, . . . , 𝑐𝑖 } that 𝑣 ranks below 𝑐𝑖 (𝑅 𝑗,𝑖
satisfies analogous relations as 𝐿𝑖, 𝑗 ). The algorithm computes the

values of 𝐿𝑖, 𝑗 and 𝑅 𝑗,𝑖 in Phase 1.

Then, in Phase 2, the algorithm computes all the values 𝐴ℓ,𝑟
for ℓ, 𝑟 ∈ [𝑚] such that ℓ + 𝑟 ≤ 𝑚 − 1. Let us fix such ℓ and 𝑟 .

We note that every ranking in 𝑈ℓ,𝑟 either ranks 𝑐ℓ or 𝑐𝑚+1−𝑟 on
position𝑚 + 1− ℓ − 𝑟 (i.e., on the ℓ + 𝑟 ’th position from the bottom).

Indeed, for all rankings in 𝑈ℓ,𝑟 we have that the first𝑚 + 1 − ℓ − 𝑟
candidates form an interval within ▷. However, by definition, all of

these candidates, except for the one ranked on position𝑚− ℓ −𝑟 +1,
belong to𝐶 \𝐶ℓ,𝑟 . Consequently, to form the interval, the candidate

on position𝑚 − ℓ − 𝑟 + 1 must be either 𝑐ℓ or 𝑐𝑚+1−𝑟 . Let𝑈ℓ,𝑟 be a
subset of votes from𝑈ℓ−1,𝑟 that additionally have 𝑐ℓ in the position

𝑚+1− ℓ −𝑟 . Similarly, let𝑈ℓ,𝑟 , be a subset of votes from𝑈ℓ,𝑟−1 with
𝑐𝑚+1−𝑟 in the position𝑚 + 1− ℓ −𝑟 . By the preceding argument, we

have that 𝑈ℓ,𝑟 = 𝑈ℓ,𝑟 ∪𝑈ℓ,𝑟 (if ℓ = 0, we assume 𝑈ℓ,𝑟 = ∅, if 𝑟 = 0,

𝑈ℓ,𝑟 = ∅). Thus, 𝐴ℓ,𝑟 = min(swap(𝑈ℓ,𝑟 , 𝑣), swap(𝑈ℓ,𝑟 , 𝑣)) .
Let 𝑢 be a vote in𝑈ℓ,𝑟 that minimizes swap(𝑢, 𝑣). Observe that

𝑚 − ℓ − 𝑟 first candidates in 𝑢 appear in the same relative order as

they appear in 𝑣 (otherwise, ordering them as in 𝑣 would decrease

the distance). Let 𝑢′ be a vote obtained from 𝑢 by ensuring that it

ranks its first𝑚 − ℓ − 𝑟 + 1 candidates in the same relative order as

in 𝑣 (in other words, 𝑢′ is the same as 𝑢, except that it might rank

𝑐ℓ some positions earlier). It must be that 𝑢′ ∈ 𝑈ℓ−1,𝑟 . Moreover,

we can show that 𝑢′ minimizes swap distance to 𝑣 among rankings

in 𝑈ℓ−1,𝑟 , i.e., swap(𝑢′, 𝑣) = 𝐴ℓ−1,𝑟 . Indeed, the first 𝑚 − ℓ − 𝑟 +
1 candidates are in the optimal order (the same as in 𝑣), and if

rearranging the last ℓ + 𝑟 − 1 candidates could decrease the distance,
we could also rearrange them in the same way in 𝑢. Now, when

we look at the inversions counted in swap(𝑣,𝑢), we see that we
count all inversions that we count in swap(𝑣,𝑢′) and additionally

those from having 𝑐ℓ after all of the first𝑚 − ℓ − 𝑟 candidates. But

those are exactly the inversions we store in 𝐿ℓ,𝑚−𝑟 . Thus, we get
that swap(𝑈ℓ,𝑟 , 𝑣) = 𝐴ℓ−1,𝑟 + 𝐿ℓ,𝑚−𝑟 . Analogously, we can prove

that swap(𝑈ℓ,𝑟 , 𝑣) = 𝐴ℓ,𝑟−1 + 𝑅ℓ+1,𝑚+1−𝑟 . This way, we obtain the

recursive equation used in line 10, as well as the equations from

lines 6 and 8 (in their cases either 𝑟 = 0 or ℓ = 0 so respective parts

of the equation disappear).

Finally, for ℓ ∈ [𝑚], we observe that 𝐴ℓ−1,𝑚−ℓ is the minimal

distance from 𝑣 to a single-peaked ranking 𝑢 in which 𝑐ℓ is the top

candidate. Thus, to get the overall smallest distance, we take the

minimum from all these values. □

Every vote in SPOC is single-peaked along the axis obtained

by “cutting” the cycle between some two adjacent candidates [33].

There are𝑚 such axes, hence we can run Algorithm 1 for each of

them and choose the minimum distance. This gives as an algorithm

running in time 𝑂 (𝑚3). We can improve that and get an 𝑂 (𝑚2)
algorithm by a similar dynamic programming algorithm as for SP.

Theorem 4.4. There is an algorithm that computes the swap dis-

tance between a given vote and SPOC in time 𝑂 (𝑚2).

We can also extend Algorithm 1 to work for the case of SP(𝑇 ),
where𝑇 is an SP-tree. If𝑇 has𝑘 leaves (i.e.,𝑘 nodes of degree 1), then

the algorithm requires𝑂 (𝑘𝑚𝑘 ) time. The main idea is to implement

dynamic programming over sets of connected vertices in𝑇 , of which

there are 𝑂 (𝑚𝑘 ).

Theorem 4.5. There is an algorithm that given an SP-tree that

has 𝑘 leaves, computes the swap distance between a given vote and

SP(𝑇 ) in time 𝑂 (𝑘𝑚𝑘 ).

Given the algorithms for SP, SPOC, and single-peaked-on-a-tree

domains, one could ask for a general polynomial-time algorithm

that works for all single-peaked-on-a-graph domains. We prove

that in this general case the problem is NP-complete.

Theorem 4.6. Given a graph 𝐺 , a vote 𝑣 ∈ L(𝑉 (𝐺)), and an

integer 𝑑 ∈ N, deciding if swap(𝑆𝑃 (𝐺), 𝑣) ≤ 𝑑 is NP-complete.

4.2 Group-Separable Domains
For a group-separable domain with an arbitrary tree, we show an

algorithm that computes the distance to a given vote in time𝑂 (𝑚2).
Assume we are given a vote 𝑣 and a group separable domain

𝐷 = GS(𝑇 ). Then, observe that finding vote 𝑢 ∈ 𝐷 that minimizes

swap(𝑢, 𝑣) is equivalent to reversing the order of some of the chil-

dren of each internal node of𝑇 so that the frontier𝑢 of𝑇 minimizes

swap(𝑢, 𝑣). Moreover, the change in distance we get by reversing

the order of the children of one particular node is independent of

the configuration of the other nodes. Hence, we can consider inter-

nal nodes of tree 𝑇 one by one, and for each decide in which of the

two ways its children should be ordered. Fix such an arbitrary node

with 𝑘 children, and let 𝐶1,𝐶2, . . . ,𝐶𝑘 denote the sets of candidates

associated with leaves that are descendants of each of the children,

when looking from left to right. This configuration would incur the

distance of: ∑
1≤𝑖< 𝑗≤𝑘 |{(𝑎, 𝑏) ∈ 𝐶𝑖 ×𝐶 𝑗 : 𝑏 ≻𝑣 𝑎}|,

while reversing the order gives the distance of:∑
1≤𝑖< 𝑗≤𝑘 |{(𝑎, 𝑏) ∈ 𝐶𝑖 ×𝐶 𝑗 : 𝑎 ≻𝑣 𝑏}|.



Thus, we compute the values of both sums and choose the configu-

ration that leads to the lower one (or make an arbitrary choice in

case of a tie). When considering all internal nodes of 𝑇 in this way,

we check each pair of candidates exactly once. Hence, the running

time of this algorithm is 𝑂 (𝑚2).

Theorem 4.7. There is an algorithm that given a GS-tree 𝑇 and a

vote 𝑣 , computes swap(GS(𝑇 ), 𝑣) in time 𝑂 (𝑚2).

For GS/bal and GS/cat, we give algorithms running in time

𝑂 (𝑚 log𝑚). Both algorithms follow the general approach outlined

above, but for GS/bal we speed up computing inversions using an

approach similar to that from the classic Merge Sort algorithm, and

for GS/cat we use a special data structure.

Theorem 4.8. There are algorithms that compute the swap dis-

tance between a given vote and GS/cat and GS/bal (represented via
GS-trees) in time 𝑂 (𝑚 log𝑚).

4.3 Single-Crossing and Euclidean Domains
Both single-crossing and Euclidean domains contain polynomially

many votes, so a brute-force algorithm that given a ranking 𝑣 com-

putes its swap distance to all the rankings in the domain runs in

polynomial time. For example, for SC, which contains 𝑂 (𝑚2) rank-
ings, it would run in time 𝑂 (𝑚3

√︁
log𝑚) [8]. However, as we typi-

cally want to compute the distance frommany votes to our domains,

we get better running times via appropriate preprocessing. Briefly

put, for each domain 𝐷 ∈ {SC, 1D-Int., 2D-Square, 3D-Cube} we
can arrange the rankings from these domains on a tree 𝑇 (𝐷)—or
even on a path, in case of 1D-Int. and SC—so that two neighboring

rankings are at swap distance one. Then, to compute a distance

from a given ranking 𝑣 to each member of the domain, we compute

the distance between 𝑣 and an arbitrary ranking in the domain, and

then traverse the tree, updating the distance on the fly, so for each

member of the domain we get its swap distance to 𝑣 . Building𝑇 (𝐷)
adds, at most, factor 𝑂 (𝑚2) to the complexity of computing the

rankings from the domain.

Theorem 4.9. For each 𝐷 that is either SC or a Euclidean domain,

there is an algorithm that given a ranking 𝑣 and tree 𝑇 (𝐷) computes

swap(𝐷, 𝑣) in time 𝑂 ( |𝐷 |).

5 Analysis of the Domains
Let us now analyze the outer diversity of our domains. We first con-

sider the case of 8 candidates, and then we analyze how the outer

diversities of our domains change as the number of candidates

grows. The case of 8 candidates is interesting for the following,

somewhat interrelated, reasons: (1) Faliszewski et al. [21] largely

focused on this case, and we want our results to be comparable to

theirs; (2) The case of 8 candidates is among the most popular ones

in experiments within computational social choice [7]; (3) Consid-

ering only 8 candidates allows us to perform exact computations.

5.1 Outer-Diversity for Eight Candidates
For each of our domains, in Table 2 we provide its size, average

normalized swap distance, outer diversity value, the number of

votes in L(𝐶) that are exactly at swap distance 1 from this domain

(we refer to this as the size of the direct neighborhood), and the latter

Table 2: Size, average normalized swap distance, outer di-
versity, and size of direct neighborhood (also normalized) of
various domains, for the case of 8 candidates. The standard
deviation of outer diversity for domains that we need to sam-
ple (SC, 1D-Int., 2D-Square, 3D-Cube) is no larger than 0.005
(for ten samples).

Domain 𝐷 |𝐷 | ansd(𝐷) out-div(𝐷) dist-1 dist-1/|𝐷 |
Vote+Its Rev. 2 0.384 0.232 14 7

GS/cat 128 0.194 0.613 704 5.5

GS/bal 128 0.257 0.486 384 3

SP 128 0.284 0.432 384 3

SP/DF 496 0.239 0.522 968 1.952

SPOC 512 0.196 0.608 1280 2.5

SC 29 0.316 0.368 130.3 4.493

1D-Int. 29 0.311 0.378 134.8 4.648

2D-Square 351 0.217 0.566 988.0 2.815

3D-Cube 2311 0.138 0.724 3878.2 1.678

Largest Cond. 224 0.282 0.435 544 2.429

number normalized by the size of the domain (we analyze these

values later on). Additionally, the table also includes LC domain, i.e.,

the largest Condorcet domain over 8 candidates, recently discovered

by Leedham-Green et al. [30]. Sorting our domains with respect to

their outer diversity values gives the following ranking:

3D-Cube

0.719
≻ {GS/cat

0.613
, SPOC

0.608
} ≻ 2D-Square

0.565
≻ SP/DF

0.522

≻ GS/bal
0.486

≻ { LC
0.435

, SP

0.432
} ≻ {1D-Int.

0.386
, SC
0.37
}.

It is quite interesting that even though LC is the largest Condorcet

domain over 8 candidates, its outer diversity is very similar to that

of SP, which contains nearly half of the votes, and it is notably

lower than outer diversities of GS/cat and GS/bal (both of the

same cardinality as SP). However, a closer analysis of this domain

confirms that it is not as diverse as one might expect given its size.

For example, there are only 4 candidates that are ever ranked first in

its votes, and 4 different candidate that are ever ranked last (indeed,

the domain has further restrictions along these lines, which we omit

due to limited space). Next, we note that our ranking is very similar

to an analogous one obtained by Faliszewski et al. [21] based on

inner diversity (also for the case of 8 candidates; note in their case

there are no specific values measuring diversity and the ranking

was obtained by comparing Kemeny vectors of the domains):

GS/cat ≻ 3D-Cube ≻ {2D-Square, SPOC}
≻ {SP/DF, GS/bal} ≻ SP ≻ {SC, 1D-Int.}.

Both rankings put 3D-Cube andGS/cat as themost diverse domains,

and they both put 1D-Int. and SC as the least diverse ones. Further,

they both rank domains from the same families identically: SPOC

is more diverse than SP/DF, which is more diverse than SP, and

GS/cat is more diverse than GS/bal (not to mention the ranking of

the Euclidean domains). The fact that 3D-Cube has higher outer

diversity than GS/cat, as well as the tie between GS/cat and SPOC,
are artifacts of considering only 8 candidates and for larger numbers

of candidates these relations change (see Section 5.2).



Below, we analyze two features of our domains that are not di-

rectly related to capturing diversity, but which manifest themselves

during outer diversity computations and which shed some light on

how our domains are arranged within the general domain.

5.1.1 Direct Neighborhoods The size of the direct neighborhood of

a domain, normalized by the sizes of this domains, is interesting as it

gives some intuition on how the domain is “spread” over L(𝐶). For
example, the domain that consists of a single ranking and its reverse

is “maximally spread:” Its two members are as far apart as possible

and, as we consider 8 candidates, there are exactly 7 rankings next

to each of the domain members, neither of which belongs to the

domain. Among our structured domains, GS/cat is the most spread

one, with the value of 5.5, and 3D-Cube is the least spread, with the

value of 1.678. Hence, members of 3D-Cube are packed quite closely

within L(𝐶). While one could think that this is a consequence of

3D-Cube’s large size, L(𝐶) contains more than 16 rankings for

every ranking in 3D-Cube. It is interesting that for some domains

the normalized sizes of their direct neighborhoods are appealing,

round numbers (such as 3 for GS/bal or 5.5 for GS/cat). For GS/bal
and GS/cat, we show that this is not a mere coincidence; for the

other domains we leave this issue open.

Proposition 5.1. Let 𝐷 be the GS/bal domain for𝑚 = 2
𝑘
can-

didates. For every ranking 𝑣 ∈ 𝐷 there are exactly 2
𝑘−1 − 1 unique

ones from L(𝐶) \ 𝐷 at swap distance 1 from 𝑣 .

Proposition 5.2. Consider GS/cat over𝑚 ≥ 4 candidates. For

every ranking 𝑣 ∈ GS/cat there are exactly𝑚 − 3 unique ones from
L(𝐶) \𝐷 at swap distance 1 from 𝑣 , and one ranking from L(𝐶) that
is at swap distance 1 from 𝑣 and one other ranking in GS/cat.

5.1.2 Popularity Given a domain 𝐷 ⊆ L(𝐶) and a ranking 𝑣 ∈ 𝐷 ,
we define its popularity, denoted pop(𝑣), as the number of rankings

from L(𝐶) for which 𝑣 is the closest member of 𝐷 (if for a given

ranking 𝑢 ∈ L(𝐶) there are 𝑝 members of 𝐷 that are closest to

𝑢, then 𝑢 contributes 1/𝑝 to the popularity of each of them). The

average popularity of a ranking in |𝐷 | is equal to | L (𝐶 ) |/|𝐷 | and by

normalized popularity of a ranking 𝑣 we mean the ratio between its

popularity and this value. Namely, we have npop(𝑣) = pop(𝑣)
|𝐿 (𝐶 ) |/|𝐷 | .

Popularity gives hints on both the internal symmetry of a domain,

and the arrangement of its rankings in L(𝐶). Indeed, the more

uniform are the popularity values of the rankings, the more likely

it is that they are symmetrically spread within L(𝐶). On the other

hand, a mixture of high and low popularity values suggests that the

more popular rankings are on the “outskirts” of the domain, and the

less popular ones belong to its “interior.” We show the normalized

popularities of the rankings in our domains in Figure 1, on the

microscope plots of Faliszewski et al. [17].

Remark 5.1. Let 𝐷 be a domain. A microscope plot of 𝐷 presents

each ranking from the domain as a dot, whose Euclidean distance

from the other dots is as similar to the swap distance between the re-

spective rankings as possible (exact correspondence between Euclidean

distances and swap distances is, typically, impossible to achieve, but

microscopes still give useful intuitions).

The plots show some remarkable features of our domains. The

first observation is that for both GS/bal and GS/cat, all rankings

have equal popularity, equal to the expected one. Indeed, this is a

general feature of group separable domains.

Proposition 5.3. Let 𝐷 = GS(𝑇 ) be a group separable domain

over candidate set 𝐶 . Then, for each 𝑣 ∈ GS(𝑇 ), npop(𝑣) = 1.

The other domains show a high variance in popularity among

their members. For example, the most popular rankings in SP are

the societal axis and its reverse, whereas most rankings in between

these two have low popularity. Overall, group-separable domains

are perfectly symmetric and clearly stand out.

5.2 Outer Diversity for Larger Candidate Sets
When considering more than eight candidates, we compute outer

diversity using the sampling approach, with sample size 𝑁 = 1000

(see Section 4). For each domain, we repeat this computation 10

times, to also obtain standard deviation (it is so small as to be nearly

invisible on our plots, which justifies the use of sampling).

In Figure 3, we show how the outer diversity of our domains

evolves as a function of the number 𝑚 of candidates, for 𝑚 ∈
{2, 3, . . . , 20}. In particular, we note that the outer diversity of

polynomially-sized Euclidean domains drops much more rapidly

than that of the other, exponential-sized, ones. It is also notable how

SPOC becomes less diverse than GS/cat (for 9 candidates or more)

and how GS/cat becomes the most diverse among our domains

(for 12 candidates or more). Further, GS/cat is consistently more

diverse than GS/bal. As these two domains are extreme among

the group-separable ones (one uses the tallest binary GS-tree and

the other one the shortest), we ask if GS/cat is the most diverse

group-separable domain and GS/bal is the least diverse one.
It is interesting if outer diversity of our domains eventually

approaches zero, or if it stays bounded away from it. As shown

below, the former happens, e.g., if the size of the domain is bounded

by a constant, whereas the latter happens, e.g., for GS/cat. Hence,
outer diversity of a domain may be bounded away from zero even if

its size grows notably more slowly than that of the general domain

(as a function of the number of candidates).

Proposition 5.4. Let us fix value 𝑘 and let 𝐷2, 𝐷3, . . . be a se-

quence of domains, where each 𝐷𝑚 contains at most 𝑘 rankings over

𝑚 candidates. Then lim𝑚→∞ out-div(𝐷𝑚) = 0.

Proposition 5.5. If the number of candidates is even, then

out-div(GS/cat) > 1/2.

Proof. Take a GS/cat domain for candidate set𝐶 = {𝑐1, . . . , 𝑐𝑚},
where𝑚 is even, defined via binary caterpillar tree where the leaf

closest to the root is 𝑐1, the next one is 𝑐2, and so on.

Let 𝑣 be some arbitrary ranking from L(𝐶). To transform it into

a member of GS/cat we can, for example, sort its top half in the

increasing order of the candidate indices, and sort the bottom half

in the decreasing order of candidate indices. As shown by Boehmer

et al. [6], ensuring that candidate indices first increase and then

decrease is a necessary and sufficient condition for a ranking to

belong to GS/cat. The number of swaps needed to implement such

sorting in the top half of the ranking is equal to the number of

inversions there. Since the expected number of inversions in a

random permutation is
1

4
𝑛(𝑛 − 1), when considering all votes from

L(𝐶), on average we need to perform 1

4
(𝑚/2) (𝑚/2−1) = 1

16
𝑚(𝑚−



Figure 1: Microscope plots of our domains, where each dot/cross represents a ranking from the domain, colored according to
its normalized popularity (see Remark 5.1). Rankings with normalized popularity below 1 are marked with crosses, and the
remaining ones with dots. Dots marking rankings with normalized popularity equal to exactly 1 have a black border.

Figure 2: Outer diversity of several structured domains as
a function of the number of candidates (on the left), or as a
function of their size (on the right; including approximations
of most diverse domains). For SPOC and 3D-Cube, we omit
outer diversity for 20 candidates, due to computation time.

2) swaps in their top halves, and the same number of swaps in their

bottom halves. Altogether, we need to perform
1

8
𝑚(𝑚−2) swaps per

ranking in L(𝐶), so we have ansd(GS/cat) ≤ 𝑚 (𝑚−2)/8
𝑚 (𝑚−1)/2 =

1

4
· 𝑚−2𝑚−1 .

This means that we have out-div(GS/cat) ≥ 1 − 1

2
· 𝑚−2𝑚−1 > 1

2
. □

6 Most Diverse Domains
Given a number 𝑘 , we ask for a domain of 𝑘 rankings with the

highest outer diversity value. As per our observation in Section 3,

we can compute such a domain by solving the 𝑘-Kemeny problem

for the UN election using, e.g., integer linear programming (ILP).
1

Unfortunately, solving this ILP is challenging, as its size for 𝑚

candidates is Θ((𝑚!)2). Hence, for 𝑚 ≥ 6 we use the following

heuristics (to compute the outer diversity of the domains produced

by them, we use the sampling approach, with 𝑁 = 1000 samples):

(1) We sample 𝑘 rankings uniformly at random from L(𝐶) (this
is known as sampling from impartial culture, IC).

(2) We sample 𝑘 rankings from IC and perform simulated an-

nealing (technical details available in the Appendix D.1).

1
Finding𝑘 rankings that achieve the optimal𝑘-Kemeny score forUN can be formulated

as the 𝑘-Median clustering applied on the metric space of all possible rankings under

the swap distance. We use the standard ILP formulation for this problem.

Figure 3: Outer diversity of several structured domains as a
function of the number of candidates, compared to the outer
diversity of (an approximation of) the most diverse domain
of the same size.

We also use a heuristic that does not allow us to control the size of

the domain, but selects rankings that are spread out over L(𝐶):
(3) We choose a threshold 𝑡 ∈ {5, 6, . . . , 25} and keep on sam-

pling rankings from IC (altogether 10
4
of them), keeping only

those whose swap distance from the closest already-kept one

is greater or equal to 𝑡 .

Instead of using this heuristic, we would rather keep on selecting

rankings that are at the largest possible swap distance from those

previously selected, but finding such rankings is NP-complete.

Theorem 6.1. Given a positive integer 𝑡 and a domain 𝐷 ⊆ L(𝐶),
represented by explicitly listing its rankings, deciding if there is a

ranking 𝑣 such that min𝑢∈𝐷 swap(𝑢, 𝑣) ≥ 𝑡 is NP-complete.

On the plots, we denote domains computed using the first heuris-

tic as IC, those computed using simulated annealing as ~Max, and

those using the threshold approach as Thres.-IC. In Figure 2 (right)

we show how the outer diversities of these domains for the case

of𝑚 = 8 candidates, as we increase 𝑘 (for the first two heuristics)

or decrease 𝑡 (for the third one). We see that for each given size of

the domain, all three heuristics produce very similar results. We

interpret this as suggesting that, indeed, we get close to the highest

possible diversities. For the case of 6 candidates we also compared

our heuristically computed domains to the optimal ones, obtained

using ILP, and the results were nearly identical (see Appendix D.1).

Figure 2 (right) also includes points corresponding to our structured

domains, illustrating how far off they are from the most diverse

domains of their size.

In Figure 3, for each domain 𝐷 ∈ {SC, GS/cat, GS/bal, SP,
2D-Square}, we plot the outer diversity of this domain and the

outer diversity of the most diverse domain of size |𝐷 | (as computed

using our second heuristic) as a function of the number of candi-

dates (for up to 16 of them, as beyond this number computations



proved too intensive). In particular, we see that for polynomial-sized

domains (SC and 2D-Square), the diversity of the most diverse do-

mains seems to be dropping up to 16 candidates. In contrast, for SP,

GS/bal, and GS/cat, which are all of size 2
𝑚−1

, the outer diversity

of the most diverse domain seems to stabilize around the value 0.7

(indeed, by Proposition 5.5, we know that it cannot go below 0.5;

proving a stronger bound would be interesting).

7 Conclusions
Our main conclusion is that outer diversity is a useful, practical

measure of domain diversity. Using it, we have found that GS/cat
sharply stands out from many other structured domains in various

respects and, so, we recommend its use in experiments. Throughout

the paper, we have made a number of observations, and we have

explained some of them theoretically. We propose seeking such

explanations for the remaining observations as future work.
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Algorithm 2 Computing outer diversity by BFS

Input: Domain 𝐷 over candidate set 𝐶 = {𝑐1, . . . , 𝑐𝑚}
1: 𝐷0 ← 𝐷 , 𝑖 ← 0

2: while
⋃𝑖
𝑗=0 𝐷𝑖 ≠ L(𝐶) do

3: 𝐷𝑖+1 = ∅
4: for 𝑣 ∈ 𝐷𝑖 do
5: for 𝑢 such that swap(𝑢, 𝑣) = 1 do
6: if 𝑢 ∉

⋃𝑖
𝑗=0 𝐷 𝑗 : 𝐷𝑖+1 ← 𝐷𝑖 ∪ {𝑢}

7: 𝑖 ← 𝑖 + 1
8: return 1 − 2( 1

𝑚!

∑𝑖
𝑗=0 𝑗 · |𝐷 𝑗 |)

A Missing Proof for Section 3
Proposition 3.2. For every domain 𝐷 ⊆ L(𝐶), it holds that

ansd(𝐷) = min𝐸 is a 𝐷-election
𝑑swap (UN, 𝐸)/

(𝑚
2

)
.

Proof. Fix election 𝐸 = (𝐶,𝑉 ) yielding the minimal distance.

Without loss of generality, we can assume that the number of votes

in 𝑉 is a multiple of𝑚!, i.e., 𝑉 = {𝑣1, . . . , 𝑣𝑘 ·𝑚!
} for some 𝑘 ∈ N,

because creating 𝑘 additional copies of all votes does not affect

the isomorphic swap distance. Let 𝑢1, . . . , 𝑢𝑘 ·𝑚!
be copies of voters

in UN as denoted in Definition 2.1 and 𝜋 : [𝑘 ·𝑚!] → [𝑘 ·𝑚!]
be a matching of voters yielding the minimum distance. We can

assume that the matching of candidates, 𝜎 , is the identity since for

the distance to UN every matching of candidates gives the same

sum of distances.

Observe that swap(𝑢𝑖 , 𝑣𝜋 (𝑖 ) ) = swap(𝐷,𝑢𝑖 ), for every 𝑖 ∈ [𝑘 ·𝑚!]
as otherwise 𝑑swap (UN, 𝐸) could be decreased by exchanging 𝑣𝜋 (𝑖 )
for 𝑣 yielding the minimum and keeping all other voters as is. This

also implies that for each 𝑖 ∈ [𝑚!] and ℓ ∈ [𝑘 − 1], we have

swap(𝑢𝑖 , 𝑣𝜋 (𝑖 ) ) = swap(𝑢𝑖+ℓ ·𝑚!, 𝑣𝜋 (𝑖+ℓ ·𝑚!) ) . Then, we get∑
𝑟 ∈L(𝐶 ) swap(𝐷, 𝑟 ) =

∑
𝑖∈[𝑚!] swap(𝐷,𝑢𝑖 )

=
∑
𝑖∈[𝑚!] swap(𝑢𝑖 , 𝑣𝜋 (𝑖 ) )

= 1

𝑘

∑
𝑖∈[𝑘 ·𝑚!] swap(𝑢𝑖 , 𝑣𝜋 (𝑖 ) )

=𝑚! · 𝑑swap (𝐸,UN),
which yields the thesis. □

B Additional Material for Section 4
In this appendix, we provide further details on algorithmic tech-

niques for establishing outer diversity of given domains.

Our exact algorithm, given as Algorithm 2 proceeds as follows:

Given domain 𝐷 , we form a sequence of sets, 𝐷0, 𝐷1, . . ., such that

for each 𝑖 , 𝐷𝑖 contains rankings that are at swap distance 𝑖 from 𝐷 .

For each 𝑖 , we compute𝐷𝑖+1 by considering all the votes that can be

obtained from those in 𝐷𝑖 by a single swap of adjacent candidates,

and include in 𝐷𝑖+1 those that do not belong to

⋃𝑖
𝑗=0 𝐷𝑖 . Given 𝐷0,

𝐷1, . . ., we compute ansd(𝐷) as the weighted sum of their sizes, and

out-div(𝐷) as 1 − 2ansd(𝐷). Fast implementation requires storing

each 𝐷𝑖 individually, as well as the growing union of these sets, for

increasing values of 𝑖 .

Proposition 4.1. There is an algorithm that given domain 𝐷

over 𝑚 candidates (represented by listing its members), computes

out-div(𝐷) in time 𝑂 (𝑚2 ·𝑚!).

Proof. We use Algorithm 2, whose correctness follows directly

from the definitions of ansd(𝐷) and out-div(𝐷). In line 6 of the

algorithm, for each vote 𝑣 ∈ L(𝐶) we consider all𝑚 − 1 votes 𝑢
obtained from 𝑣 by a single swap of adjacent candidates, resulting in

𝑂 (𝑚 ·𝑚!) memberships checks. Rankings from

⋃𝑖
𝑗=0 𝐷 𝑗 are stored

in a trie (prefix tree), which allows 𝑂 (𝑚)-time membership checks

and insertions. For the current iteration 𝑖 , we store only sets 𝐷𝑖 and

𝐷𝑖+1 (each taking 𝑂 (𝑚 ·𝑚!) space) while retaining the values |𝐷 𝑗 |
for 𝑗 < 𝑖 . Hence, the computational bottleneck is line 6 executed

𝑂 (𝑚 ·𝑚!) times, each taking 𝑂 (𝑚) time, leading to a total running

time of 𝑂 (𝑚2 ·𝑚!). □

Theorem 4.2. Let 𝐷 be the 4-alignment domain. Given vote 𝑣 and

integer 𝑑 ∈ N it is NP-complete to decide whether swap(𝐷, 𝑣) ≤ 𝑑 .

Proof. The verification is straightforward. Given the vote in

𝐷 that yields the closest distance to 𝑣 , we can check whether this

distance is larger than 𝑑 in polynomial time.

To show hardness, we give a reduction from KemenyOn4Votes.

In this problem we are given a candidate set 𝐶 = {𝑐1, . . . , 𝑐𝑚},
four votes 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ L(𝐶), and an integer 𝑑 ∈ N, and we ask

whether there exists a ranking 𝑢 ∈ L(𝐶) for which it holds that∑
𝑖∈[4] swap(𝑣𝑖 , 𝑢) ≤ 𝑑 . This is known to be NP-complete [4, 11].

Now, for each instance of KemenyOn4Votes, let us construct

an instance of our problem. To this end, let 𝐶′ = {𝑐𝑖, 𝑗 : 𝑖 ∈ [4], 𝑗 ∈
[𝑚]} and let 𝑣 ∈ L(𝐶′) be a concatenation of votes 𝑣1, 𝑣2, 𝑣3, and 𝑣4,
i.e., 𝑐𝑖, 𝑗 ≻𝑣 𝑐𝑖′, 𝑗 ′ , if and only if, 𝑖 < 𝑖′ or 𝑖 = 𝑖′ and 𝑐 𝑗 ≻𝑣𝑖 𝑐 𝑗 ′ . Also,
for every ranking 𝑢 ∈ L(𝐶) let 𝑓 (𝑢) denote a ranking in L(𝐶′)
that is a concatenation of 4 copies of 𝑢, i.e., 𝑐𝑖, 𝑗 ≻𝑓 (𝑢 ) 𝑐𝑖′, 𝑗 ′ , if and
only if, 𝑖 < 𝑖′ or 𝑖 = 𝑖′ and 𝑐 𝑗 ≻𝑢 𝑐 𝑗 ′ . Then, 4-agreement domain

can be alternatively written as 𝐷 = {𝑓 (𝑢) : 𝑢 ∈ L(𝐶)}. Moreover,

swap(𝑣, 𝑓 (𝑢)) = ∑
𝑖∈[4] swap(𝑣𝑖 , 𝑢), for each 𝑢 ∈ L(𝐶). Therefore,

indeed, there exists 𝑢 ∈ L(𝐶) such that

∑
𝑖∈[4] swap(𝑣𝑖 , 𝑢) ≤ 𝑑 , if

and only if, swap(𝐷, 𝑣) ≤ 𝑑 . □

Next, following the sampling approach, we give detailed descrip-

tions for computing a distance between a given vote 𝑣 and domain

𝐷 , where 𝐷 is either SPOC, SP(𝑇 ), GS/cat, GS/bal, SC, or Euclidean
domain.

B.1 Algorithms for Single-Peaked Domains
Assume we are given a vote 𝑣 and single-peaked-on-a-cycle domain

with cycle (𝑐1, . . . , 𝑐𝑚). For convenience, we will sometimes allow

candidate indices to go over𝑚 and treat them as if they cycle over,

i.e., 𝑐𝑖+𝑚 = 𝑐𝑖 for each 𝑖 ∈ [𝑚].
For each 𝑖 ∈ [𝑚] and 𝑗 ∈ {0, 1, . . . ,𝑚 − 1}, let 𝐶𝑖,𝑖+𝑗 denote

the set of candidates {𝑐𝑖 , 𝑐𝑖+1, . . . , 𝑐𝑖+𝑗 } that form an interval in the

cycle. Then, let 𝑈𝑖,𝑖+𝑗 be a subset containing all votes 𝑢 that rank

candidates from𝐶𝑖,𝑖+𝑗 as top 𝑗 +1 candidates and for each 𝑡 ∈ [ 𝑗 +1]
the first 𝑡 candidates in 𝑢 form an interval in the cycle. Also, let

𝐴𝑖,𝑖+𝑗 denote the minimum swap distance from 𝑣 to a vote in𝑈𝑖,𝑖+𝑗 .
These can be efficiently computed using Algorithm 3.

Theorem B.1. Algorithm 3 computes the distance between a given

vote and a single-peaked-on-a-circle domain in time 𝑂 (𝑚2).

Proof. For the running time, we observe that the loops in Al-

gorithm 3 are at most 2-nested, over at most𝑚 elements, and each

individual iteration runs in time 𝑂 (1). The final minimum in line

14 runs in time 𝑂 (𝑚), but it is not part of any loop.



Algorithm 3 Distance between a ranking and SPOC

Input: Vote 𝑣 ∈ L(𝐶), societal axis 𝑐1 ▷ · · · ▷ 𝑐𝑚
Phase 1, Precomputation:

1: for 𝑖 ∈ [𝑚] do 𝑐𝑖+𝑚 ← 𝑐𝑖
2: for 𝑖 ∈ [𝑚] do
3: 𝐿𝑖,𝑖 ← 0, 𝑅𝑖+𝑚,𝑖 ← 0

4: for 𝑗 ∈ [𝑚 − 1] do 𝐿𝑖,𝑖+𝑗 ← 𝐿𝑖,𝑖+𝑗−1 + [𝑐𝑖+𝑗 ≻𝑣 𝑐𝑖 ]
5: for 𝑗 ∈ [𝑚 − 𝑖 − 1] do 𝐿𝑖+𝑚,𝑖+𝑚+𝑗 ← 𝐿𝑖,𝑖+𝑗
6: for 𝑗 ∈ [𝑚 − 1] do 𝑅𝑖+𝑚− 𝑗,𝑖 ← 𝑅𝑖+𝑚− 𝑗+1,𝑖 + [𝑐𝑖+𝑚− 𝑗 ≻𝑣 𝑐𝑖 ]

Phase 2, Main Computation:

7: for 𝑖 ∈ [𝑚] do 𝐴𝑖,𝑖 ← 𝐿𝑖,𝑖+𝑚−1, 𝐴𝑚+𝑖,𝑚+𝑖 ← 𝐴𝑖,𝑖
8: for 𝑟 ∈ [𝑚 − 2] do
9: for 𝑖 ∈ [2𝑚 − 𝑟 ] do
10: 𝐴𝑖,𝑖+𝑟 ← min(𝐴𝑖,𝑖+𝑟−1 + 𝐿𝑖+𝑟,𝑖+𝑚−1, 𝐴𝑖+1,𝑖+𝑟 + 𝑅𝑖+𝑟+1,𝑖 )
11: return min𝑖=[𝑚] 𝐴𝑖,𝑖+𝑚−2

For the correctness, similarly as in the proof of Theorem 4.3, we

first note that for each 𝑖 ∈ [𝑚], 𝑟 ∈ {0, . . . ,𝑚 − 1} in 𝐿𝑖,𝑖+𝑗 we store
the number of candidates in {𝑐𝑖 , 𝑐𝑖+1, . . . , 𝑐𝑖+𝑗 } that are preferred
over 𝑐𝑖 in 𝑣 (in Algorithm 1 we counted the number of candidates

that are less preferred than 𝑐𝑖 , here it is reversed). Analogously, in

𝑅𝑖+𝑚− 𝑗,𝑖 , we store the number of candidates preferred over 𝑐𝑖 from

{𝑐𝑖+𝑚− 𝑗 , 𝑐𝑖+𝑚− 𝑗+1, . . . , 𝑐𝑖+𝑚} (note that it is also an interval). We

can efficiently compute both sets of numbers recurrently.

For every 𝑖 ∈ [𝑚], 𝑈𝑖,𝑖 is just the set of all votes that have 𝑐𝑖 as
the top candidate. Thus, 𝐴𝑖,𝑖 is just a number of candidates that are

preferred over 𝑐𝑖 in 𝑣 , which is what is stored in 𝐿𝑖,𝑖+𝑚−1 (see line
7 of Algorithm 3).

For 𝑖 ∈ [𝑚] and 𝑟 ∈ [𝑚 − 1], we compute values of 𝐴𝑖,𝑖+𝑟 using
a recursive formula in line 10, in a similar way to how it was done

in Algorithm 1. Let𝑈𝑖,𝑖+𝑟 be a subset of votes in𝑈𝑖+1,𝑖+𝑟 that addi-
tionally have 𝑐𝑖 at the position 𝑟 + 1. Similarly, let𝑈𝑖,𝑖+𝑟 be a subset
of votes in𝑈𝑖,𝑖+𝑟−1 with 𝑐𝑖+𝑟 at the position 𝑟 + 1. Since every vote

in𝑈𝑖,𝑖+𝑟 has candidates {𝑐𝑖 , 𝑐𝑖+1, . . . , 𝑐𝑖+𝑟 } at the first 𝑟 + 1 positions
and the first 𝑟 candidates form an interval in the cycle, it must be

𝑐𝑖 or 𝑐𝑖+𝑟 in the position 𝑟 + 1. Thus,𝑈𝑖,𝑖+𝑟 = 𝑈𝑖,𝑖+𝑟 ∪𝑈𝑖,𝑖+𝑟 . Hence,
𝐴𝑖,𝑖+𝑟 = min(min𝑢∈𝑈𝑖,𝑖+𝑟 swap(𝑣,𝑢),min𝑢∈𝑈𝑖,𝑖+𝑟 swap(𝑣,𝑢)) .

Fix a vote 𝑢 ∈ 𝑈𝑖,𝑖+𝑟 minimizing swap(𝑣,𝑢). Observe that the
last𝑚 − 𝑟 − 1 candidates in 𝑢 have to appear in exactly the same

order as they appear in 𝑣 . Let 𝑢′ be obtained from 𝑢 by arranging

𝑚 − 𝑟 last candidates in this way (so we additionally relocate 𝑐𝑖 ).

Observe that 𝑢′ minimizes the swap distance to 𝑣 among votes

in 𝑈𝑖+1,𝑖+𝑟 , i.e., 𝐴𝑖+1,𝑖+𝑟 = swap(𝑢′, 𝑣). Moreover, the difference

between swap(𝑢, 𝑣) and swap(𝑢′, 𝑣) is the number of candidates

outside of {𝑐𝑖+1, . . . , 𝑐𝑖+𝑟 } that are preferred over 𝑐𝑖 . Observe that

𝐶 \ {𝑐𝑖+1, . . . , 𝑐𝑖+𝑟 } = {𝑐𝑖+𝑟+1, . . . , 𝑐𝑖+𝑚}. Therefore, we get that

swap(𝑢, 𝑣) = 𝐴𝑖+1,𝑖+𝑟 + 𝑅𝑖+𝑟+1,𝑖 . Analogously, we can prove that

min𝑢∈𝑈𝑖,𝑖+𝑟 swap(𝑣,𝑢) = 𝐴𝑖,𝑖+𝑟−1 + 𝐿𝑖+𝑟,𝑖+𝑚−1. This yields the re-
cursive equation from line 10.

Finally, observe that for each 𝑖 ∈ [𝑚], the set𝑈𝑖,𝑖+𝑚−2 contains
all single-peaked-on-a-circle votes that have candidate 𝑐𝑖+𝑚−1 at
the bottom of the ranking. Thus, taking theminimum of distances to

each such vote we get the minimum distance to any single-peaked-

on-a-circle vote. □

We can also extend Algorithm 1 to work on arbitrary tree with

𝑘 leaves in time 𝑂 (𝑘𝑚𝑘 ). The pseudocode is summarized in Algo-

rithm 4.

Theorem B.2. Algorithm 4 computes the distance between a given

vote and a single-peaked-on-a-tree domain in time 𝑂 (𝑘𝑚𝑘 ).

Proof. Let us fix such tree 𝐺 on a set of candidates 𝐶 and a

given vote 𝑣 . Let S = (𝑆1, 𝑆2, . . . , 𝑆ℓ ) be a sequence of subsets of 𝐶
such that each 𝑆 ∈ S, if and only if, 𝑆 is nonempty and connected

in 𝐺 , and for each 𝑖, 𝑗 ∈ [ℓ], we have that 𝑆𝑖 ⊇ 𝑆 𝑗 only if 𝑖 < 𝑗 .

In particular, this means that 𝑆1 = 𝐶 . Observe that the length of

the sequence S is bounded by 𝑂 (𝑚𝑘 ), as each connected subset

of 𝐶 can be uniquely identified by how far away from each leaf is

the closest node from 𝑆 (and the maximal value of such distance

is bounded by𝑚). We can also compute such sequence S in time

𝑂 (𝑚𝑘 ) by checking each possible 𝑘-tuple of such distances starting

from the smallest ones.

Then, for each 𝑆 ∈ S by 𝑋𝑆 ⊆ 𝑆 let us denote the set of nodes in

𝑆 that are leafs in the subgraph induced by 𝑆 (note that there are at

most 𝑘 of them). Furthermore, for each such 𝑥 ∈ 𝑋𝑆 we denote the

number of candidates in 𝑆 over which 𝑥 is preferred in 𝑣 by

𝐼𝑥,𝑆 = |{𝑐 ∈ 𝑆 : 𝑐 ≻𝑣 𝑥}|.
This corresponds to values 𝐿𝑖, 𝑗 and 𝑅𝑖, 𝑗 used in Algorithm 1. We

can compute all of them in time 𝑂 (𝑘𝑚𝑘 ) in the reversed order to

that in sequence S. This is since for each other leaf 𝑦 ∈ 𝑋𝑆 \ {𝑥}, it
holds that 𝐼𝑥,𝑆 = 𝐼𝑥,𝑆\{𝑦} + [𝑥 ≻𝑣 𝑦] .

Next, for each 𝑆 ∈ S we define𝑈𝑆 as a set of all votes 𝑢 ∈ L(𝐶)
in which candidates 𝐶 \ 𝑆 are in the last positions and for each

𝑡 ∈ [𝑚] \ [|𝑆 |], the first 𝑡 candidates in 𝑢 form a connected subset

in 𝐺 . Also, we denote 𝐴𝑆 = min𝑢∈𝑈𝑆
swap(𝑢, 𝑣).

Clearly, 𝐴𝑆1 = 0 as 𝑆1 = 𝐶 , thus 𝑈𝐶 = L(𝐶). For each

𝑆 ∈ (𝑆2, . . . , 𝑆ℓ ), we compute 𝐴𝑆 recursively, similarly to how we

computed 𝐴𝑙,𝑟 in Algorithm 1. Let 𝑌𝑆 ⊆ 𝑆 be a subset of nodes in
𝐶 \ 𝑆 that are connected to some node in 𝑆 (again, there are at most

𝑘 of them). Then, for each 𝑦 ∈ 𝑌𝑆 , we can denote𝑈𝑆,𝑦 as a subset of

votes in𝑈𝑆∪{𝑦} that have 𝑦 in the position |𝑆 | + 1. Since every vote

in𝑈𝑆 has to have one of the nodes in𝑌𝑆 in the position |𝑆 |+1, we get
that𝑈𝑆 =

⋃
𝑦∈𝑌𝑆 𝑈𝑆,𝑦 . Thus, 𝐴𝑆 = min𝑦∈𝑌𝑆 min𝑢∈𝑈𝑆,𝑦

swap(𝑢, 𝑣).
Then, as in the proof of Theorem 4.3, we can show that

min

𝑢∈𝑈𝑆,𝑦

swap(𝑢, 𝑣) = 𝐴𝑆∪{𝑦} + 𝐼𝑦,𝑆∪{𝑦} .

To this end, take 𝑢 ∈ 𝑈𝑆,𝑦 minimizing swap(𝑢, 𝑣) and observe

that in 𝑢 the first |𝑆 | candidates are in the same order in which

they appear in 𝑣 . Let 𝑢′ be a vote obtained from 𝑢 by having the

first |𝑆 | + 1 candidates ordered according to 𝑣 (i.e., candidate 𝑦 is

relocated). Then, 𝑢′ actually minimizes swap(𝑢, 𝑣) in𝑈𝑆∪{𝑦} (the
first |𝑆 | +1 candidates are in the optimal order, and if reordering the

last𝑚 − |𝑆 | − 1 candidates was possible, it would also be possible

to reorder them in that way in 𝑢 decreasing the distance). Finally,

swap(𝑢, 𝑣) − swap(𝑢′, 𝑣) is the number of candidates from 𝑆 which

are less preferred by 𝑣 than 𝑦, which is what we store in 𝐼𝑦,𝑆∪{𝑦} .
Observe that in this way, we have computed 𝐴𝑆 for each single-

ton set 𝑆 = {𝑐} with 𝑐 ∈ 𝐶 . In𝑈{𝑐 } we have all votes in the domain

that start with 𝑐 . Thus, taking the minimum over 𝐴{𝑐 } for all 𝑐 ∈ 𝐶
we get the minimum distance in question. □



Algorithm 4 Distance between a ranking and SP(𝐺), where𝐺 is a

tree

Input: Vote 𝑣 ∈ L(𝐶), tree 𝐺 with 𝐶 as nodes

Phase 1, Precomputation:

1: S = (𝑆1, · · · , 𝑆ℓ ) ← a sequence of subsets of 𝐶 , such that:

𝑆 ∈ S ⇔ 𝑆 ≠ ∅ and 𝑆 connected in 𝐺

𝑆𝑖 ⊇ 𝑆 𝑗 ⇒ 𝑖 < 𝑗

2: for 𝑆 ∈ (𝑆ℓ , 𝑆ℓ−1, . . . , 𝑆1) do
3: 𝑋𝑆 ← leaves in graph induced by 𝑆

4: for 𝑥 ∈ 𝑋𝑆 do
5: if 𝑆 = {𝑥} then
6: 𝐼𝑥,𝑆 ← 0

7: else
8: 𝑦 ← arbitrary node from 𝑋𝑆 \ {𝑥}
9: 𝐼𝑥,𝑆 = 𝐼𝑥,𝑆\{𝑦} + [𝑥 ≻𝑣 𝑦]

Phase 2, Main Computation:

10: 𝐴𝑆1 ← 0

11: for 𝑆 ∈ (𝑆2, . . . , 𝑆ℓ ) do
12: 𝑌𝑆 ← nodes in 𝐶 \ 𝑆 connected to 𝑆

13: 𝐴𝑆 ← min𝑦∈𝑌𝑆 (𝐴𝑆∪{𝑦} + 𝐼𝑦,𝑆∪{𝑦} )
14: return min𝑐∈𝐶 𝐴{𝑐 }

B.2 Algorithms for Group-Separable Domains
Now, let us look at the specific cases of GS/bal and GS/cat. Let as

consider GS/cat first, and let 𝑣 be the ranking whose swap distance

from GS/cat we want to compute. We use an algorithm very similar

to the general one, but processing the internal nodes in the de-

creasing order of their distance from the root, and using additional

data structures. Namely, when we consider an internal node whose

children are a leaf associated with some candidate 𝑐 and a subtree

whose leaves hold candidates from the set 𝐶′ = {𝑐′
1
, . . . , 𝑐′𝑡 }, then

we assume that we also have a data structure that for each 𝑐′
𝑖
∈ 𝐶

holds the position that 𝑐′
𝑖
has in 𝑣 . We require that it is possible to

insert positions into this data structure in time 𝑂 (log𝑚) and that

this data structure can also answer in 𝑂 (log𝑚) time how many

of the positions that it stores are earlier in 𝑣 than a given one (so,

this data structure can be, e.g., a classic red-black tree, annotated

with sizes of its subtrees [9]). Now, we can simply query the data

structure for the number inv of candidates in 𝐷 that are ranked

ahead of 𝑑 (i.e., whose position is smaller than pos𝑣 (𝑑)). This is the
number of inversions imposed by the current node in case we order

its children, so that in the frontier we have {𝑑} ≻ 𝐶′. 𝑡 − inv is the

number of inversions imposed in the reversed configuration. We

implement the configuration that leads to fewer inversions (or we

choose one arbitrarily in case of a tie), we insert pos𝑣 (𝑑) into the

data structure, and we proceed to the parent node of the current one

(or terminate, in case the current node was a root). The correctness

follows from the correctness of the general algorithm. The running

time follows from the fact that the tree has 𝑂 (𝑚) internal nodes,
and for each of them we need time 𝑂 (log𝑚).

Theorem B.3. There is an algorithm that computes the distance

between a given vote and GS/cat (represented via a GS-tree) in time

𝑂 (𝑚 log𝑚).
In case of GS/bal, we proceed similarly as in the classic Merge

Sort algorithm. Let𝑇 be a balanced GS-tree and let 𝑣 be the ranking

under consideration. As above, our algorithm manipulates the or-

dering of the children of each node, to obtain a tree whose frontier

𝑢 minimizes swap(𝑢, 𝑣). We use a recursive procedure that given

an internal node 𝑧 with two children, 𝑧ℓ on the left and 𝑧𝑟 on the

right, such that 𝐴 = {𝑎1, . . . , 𝑎𝑥 } is the set of candidates associated
with the leaves of the tree rooted at 𝑧ℓ and 𝐵 = {𝑏1, . . . , 𝑏𝑦} is the
set of candidates associated with the leaves of the tree rooted at 𝑧𝑟 ,

proceeds as follows:

(1) It calls itself recursively on 𝑧ℓ and 𝑧𝑟 (unless a given subtree

is a leaf). These calls order the children within the respec-

tive subtrees to minimize the number of inversions between

the candidates in 𝐴 and 𝑣 and between the candidates in 𝐵

and 𝑣 . Additionally, they return rankings 𝑣𝐴 and 𝑣𝐵 that are

equal to 𝑣 restricted to 𝐴 and 𝐵, respectively. Without loss

of generality, we assume that 𝑣𝐴 orders the candidates in 𝐴

according to their indices, and so does 𝑣𝐵 for the candidates

in 𝐵

(2) We perform the “merge” step, to decide whether to reverse

the order of children of 𝑧 and to obtain 𝑣𝐴∪𝐵 (i.e., 𝑣 restricted

to the candidates in 𝐴 ∪ 𝐵). We first consider the case where

we do not reverse the order of 𝑧’s children. Initially, we set

the number of inversions between to be 0 and, then, we fill-in

𝑣𝐴∪𝐵 from the top position to the bottom one, by considering

the prefixes of 𝑣𝐴 and 𝑣𝐵 . Suppose that we have already filled-

in the top 𝑘 − 1 positions in 𝑣𝐴∪𝐵 with 𝑖 − 1 candidates from
𝐴 and 𝑗 − 1 candidates from 𝐵. The candidate on the 𝑘-th

position in 𝑣𝐴∪𝐵 will either be the 𝑖-th candidate from 𝑣𝐴 or

the 𝑗-th candidate from 𝑣𝐵 , i.e., either 𝑎𝑖 or 𝑏 𝑗 . If 𝑎𝑖 ≻𝑣 𝑏 𝑗
then we choose 𝑎𝑖 , and otherwise we choose 𝑏 𝑗 and increase

the number of inversions by 𝑥 − (𝑖 − 1) because, in this

configuration, in the frontier of our tree 𝑏 𝑗 is ranked below

𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑥 . After we use up all the candidates of 𝐴 or 𝐵,

then we fill-in 𝑣𝐴∪𝐵 with those from the other set, in the

order in which they appear in 𝑣𝐴 or 𝑣𝐵 , respectively. Let

inv be the computed number of inversions. If we reversed

the order of children of 𝑧, then then number of inversions

would be |𝐴| |𝐵 | − inv; if this value is smaller than inv then

we reverse the children. Finally, we output 𝑣𝐴∪𝐵 .

Our algorithm executes this procedure on the root of the tree. The

correctness is immediate, whereas the running time of 𝑂 (𝑚 log𝑚)
follows from the fact that GS/bal trees have 𝑂 (log𝑚) levels, and
on each level, the merge steps require 𝑂 (𝑚) steps.

Theorem B.4. There is an algorithm that computes the distance

between a given vote and GS/bal (represented via a GS-tree) in time

𝑂 (𝑚 log𝑚).

B.3 Algorithms for Single-Crossing and
Euclidean Domains

B.3.1 Single-Crossing Single-crossing domain contains 𝑂 (𝑚2)
votes, thus computing swap distance to each of them and taking

the minimum would give 𝑂 (𝑚3

√︁
log𝑚) algorithm [8].

However, in practice, we often want to compute the distance

frommultiple given votes to a single fixed domain. For that case, we

present an algorithm that needs a preprocessing step that also runs

in time𝑂 (𝑚3

√︁
log𝑚) (this time due to the bottleneck in recognizing



a single-crossing ordering of voters), but then, for each input vote,

allows for computation of the distance in 𝑂 (𝑚2).
The preprocessing step involves sorting the votes in the

domain in a sequence that witnesses the single-crossingness

(𝑢0, 𝑢1, . . . , 𝑢𝑀 ), where 𝑀 =
(𝑚
2

)
. This can be done in time

𝑂 (𝑀𝑚
√︁
log𝑀) = 𝑂 (𝑚3

√︁
log𝑚) [2, 13]. Next, for each 𝑖 ∈ [𝑀],

we establish the unique pair of candidates (𝑎𝑖 , 𝑏𝑖 ) ∈ 𝐶 × 𝐶 such

that 𝑎𝑖 ≻𝑢𝑖 𝑏𝑖 but 𝑏𝑖 ≻𝑢𝑖−1 𝑎𝑖 . We can establish all of them in time

𝑂 (𝑚2
log𝑚) by looking at each pair of candidates and finding the

place where its ordering switches using binary search.

Now, for each input vote 𝑣 ∈ L(𝐶) we first find the vector pos𝑣

in which we keep the position of every candidate in𝐶 according to 𝑣 .

This can be computed in time𝑂 (𝑚 log𝑚) by sorting the arguments

of the list in which we store vote 𝑣 . Next, we compute swap(𝑢0, 𝑣),
again in time 𝑂 (𝑚

√︁
log𝑚) [8]. Further, for each 𝑖 ∈ [𝑀], we check

whether pos𝑣 (𝑎𝑖 ) < pos𝑣 (𝑏𝑖 ). If it holds, then it means that in 𝑢𝑖
candidates 𝑎𝑖 and 𝑏𝑖 are ordered in the same way as in 𝑣 , which

is the opposite ordering to that in 𝑢𝑖−1. Since all other pairs are
ordered in the same way in 𝑢𝑖 and 𝑢𝑖−1, we get that swap(𝑢𝑖 , 𝑣) =
swap(𝑢𝑖−1, 𝑣) − 1. If pos𝑣 (𝑎𝑖 ) > pos𝑣 (𝑏𝑖 ) holds, then analogously

swap(𝑢𝑖 , 𝑣) = swap(𝑢𝑖−1, 𝑣) + 1. In this way, we can compute swap

distance from 𝑣 to each of 𝑢0, 𝑢1, . . . , 𝑢𝑀 in time𝑂 (𝑚2). Finally, we
output the minimum of these values.

B.3.2 Euclidean For Euclidean elections we proceed largely anal-

ogous to how we treated single-crossing elections. We know that

there are 𝑂 (𝑚2𝑑 ) votes in the domain, where 𝑑 is the dimension of

the Euclidean space. Hence, the brute-force algorithm of computing

the distances directly and taking the minimum would give us run-

ning time 𝑂 (𝑚2𝑑+1√︁
log𝑚). However, we can find an alternative

algorithm with 𝑂 (𝑚2𝑑+2) preprocessing step and 𝑂 (𝑚2𝑑 ) running
time for each input vote.

For the preprocessing step we construct a graph in which the

votes in the domain are vertices and the edge appears when

the swap distance between two votes is equal to 1. Then, let

(𝑢0, 𝑢1, . . . , 𝑢𝑀 ) be a sequence of votes we get when we run a DFS

on this graph. Also, for each 𝑖 ∈ [𝑀] let 𝑝𝑖 denote the parent of 𝑢𝑖
in the spanning tree that we get as a result. Then, let (𝑎𝑖 , 𝑏𝑖 ) ∈ 𝐶×𝐶
be a unique pair of candidates such that 𝑎𝑖 ≻𝑢𝑖 𝑏𝑖 but 𝑏𝑖 ≻𝑝𝑖 𝑎𝑖 .

We construct the graph and identify the associated pair of can-

didates on each edge in overall time 𝑂 (𝑚2𝑑+2). To do so, we first

organize all votes in the domain using a trie (prefix tree) in time

𝑂 (𝑚2𝑑+1), which enables lexicographic ordering and allows mem-

bership checks in 𝑂 (𝑚) time. Next, for each vote and for each pair

of consecutive candidates in a node, we check whether the vote

obtained by swapping this pair belongs to the domain. DFS consider

at most𝑂 (𝑚2𝑑+1) many edges. Since each membership check takes

𝑂 (𝑚), the total running time is 𝑂 (𝑚2𝑑+2).
Now, as in Appendix B.3.1 for each input vote 𝑣 ∈ L(𝐶) we

first find the vector pos𝑣 with position of every candidate in 𝐶

according to 𝑣 , which we compute in time 𝑂 (𝑚 log𝑚). Then, in
time 𝑂 (𝑚

√︁
log𝑚) [8] we compute swap(𝑢0, 𝑣). Next, iteratively,

for each 𝑖 ∈ [𝑀] we check whether pos𝑣 (𝑎𝑖 ) < pos𝑣 (𝑏𝑖 ). If
yes, swap(𝑢𝑖 , 𝑣) = swap(𝑝𝑖 , 𝑣) − 1, otherwise, swap(𝑢𝑖 , 𝑣) =

swap(𝑝𝑖 , 𝑣)+1. In this way, we compute the swap distances between

𝑣 and all the votes in the domain in time𝑂 (𝑚2𝑑 ). Finally, we output
the minimum of these values.

B.4 Hardness for Single-Peaked-on-a-Graph
Domains

In this section, we provide a complete proof of Theorem 4.6 that

finding a distance to an arbitrary single-peaked-on-a-graph domain

is NP-complete.

Theorem 4.6. Given a graph 𝐺 , a vote 𝑣 ∈ L(𝑉 (𝐺)), and an

integer 𝑑 ∈ N, deciding if swap(𝑆𝑃 (𝐺), 𝑣) ≤ 𝑑 is NP-complete.

Proof. If we are given a ranking 𝑢 ∈ 𝑆𝑃 (𝐺) that is the closest
to the given vote, 𝑣 , then checking if swap(𝑢, 𝑣) ≤ 𝑑 can be done in

polynomial time. Thus, the problem belongs to NP. Hence, in the

remainder of the proof, we focus on showing the hardness.

To this end, we will provide a reduction from SetCover. In this

problem, we are given a universe of elementsU = {𝑢1, . . . , 𝑢𝑛}, a
family ofU’s subsets S = {𝑆1, . . . , 𝑆𝑚}, and an integer 𝑘 ∈ N. The
question is whether there exists a subset 𝐾 ⊆ S of size |𝐾 | = 𝑘 ,

known as a set cover, that contains all elements from the universe,

i.e.,

⋃
𝑆 𝑗 ∈𝐾 𝑆 𝑗 = U. Answering this question is known to be NP-

complete [22]. Without loss of generality, we assume that 𝑛 > 2

and𝑚 > 𝑘 .

For each instance of SetCover we construct an instance of our

problem as follows (see Figure 4 for an illustration). We let the

set of candidates 𝐶 = 𝑉 (𝐺) contain three groups of candidates: (1)

𝑛·𝑚 element candidates (𝑐𝑖, 𝑗 )𝑖∈[𝑛], 𝑗∈[𝑚] , amongwhich𝑛 candidates,

(𝑐𝑖,1)𝑖∈[𝑛] , are called first element candidates; (2)𝑚 subset candidates

𝑠1, . . . , 𝑠𝑚 ; and (3) 𝑛2 ·𝑚2 + 1 path candidates 𝑝0, 𝑝1, . . . , 𝑝𝑛2 ·𝑚2 . As

for the edges in graph 𝐺 , for each 𝑖 ∈ [𝑛], we connect all element

candidates 𝑐𝑖,1, . . . , 𝑐𝑖,𝑚 , to form a path, and the same we do with all

of the path candidates 𝑝0, 𝑝1, . . . , 𝑝𝑛2 ·𝑚2 . Additionally, we connect

𝑝0 to all set candidates 𝑠1, . . . , 𝑠𝑚 . Finally, for each 𝑗 ∈ [𝑚], we
connect set candidate 𝑠 𝑗 to the first element candidates with indices

corresponding to the indices of the elements of subset 𝑆 𝑗 . Formally,

𝐸 (𝐺) = {{𝑐𝑖, 𝑗 , 𝑐𝑖, 𝑗+1} : 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚 − 1]}
∪ {{𝑝𝑖−1, 𝑝𝑖 } : 𝑖 ∈ [𝑛2 ·𝑚2]}
∪ {{𝑝0, 𝑠 𝑗 } : 𝑗 ∈ [𝑚]}
∪ {{𝑠 𝑗 , 𝑐𝑖,1} : 𝑗 ∈ [𝑚], 𝑢𝑖 ∈ 𝑆 𝑗 }.

In the given input vote 𝑣 , the top candidate is 𝑝0, followed by all

element candidates, then remaining path candidates, and lastly the

subset candidates at the bottom of the ranking, i.e.,

𝑝0 ≻𝑣 𝑐1,1 ≻𝑣 𝑐1,2 ≻𝑣 · · · ≻𝑣 𝑐1,𝑚 ≻𝑣
𝑐2,1 ≻𝑣 · · · ≻𝑣 𝑐𝑛−1,𝑚 ≻𝑣 𝑐𝑛,1 ≻𝑣 𝑐𝑛,2 ≻𝑣 · · · ≻𝑣 𝑐𝑛,𝑚 ≻𝑣
𝑝1 ≻𝑣 𝑝2 ≻𝑣 · · · ≻𝑣 𝑝𝑛2 ·𝑚2 ≻𝑣 𝑠1 ≻𝑣 𝑠2 ≻𝑣 · · · ≻𝑣 𝑠𝑚 .

Finally, we set 𝑑 = (𝑘 + 1)𝑛2 ·𝑚2 − 1.
First, let us show that if there exists a set cover 𝐾 in the original

instance, then swap(SP(𝐺), 𝑣) ≤ 𝑑 . Let 𝐾 ′ contain all the subset

candidates corresponding to subsets in 𝐾 , i.e., 𝐾 ′ = {𝑠 𝑗 : 𝑆 𝑗 ∈
𝐾}. Then, let 𝑢 be a vote obtained from 𝑣 by moving all subset

candidates in 𝐾 ′ upwards in the ranking so that all of them are

between candidates 𝑝0 and 𝑐1,1 (the ordering of the remaining

candidates is the same). For each 𝑠 𝑗 ∈ 𝐾 ′, there are exactly 𝑛 ·𝑚
element candidates, 𝑛2 ·𝑚2

path candidates, and at most𝑚 subset
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Figure 4: An illustration of the construction from the proof
of Theorem 4.6.

candidates for which the ordering in 𝑢 and 𝑣 is different. Hence,

swap(𝑢, 𝑣) ≤ 𝑘𝑛2𝑚2 + 𝑘𝑛𝑚 + 𝑘𝑚
= 𝑘𝑛2𝑚2 + 𝑘𝑚(𝑛 + 1)
≤ (𝑘 + 1)𝑛2𝑚2 − 1
= 𝑑,

where the last inequality comes from our assumption that 𝑛 ≥ 3

and𝑚 > 𝑘 . Moreover, we can observe that 𝑢 belongs to the SP(𝐺)
domain. Indeed, for each 𝑡 ∈ [𝑘 + 1], the first 𝑡 candidates in 𝑢 form

a connected subgraph in 𝐺 , as each subset candidate is connected

to 𝑝0. Then, for each 𝑡 ∈ {𝑘 + 2, . . . , 𝑘 + 1 + 𝑛 ·𝑚}, each element

candidate 𝑐𝑖, 𝑗 for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] is connected through the path

of element candidates (that all appear before it in 𝑢) to the first

element candidate 𝑐𝑖,1, which in turn is connected to some 𝑠 𝑗 ∈ 𝐾 ′
(as there is 𝑆 𝑗 ∈ 𝐾 such that 𝑢𝑖 ∈ 𝑆 𝑗 ). Finally, for 𝑡 > 𝑘 + 1 + 𝑛 ·𝑚,

every path candidate 𝑝𝑖 for 𝑖 ∈ [𝑛2𝑚2] is connected to 𝑝0 through

a path of path candidates (that all appear before it in 𝑢), and every

set candidate 𝑠 𝑗 ∉ 𝐾
′
is connected directly to 𝑝0. Therefore, indeed,

swap(SP(𝐺), 𝑣) ≤ swap(𝑢, 𝑣) ≤ 𝑑 .
In the remainder of the proof, let us assume that there is no set

cover in the original SetCover instance and let us show that this

implies that swap(SP(𝐺), 𝑣) > 𝑑 . Take an arbitrary vote 𝑢 ∈ SP(𝐺).
Let 𝑖∗ ∈ [𝑛] be such that 𝑐𝑖∗,1 is the least preferred among the first

element candidates in 𝑢, i.e., 𝑐𝑖,1 ≻𝑢 𝑐𝑖∗,1, for each 𝑖 ∈ [𝑛] \ {𝑖∗}.
Observe that it must hold that 𝑐𝑖∗,1 ≻𝑢 𝑐𝑖∗,2 ≻𝑢 · · · ≻𝑢 𝑐𝑖∗,𝑚

(otherwise, if there is 𝑗 < 𝑗 ′ ≤ 𝑚 such that 𝑐𝑖∗, 𝑗 ′ ≻𝑢 𝑐𝑖∗, 𝑗 , then the

subset of the first 𝑡 candidates up to 𝑐𝑖∗, 𝑗 ′ is not connected in 𝐺 ,
as 𝑐𝑖∗, 𝑗 is on the only path from 𝑐𝑖∗, 𝑗 ′ to 𝑐𝑖,1 for any 𝑖 ∈ [𝑛] \ {𝑖∗}).

Moreover, by the definition of SP(𝐺) domain, the set of candidates

that are weakly preferred over 𝑐𝑖∗,1 in 𝑢, i.e., 𝐶
′ = {𝑐 ∈ 𝐶 : 𝑐 ≻𝑢

𝑐𝑖∗,1} ∪ {𝑐𝑖∗,1}, must form a connected subgraph in 𝐺 . This means

that 𝐶′ must contain at least one subset candidate connected to

each first element candidate. Let 𝐾 ′ = {𝑠1, . . . , 𝑠𝑚} ∩𝐶′ be a subset
of all subset candidates in 𝐶′ and let 𝐾 = {𝑆 𝑗 : 𝑠 𝑗 ∈ 𝐾 ′} be a set of
corresponding subsets inS. We know that𝐾 covers all the elements

in U, but since there is no set cover of size 𝑘 , in the SetCover

instance, we get that |𝐾 ′ | = |𝐾 | ≥ 𝑘 + 1.
Now, let 𝑃 denote the set of path candidates, excluding 𝑝0 that

are ranked above 𝑐𝑖∗,1 in 𝑢, i.e., 𝑃 = 𝐶′ ∩ {𝑝1, . . . , 𝑝𝑛2 ·𝑚2 }. Then,
there are at least𝑚 · |𝑃 | pairs of an element candidate from the path

(𝑐𝑖∗, 𝑗 ) 𝑗∈[𝑚] and a path candidate in 𝑃 that are ordered differently in

𝑢 and 𝑣 . Moreover, there are at least (𝑘 +1) · (𝑛2 ·𝑚2− |𝑃 |) pairs of a
subset candidate in 𝐾 ′ and a path candidate in {𝑝1, . . . , 𝑝𝑛2 ·𝑚2 } \ 𝑃
that are ordered differently in 𝑢 and 𝑣 . Hence,

swap(𝑢, 𝑣) ≥ 𝑚 · |𝑃 | + (𝑛2 ·𝑚2 − |𝑃 |) · (𝑘 + 1)
≥ (𝑘 + 1) · |𝑃 | + (𝑛2 ·𝑚2 − |𝑃 |) · (𝑘 + 1)
= 𝑛2 ·𝑚2 · (𝑘 + 1)
> 𝑑,

where the second inequality comes from our assumption that𝑚 ≥
𝑘 + 1. This concludes the proof. □

C Missing Proofs for Section 5
Proposition 5.1. Let 𝐷 be the GS/bal domain for𝑚 = 2

𝑘
can-

didates. For every ranking 𝑣 ∈ 𝐷 there are exactly 2
𝑘−1 − 1 unique

ones from L(𝐶) \ 𝐷 at swap distance 1 from 𝑣 .

Proof. Let𝑚 = 2
𝑘
be the number of candidates, let the candidate

set be 𝐶 = {𝑐1, . . . , 𝑐𝑚}, and let 𝐷 be our GS/bal domain for 𝐶 .

Further, let 𝑣 be ranking in L(𝐶). W.l.o.g., we can assume that 𝑣

ranks the candidates as 𝑐1 ≻ 𝑐2 ≻ · · · ≻ 𝑐𝑚 . For each 𝑖 ∈ [𝑚−1], let
𝑣 (𝑖) be the ranking obtained from 𝑣 by swapping candidates 𝑐𝑖 and

𝑐𝑖+1. These are all the rankings from L(𝐶) that are at swap distance
1 from 𝑣 . By definition of 𝐷 , for every odd 𝑖 ∈ [𝑚 − 1], 𝑣 (𝑖) is in 𝐷 ,
and for each even 𝑖 it is in L(𝐶) \𝐷 . Further, for each even 𝑖 , swap

distance of 𝑣 (𝑖) to every member of 𝐷 other than 𝑣 is larger than 1:

Indeed, in every vote from 𝐷 , 𝑐𝑖 and 𝑐𝑖−1 must be ranked next to

each other. To achieve this, by performing a single swap on 𝑣 (𝑖),
we need to swap 𝑐𝑖+1 with 𝑐𝑖−1 or 𝑐𝑖 . The former, does not lead to

a vote from 𝐷 , the latter leads to 𝑣 . This completes the proof. □

Proposition 5.2. Consider GS/cat over𝑚 ≥ 4 candidates. For

every ranking 𝑣 ∈ GS/cat there are exactly𝑚 − 3 unique ones from
L(𝐶) \𝐷 at swap distance 1 from 𝑣 , and one ranking from L(𝐶) that
is at swap distance 1 from 𝑣 and one other ranking in GS/cat.

Proof. Let 𝑇 be a binary caterpillar tree with 𝑐1 being the leaf

closest to the root, followed by 𝑐2, and so on up to 𝑐𝑚 . Let 𝐷 be a

GS/cat domain consistent with tree 𝑇 .

Observe that in each vote 𝑣 ∈ 𝐷 , when we read the candidates

along ≻𝑣 , the indices are increasing until candidate 𝑐𝑚 , after which

they are decreasing.
2
After swapping any pair of candidates in 𝑣 ,

except for the pair {𝑐𝑚−1, 𝑐𝑚}, we obtain 𝑣 ′ that does not have this
2
This property makes GS/cat in some sense dual to SP, which was observed e.g. in [6].



property, hence 𝑣 ′ ∉ 𝐷 . Moreover, unless we swapped 𝑐𝑚−2 with
either 𝑐𝑚 or 𝑐𝑚−1, the only way to restore this property by a single

swap, is to go back to 𝑣 . Thus, swap(𝑣 ′, 𝑢) > 1, for each 𝑢 ∈ 𝐷 \ {𝑣}.
On the other hand, if 𝑣 ′ is obtained from 𝑣 by swapping 𝑐𝑚−2

with 𝑐𝑚 or 𝑐𝑚−1 (whichever is adjacent to 𝑐𝑚−2 in 𝑣), then in 𝑣 ′,
candidate 𝑐𝑚−2 is ranked exactly between 𝑐𝑚 and 𝑐𝑚−1. Swapping
it with any of these two candidates yields a vote from 𝐷 (and no

single swap apart from these two results in that). □

Proposition 5.3. Let 𝐷 = GS(𝑇 ) be a group separable domain

over candidate set 𝐶 . Then, for each 𝑣 ∈ GS(𝑇 ), npop(𝑣) = 1.

Proof. For a contradiction, assume that the thesis does not hold.

Then, there exist 𝑢, 𝑣 ∈ 𝐷 such that npop(𝑢) > npop(𝑣). Let 𝜋 :

𝐶 → 𝐶 be a permutation such that 𝑣 = 𝜋 (𝑢), where 𝜋 (𝑢) denotes a
vote in which each candidate 𝑐 ∈ 𝐶 is replaced by 𝜋 (𝑐). In this way,

by a slight abuse of notation, 𝜋 is also a permutation of L(𝐶).
By the definition of GS domain, 𝜋 corresponds to rotating the

children of certain internal nodes in 𝑇 . Thus, for every𝑤 ∈ L(𝐶)
it holds that 𝑤 ∈ 𝐷 if and only if 𝜋 (𝑤) ∈ 𝐷 . Moreover, for each

𝑤,𝑤 ′ ∈ L(𝐶) we have that swap(𝑤,𝑤 ′) = swap(𝜋 (𝑤), 𝜋 (𝑤 ′)).
Both facts imply that npop(𝑢) = npop(𝜋 (𝑢)), as npop(·) is invari-
ant under 𝜋 (since 𝜋 does not affect the domain, nor the swap

distance). However, this leads to a contradiction as npop(𝑢) =

npop(𝜋 (𝑢)) = npop(𝑣) < npop(𝑢). □

Proposition 5.4. Let us fix value 𝑘 and let 𝐷2, 𝐷3, . . . be a se-

quence of domains, where each 𝐷𝑚 contains at most 𝑘 rankings over

𝑚 candidates. Then lim𝑚→∞ out-div(𝐷𝑚) = 0.

Proof. Let UN𝑚 denote the UN election with𝑚 candidates. As

already noted, the average normalized swap distance of a domain

𝐷 is equal to the normalized Kemeny score of 𝐷 with respect to the

UN𝑚 election, i.e.,𝑚!

(𝑚
2

)
· ansd(𝐷) = kemUN𝑚

(𝐷). This, in turn, is

not smaller than the 𝑘-Kemeny score of the UN𝑚 election, where

𝑘 = |𝐷 |, which gives us 𝑚!

(𝑚
2

)
· ansd(𝐷) ≥ 𝑘-kem(UN𝑚). This

yields the following bound on the outer diversity:

out-div(𝐷) = 1 − 2 · ansd(𝐷) ≤ 1 − 2 · 𝑘-kem(UN𝑚)
𝑚!

(𝑚
2

) .

Faliszewski et al. [19, Proposition 3.6] showed that for every 𝑘 ∈ N,
it holds that

lim

𝑚→∞
𝑘-kem(UN𝑚)

1

2
·𝑚!

(𝑚
2

) = 1.

Thus,

lim

𝑚→∞
out-div(𝐷𝑚) ≤ 1 − lim

𝑚→∞
𝑘-kem(UN𝑚)

1

2
·𝑚!

(𝑚
2

) = 0.

□

D Most Diverse Domains
Below, we provide a formal definition for the Most Diverse Do-

main.

Definition D.1. For a set of candidates 𝐶 and an integer 𝑘 ≤ |𝐶 |!
the Most Diverse Domain problem asks for a set 𝐷 ⊆ L(𝐶) of
size 𝑘 that maximizes out-div(𝐷).

We observe that an optimal solution to Most Diverse Domain is

a set of 𝑘 rankings that achieves the optimal 𝑘-Kemeny score for the

election (𝐶,L(𝐶)). Moreover, finding 𝑘 rankings that realize the

optimal 𝑘-Kemeny score of (𝐶,L(𝐶)) can be formulated as the clas-

sic clustering problem 𝑘-Median of the metric space of all possible

rankings together with the swap distance, i.e., (L(𝐶), swap).
To compute optimal solutions for Most Diverse Domain, we

used a standard Integer Linear Program (ILP) for 𝑘-Median. Unfor-

tunately, this approach is computationally expensive because the

ILP has size Θ((𝑚!)2). A faster, heuristic alternative is simulated

annealing: We initialize a random set of 𝑘 rankings and iteratively

attempt to improve the solution by replacing a single ranking to

reduce the total swap distance. This heuristic appears surprisingly

effective, likely because randomly sampling 𝑘 rankings from the

impartial culture model already yields near-optimal solutions, es-

pecially for large 𝑘 .

For completeness, we provide an ILP formulation for Most Di-

verse Domain below that is equivalent to an ILP for 𝑘-Median

in a specific metric space (L(𝐶), swap) and with a specific set of

points to cluster L(𝐶).
Let L(𝐶) = {𝑢1, . . . , 𝑢𝑚!} be a set of rankings over a set 𝐶 of

𝑚 candidates, and let 𝑘 denote the size of domain. For readability,

we define 𝑛 =𝑚!. For each ranking 𝑢𝑖 ∈ L(𝐶), we define a binary
variable 𝑦𝑖 with the intention that value 1 indicates that ranking 𝑢𝑖
is selected to a solution. For each pair of rankings𝑢𝑖 , 𝑢 𝑗 ∈ L(𝐶), we
define a binary variable 𝑥𝑖 𝑗 with the intention that value 1 means

that a ranking 𝑢𝑖 has 𝑢 𝑗 as the closest ranking in a solution (𝑢 𝑗 is

a representative, or cluster center, of 𝑢𝑖 ). Let 𝑑𝑖 𝑗 denote the swap

distance between rankings 𝑢𝑖 and 𝑢 𝑗 , i.e., 𝑑𝑖 𝑗 = swap(𝑢𝑖 , 𝑢 𝑗 ). We

introduce the following constraints:

𝑥𝑖 𝑗 , 𝑦𝑖 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ [𝑛]∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ [𝑛] (1)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀𝑖, 𝑗 ∈ [𝑛] (2)∑
𝑖∈[𝑛] 𝑦𝑖 = 𝑘. (3)

Constraint (1) ensures that each ranking is assigned to exactly

one selected ranking. Constraint (2) ensures that a vote can only

be assigned to another vote if that vote is selected. Constraint (3)

ensures that exactly 𝑘 rankings are selected. The objective function

defined in (4) minimizes the total cost, i.e., the total swap distance:

min

∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

𝑑𝑖 𝑗 · 𝑥𝑖 𝑗 . (4)

D.1 Computing Most Diverse Domain
Our simulated annealing algorithm operates as follows. We begin

with a randomly generated set of rankings. At each iteration, we

uniformly at random remove one of the rankings and add one

ranking sampled from IC. If the new solution is better than the

current one, it is always accepted. Otherwise, it is accepted with

probability

𝑃 = exp

(
𝐸new − 𝐸current

𝑇

)
,

where 𝑇 denotes the current temperature. The initial temperature

is set to 𝑇0 = 0.5, and it decreases geometrically with a cooling rate

of 0.95 per iteration. Moreover, we perform at most 256 iterations.

In Figure 5, we compare the performance of simulated annealing

and ILP for the case of six candidates. As shown, the solution found



Figure 5: Comparison of the optimal diversity (red line) and
the one achieved by simulated annealing (black line) for 6
candidates.

by simulated annealing is nearly optimal. Moreover, note that sim-

ply sampling votes from the IC distribution serves as an effective

heuristic.

D.2 Largest Gap in a Domain
A domain can be considered diverse if it is well distributed across a

metric space of all possible rankings, i.e., (L(𝐶), swap). This implies

that there are no large gaps between rankings within the domain.

Consequently, it is natural to search for the largest such gap. To

formalize this, we define a decision problem of finding the center

of a ball in (L, swap) with a given radius that contains no rankings

from the given domain 𝐷 .

Definition D.2. In the Farthest Permutation problem we are

given 𝐷 ⊆ L(𝐶) and 𝑟
far
∈ {−1, 0} ∪ N. We ask if there exists a

ranking 𝑓 ∈ L(𝐶) which swap distance to 𝐷 is at least 𝑟
far
, i.e.,

𝑟
far

< min

𝑣∈𝐷
swap(𝑣, 𝑓 ) = swap(𝐷, 𝑓 ) .

We emphasize that the definition uses a strict inequality because

the goal is to identify a ball that excludes all rankings from 𝐷 .

For example, if 𝐷 = L(𝐶) then the only value of 𝑟
far

for which a

response is YES, is −1. For 𝐷 ⊂ L(𝐶), every 𝑓 ∈ L(𝐶) \ 𝐷 is at

distance 1 from 𝐷 , so 𝑟
far
≥ 0 in this case. We can also define an

optimization version of Farthest Permutation, searching for a

maximum 𝑟
far

for which a response is YES.

In the subsequent proofs, we will rely on results concerning

the Kemeny 1-Center problem, which may be regarded as a dual

problem to Farthest Permutation in the sense that Farthest

Permutation looks for a ball of radius 𝑟
far

where none of domain

rankings are included, but Kemeny 1-Center looks for a ball of

radius 𝑟center where all of domain rankings are included.

Definition D.3. In the Kemeny 1-Center problem we are given

𝐷 ⊆ L(𝐶) and 𝑟center ∈ {0} ∪ N. We ask if there exists a ranking

𝑐 ∈ L(𝐶) which swap distance to every element in 𝐷 is at most

𝑟center, i.e.,

max

𝑣∈𝐷
swap(𝑣, 𝑐) ≤ 𝑟center .

The duality mentioned can be formalized in a quantitative way

as done in Lemma D.4 which essentially says that for every per-

mutation 𝑥 ∈ L(𝐶), the sum of radii of two balls: 1) a ball with a

Farthest Permutation objective and a center in 𝑥 and; 2) a ball

with a Kemeny 1-Center objective and a center in rev(𝑥), where
rev(𝑥) is a reversed permutation of 𝑥 ; is always equal to

(𝑚
2

)
− 1,

i.e., a maximum distance between two permutations of𝑚 elements

decreased by 1.

Formally, for 𝐷 ⊆ L(𝐶) and 𝑥 ∈ L(𝐶) we define the radii

described above as: FP(𝐷, 𝑥) = swap(𝐷, 𝑥) − 1 and K1C(𝐷, 𝑥) =
max𝑣∈𝐷 swap(𝑣, 𝑥).

Lemma D.4. For every 𝐷 ⊆ L(𝐶) and every 𝑥 ∈ L(𝐶) we have
FP(𝐷, 𝑥) + K1C(𝐷, rev(𝑥)) =

(𝑚
2

)
− 1.

Proof. Let us fix 𝐷 ⊆ L(𝐶) and 𝑥 ∈ L(𝐶). First we observe
that, by the swap distance definition, we have

swap(𝑣, 𝑥) + swap(𝑣, rev(𝑥)) =
(𝑚
2

)
.

Using it, we obtain a sequence of equalities:

FP(𝐷, 𝑥) = −1 +min

𝑣∈𝐷
swap(𝑣, 𝑥)

= −1 +min

𝑣∈𝐷

( (𝑚
2

)
− swap(𝑣, rev(𝑥))

)
=
(𝑚
2

)
− 1 −max𝑣∈𝐷 swap(𝑣, rev(𝑥))

=
(𝑚
2

)
− 1 − K1C(𝐷, rev(𝑥)) .

This finishes the proof. □

The lemma implies that hardness of finding a solution to Ke-

meny 1-Center implies hardness of finding a solution to Farthest

Permutation as well as an additive approximation algorithm with

additive loss guarantee of at most 𝛽 for Kemeny 1-Center is also

an approximation algorithm for Farthest Permutation with the

same additive loss guarantee. The two results results are formally

presented in the following two theorems. We observe that Theo-

rem D.5 directly implies the result stated in Theorem 6.1.

Theorem D.5. Farthest Permutation is NP-complete, even when

|𝐷 | = 4.

Proof. The inclusion in NP is straightforward as this is enough

to compute all pairwise distances between a solution and elements

of a domain and check if any of them is equal or smaller than 𝑟 .

In order to show NP-hardness for |𝐷 | = 4, we will construct a

reduction from Kemeny 1-Center which is NP-hard for |𝐷 | = 4,

where all input orders are distinct (see [11] for the original proof

and [4, Theorem 5] for its correction).

Let 𝐷 ⊆ L(𝐶), 𝑟center ∈ {0} ∪ N be an input of Kemeny 1-

Center.
3
We define an input of Farthest Permutation simply

by providing the same domain 𝐷 and 𝑟
far

=
(𝑚
2

)
− 1 − 𝑟center.

Correctness of the reduction directly follows from Lemma D.4.

For completes we provide the two formal implications below.

3
While the original definition of Kemeny 1-Center allows inputs with non-distinct

orders, every such instance can, without loss of generality, be reduced to an equivalent

instance consisting solely of distinct orders.



Figure 6: Histograms of votes at a given swap distance.

(⇒) If (𝐷, 𝑟center) is a YES-instance of Kemeny 1-Center then

there exists 𝑐 ∈ L(𝐶) such that K1C(𝐷, 𝑐) ≤ 𝑟center and we obtain

swap(𝐷, rev(𝑐)) = FP(𝐷, rev(𝑐)) + 1
Lemma D.4

=
(𝑚
2

)
− 1 − K1C(𝐷, 𝑐) + 1

≥
(𝑚
2

)
− 𝑟center > 𝑟far .

Therefore, rev(𝑐) is a solution to the Farthest Permutation in-

stance (𝐷, 𝑟
far
).

(⇐) If (𝐷, 𝑟
far
) is a YES-instance of Farthest Permutation

then, analogously, there exists 𝑓 ∈ L(𝐶) such that FP(𝐷, 𝑓 ) ≥ 𝑟
far

and we obtain

max

𝑣∈𝐷
swap(𝑣, rev(𝑓 )) = K1C(𝐷, rev(𝑓 ))

Lemma D.4

=
(𝑚
2

)
− 1 − FP(𝐷, 𝑓 )

≤
(𝑚
2

)
− 1 − 𝑟

far
= 𝑟center .

Therefore, rev(𝑓 ) is a solution to the Kemeny 1-Center instance

(𝐷, 𝑟center). This finishes the proof. □

The duality between Farthest Permutation and Kemeny 1-

Center presented in Lemma D.4 holds for centers of balls at 𝑥 and

rev(𝑥). The duality can be also expressed,in Lemma D.6, in terms of

how far radii of balls with centers at 𝑥 and rev(𝑥) are from optimum

solutions. For that we will need a few more definitions. For a given

𝐷 ⊆ L(𝐶), let FP(𝐷) be a maximum 𝑟
far

for which (𝐷, 𝑟
far
) is a

YES-instance of Farthest Permutation. Analogously, let K1C(𝐷)
be a minimum 𝑟center for which (𝐷, 𝑟center) is a YES-instance of

Farthest Permutation.

Lemma D.6. For every 𝐷 ⊆ L(𝐶), 𝑥 ∈ L(𝐶) and 𝛽 ∈ N we have

FP(𝐷, 𝑥) ≥ FP(𝐷) − 𝛽 ⇔ K1C(𝐷, rev(𝑥)) ≤ K1C(𝐷) + 𝛽.

Proof. We fix 𝐷 ⊆ L(𝐶), 𝑥 ∈ L(𝐶) and 𝛽 ∈ N. Let 𝑥
far

be

such that FP(𝐷, 𝑥
far
) = FP(𝐷). Then, by Lemma D.4, we have that

K1C(𝐷, rev(𝑥
far
)) = K1C(𝐷). We obtain a sequence of equivalent

inequalities:

FP(𝐷, 𝑥) ≥ FP(𝐷) − 𝛽
FP(𝐷, 𝑥) ≥ FP(𝐷, 𝑥

far
) − 𝛽(𝑚

2

)
− 1 − K1C(𝐷, rev(𝑥)) ≥

(𝑚
2

)
− 1 − K1C(𝐷, rev(𝑥

far
)) − 𝛽

−K1C(𝐷, rev(𝑥)) ≥ −K1C(𝐷) − 𝛽
K1C(𝐷, rev(𝑥)) ≤ K1C(𝐷) + 𝛽,

where the second equivalence comes from Lemma D.4. This finishes

the proof. □

An algorithm for Farthest Permutation is an (additive) 𝛽-

approximation if for an input 𝐷 it outputs 𝑥 ∈ L(𝐶) such that

FP(𝐷, 𝑥) ≥ FP(𝐷) − 𝛽 . An algorithm for Kemeny 1-Center is an

(additive) 𝛽-approximation if for an input 𝐷 it outputs 𝑥 ∈ L(𝐶)
such that K1C(𝐷, 𝑥) ≤ K1C(𝐷) + 𝛽 . The following corollary is an

implication of Lemma D.6.

Corollary D.7. For a given 𝐷 ⊆ L(𝐶) it holds:
(1) Let 𝑥 be an output of an additive 𝛽-approximation algorithm

for Kemeny 1-Center on 𝐷 . Then, rev(𝑥) is an additive 𝛽-

approximate solution to Farthest Permutation on 𝐷 .
(2) Let 𝑥 be an output of an additive 𝛽-approximation algorithm

for Farthest Permutation on 𝐷 . Then, rev(𝑥) is an additive

𝛽-approximate solution to Kemeny 1-Center on 𝐷 .

E Additional Plots
Additional histograms of swap distances are shown in Figure 6.
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