Outer Diversity of Structured Domains

Piotr Faliszewski
AGH University
Krakoéw, Poland

faliszew@agh.edu.pl

Stanistaw Szufa
CNRS, LAMSADE, Université Paris Dauphine—PSL
Paris, France
s.szufa@gmail.com

Abstract

An ordinal preference domain is a subset of preference orders that
the voters are allowed to cast in an election. We introduce and study
the notion of outer diversity of a domain and evaluate its value for
a number of well-known structured domains, such as the single-
peaked, single-crossing, group-separable, and Euclidean ones.

Keywords

Diversity, Ordinal Elections, Structured Domains, Single-Peaked,
Single-Crossing.

ACM Reference Format:

Piotr Faliszewski, Krzysztof Sornat, Stanistaw Szufa, and Tomasz Was. 2026.
Outer Diversity of Structured Domains. In Proc. of the 25th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026),
Paphos, Cyprus, May 25 — 29, 2026, IFAAMAS, 17 pages.

1 Introduction

In the standard, ordinal model of elections, each voter considers
a set of candidates and ranks them from the one that he or she
likes most to the one that he or she likes least. In principle, a voter
may order the candidates in any arbitrary way, but some of these
rankings appear more natural (or, more rational) than others. For
example, in the political setting it would be expected that a voter
would rank the candidates with respect to their proximity to his
or her political stance, but a ranking with the most right-wing
candidate and the most left-wing one on two top positions would
be surprising. Various rationality conditions for ordinal rankings
are expressed as so-called structured domains, i.e., sets of rankings
that can be cast in a given setting. Such domains include, e.g.,
the single-peaked one [5], which captures preferences based on
proximity to some ideal, the single-crossing ones, introduced in
the context of taxation [31, 34], or group-separable ones [25, 26],
where voters derive rankings of candidates from preferences over
their features [18, 27]. We introduce a new measure of diversity
of such domains, provide algorithms for computing its value, and
analyze diversity of a number of structured domains.

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 — 29,
2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

Krzysztof Sornat
AGH University
Krakow, Poland

sornat@agh.edu.pl

Tomasz Was
University of Oxford
Oxford, United Kingdom
tomasz.was@cs.ox.ac.uk

Somewhat surprisingly, analysis of diversity for structured do-
mains has only recently started to receive more focused atten-
tion [1, 21, 28], with a few authors also considering diversity of
elections [17, 19, 23]. Two commonly used approaches are:

Richness Diversity. The overarching idea is that a domain is
diverse if it contains many different substructures in its rank-
ings (these substructures are sometimes also called attributes,
as the approach builds on the theory of attribute diversity of
Nehring and Puppe [32]). For example, one might consider
how many votes appear in the domain, how many candidates
are ever ranked on top, or—for each triple of candidates—
how many ways of ranking these candidates appear in the
domain. This approach is taken, e.g., by Ammann and Puppe
[1] and Karpov et al. [28]

Inner Diversity. In this case, we say that a domain is diverse
if its rankings do not form clear clusters. This approach was
taken by Faliszewski et al. [17, 19, 21], who introduced the
k-Kemeny problem to quantify the difficulty of clustering
rankings (briefly put, one tries to optimally partition the
rankings into a given number of groups, measuring their
cohesiveness using the classic Kemeny rule [29]).

We propose a third approach, which we refer to as outer diversity:

Outer Diversity. A domain is diverse if, on average, a random
ranking from the space of all possible ones is similar to
some ranking from the domain. In particular, we measure
similarity between rankings using the number of swaps of
adjacent candidates that transform one into the other.

Inner and outer diversity seem to capture the same basic intuition,
but the inner approach focuses on the rankings within the domain,
whereas the outer one focuses on those outside.

We believe that all the above approaches to measuring domain
diversity are meaningful and are worth studying, but outer diversity
has some advantages. First, it has a very clear interpretation: If a
domain has high diversity, then it covers the space of all possible
rankings well; if one wanted to cast a ranking from the domain but
had one that did not belong to it, then the closest member of the
domain would not be too far off from his or her original ranking.

Second, outer diversity of a given domain is a single number.
On the other hand, in case of richness diversity one has to choose
from many different substructures to count, and in case of inner
diversity one either has to choose the number of clusters to con-
sider (for which there is no clear solution) or somehow aggregate

obtained values for different numbers of clusters, which is not ob-
vious (indeed, the works we cite with respect to inner diversity do
not provide fully satisfying recommendations).

Third, while in principle computing outer diversity may require
exponential time, we provide efficient algorithms for computing
it using sampling: Our algorithms compute the distance from a
given ranking to the closest one in a given domain of interest, such
as the single-peaked, single-crossing, and group-separable ones.
Hence, we can sample random votes, compute their distances to
the domains, and output the average of the obtained values. On the
other hand, even the heuristics that Faliszewski et al. [17] proposed
for inner diversity (i.e., for k-Kemeny) require exponential time if a
given domain contains exponentially many rankings (as is the case
for, e.g., the single-peaked and group-separable ones).

Our main contributions are as follows:

(1) We introduce the notion of outer diversity and provide means
of computing its values for a number of domains, including
the single-peaked, single-crossing, and group-separable ones,
but also many others (including variants of the single-peaked
domain, as well as Euclidean domains). However, we also find
that for some natural domains, the sampling-based approach
requires solving an NP-hard problem.

(2) We evaluate outer diversity across a number of domains. We
find that ranking the domains with respect to outer diversity
gives similar results as doing so with respect to the inner
one. Further, while analyzing outer diversity of our domains,
we note a number of their interesting features.

(3) We compute domains of given sizes, whose outer diversity
is (close to) the highest possible, and we analyze how close
are various structured domains to these maximal values.

One of the takeaway messages of our work is that the domain of
group-separable preferences based on caterpillar trees (see Sec-
tion 2) is the most diverse one among those that we study, and has
many features that other domains often lack. Consequently, and
strengthening the message of Faliszewski et al. [21], we believe
that this domain should be used in numerical experiments on elec-
tions. Even if it does not capture reality in a given setting, it is so
special that studying it may lead to the discovery of hard-to-spot
phenomena.

We discuss related work throughout the paper, whenever rele-
vant. Omitted proofs are available in the appendix.

2 Preliminaries

For a positive integer ¢, by [t] we mean the set {1,2,...,¢}. Givenan
undirected graph G, by V(G) and E(G) we mean its sets of vertices
and edges, respectively. We use the Iverson bracket notation, i.e., for
a logical formula ¢, by [¢] we mean 1 if ¢ is true, and 0, otherwise.

Preference Orders, Domains, and Elections. Let C be a set
of m candidates. By L(C) we denote the set of all m! linear orders
over C, typically referred to as preference orders, votes, or rankings.
For each such ranking v and two candidates a,b € C, we write
a >, b to indicate that v ranks a ahead of b (i.e., according to v,
a is preferred to b). A preference domain (over C) is a subset D of
L(C). In particular, £(C) is the general domain. For a ranking v

and candidate c, by pos,(c) we mean the position of ¢ in v; the top
candidate has position 1, the next one has position 2, and so on.

An election is a pair E = (C, V), where C = {c1,...,cm} is a set
of candidates and V = (vy, ...,0;) is a collection of voters, each of
whom has a vote from £(C). To streamline the discussion, we use
the same symbol v; to refer both to the given voter and to his or
her vote. The exact meaning will always be clear from the context.
Given a domain D € £L(C), we say that E = (C, V) is a D-election
if all the voters in V have votes from D.

Sometimes it is convenient to treat a domain D € £(C) as an
election that contains a single voter for each of its preference orders.
In particular, we write UN to mean an election that contains one
copy of every possible order (so UN is simply £(C), viewed as an
election). For other domains, we typically do not introduce a second
name, but UN has already been used in preceding literature in the
context of the map of elections [35].

For two rankings u,v € L(C), their swap distance (also known
as Kendall’s t distance) is a number of pairs of candidates in C on
whose ordering u and v disagree, i.e.:

swap(u,0) = [{a,b e C:a>, bAD >, a}l.

The value swap(u, v) can be computed in time O(m+/log m) [8]. For
a domain D € L(C), we let swap(D,v) = minyep swap(u, v).

Structured Domains. Let us fix a size-m set of candidates C =
{c1,...,cm}. Below, we describe the preference domains over C
whose diversity we want to analyze.

Consider a connected, undirected graph G, such that V(G) = C
(we refer to such graphs as SP-graphs, or SP-trees in case G is also
acyclic). A ranking v € L(C) is single-peaked with respect to G
if for every t € [m], the subgraph induced by the t top-ranked
candidates from v is connected. SP(G) is the domain that consists
of all rankings that are single-peaked with respect to G (see, e.g.,
the work of Elkind et al. [12]). We focus on the following variants:

(1) SP is the classic single-peaked domain that consists of rank-
ings single-peaked with respect to a path (often called an
axis and denoted ¢1 > ¢z > - -+ > ¢py). In politics, the axis
may, e.g., indicate the progression from the most left-wing
candidate to the most right-wing one. SP is due to Black [5].
SPOC, introduced by Peters and Lackner [33], consists of
rankings single-peaked with respect to a cycle. SPOC pref-
erences appear, e.g., when people located in different time
zones want to choose a convenient time for an online meet-
ing. The name SPOC stands for single-peaked on a circle.

SP/DF is a domain introduced by Faliszewski et al. [21] and
consists of votes single-peaked with respect to a tree that
we obtain by taking a path and adding four vertices: two di-
rectly connected to one end of the path, and two directly con-
nected to the other end. The name SP/DF stands for single-
peaked/double-forked. Domains of rankings single-peaked
with respect to trees were introduced by Demange [10].

Whenever we speak of SP, SPOC, or SP/DF the exact number of
candidates and their positions in respective graphs will be clear
from the context (or will be irrelevant). We use this convention for
the other domains as well, omitting such details from their names.

A domain is single-crossing if it is possible to list its members as
01,02, ...,0p, so that, as we consider them from v; to vy, the relative

—~
DN
~

—
5SS
=

ordering of each pair of candidates a and b changes at most once.
Single-crossingness is due to Mirrlees [31] and Roberts [34].

(4) By SC, we mean a single-crossing domain sampled from
the space of all such domains using the algorithm of Szufa
et al. [35]: We generate votes iteratively, starting with some
arbitrary vote vg. In each iteration, given vote v;, we formv;41
by taking v;’s copy and swapping a randomly selected pair
of adjacent candidates that were not swapped in preceding
iterations. Altogether, we generate rankings vy, . . ., v(m) that

form our domain.

Note that the algorithm of Szufa et al. [35] does not sample single-
crossing domains uniformly at random (so far, the only known
algorithm for such uniform sampling requires exponential time).
Let T be an ordered, rooted tree, where each internal node has at
least two children and each leaf is labeled with a unique candidate
from C (we refer to such trees as GS-trees). A frontier of T is the
ranking of the candidates, obtained by reading the leaves of T
from left to right. Domain GS(T) consists exactly of those rankings
v € L(C) that are either a frontier of T or a frontier of a tree
obtained from T by reversing the order of some nodes’ children.
A domain D is group-separable if D = GS(T) for some T. We are
particularly interested in the following two such domains:

(5) GS/bal is a group-separable domain defined by balanced
binary trees, i.e., binary trees where each internal node has
exactly two children and for each two leaves, their distance
from the root differs at most by 1.

(6) GS/cat is a group-separable domain defined by caterpillar
binary trees, i.e., trees where each internal node has exactly
two children, of which at least one is a leaf.

Group-separable domains were introduced by Inada [25, 26], but
the above tree-based definition is due to Karpov [27].

Let d be some positive integer, and let x: C — R be a function
that associates the candidates with distinct points in R?. A ranking
v € L£(C) is consistent with x if there is a point x, € R? such that
for each two candidates a,b € C such that a >, b it holds that
the Euclidean distance between x, and x(a) is smaller than that
between x, and x(b). D(x) is the domain that includes exactly the
rankings consistent with x. Such domains are called Euclidean and
were studied, e.g., by Enelow and Hinich [14, 15]. We focus on:

(7) 1D-Int., 2D-Square, and 3D-Cube, where the position of each
candidate is sampled uniformly at random from, respectively,
[-1.1], [-1,1]% and [-1,1]°.

It is well-known that 1D-Int. is also a single-crossing domain, and
all its votes are single-peaked with respect to the axis obtained by
sorting the positions of the candidates.

SP, SC, all group-separable domains, and 1D-Int. are examples
of so-called Condorcet domains. That is, for every election with odd
number of votes from one of these domains, there is a ranking v
of the candidates such that if v ranks some candidate a over some
other candidate b, then a strict majority of voters prefers a to b.

Distance Between Elections. Isomorphic swap distance be-
tween two elections (with the same numbers of candidates and
the same numbers of voters) is a measure of their structural simi-
larity, introduced by Faliszewski et al. [20]. We extend it to apply to

elections with different numbers of voters (in essence, we pretend
to duplicate the votes so that the elections appear to be equal-sized).

Definition 2.1. For two elections E = (C,V) and F = (B, U) such
that |C| = |B|, where V = (v1,...,05) and U = (uy, ..., u), their
isomorphic swap distance is defined as follows (the indices of the
votes from V are taken modulo n, and the indices of the votes from
U are taken modulo k):

1 min Z swap(a(0i), Uz (i),

d E,F)=— i
swap (E, F) nkm[nircr]lgl[nk]mc—»BiE[nk]

where 7 and o are bijections, and by o(v;) we mean vote v; where
each candidate ¢ € C is replaced with candidate o(c) € B.

k-Kemeny and Inner Diversity. Let E = (C, V) be an election
and let R = {ry,...,ri} be a set of preference orders from £(C). By
the Kemeny score of R with respect to election E, we mean:

kemg (R) = Syey swap(R.0).

In other words, it is the sum of the swap distances of the election’s
votes to their closest rankings from R. The k-Kemeny score of an
election E, denoted k-kem(E), is the smallest Kemeny score of a
size-up-to-k set of rankings for this election. By Kemeny score we
mean the 1-Kemeny score. Computing the Kemeny score of a given
election is well-known to be hard [3, 24], even for the case of four
voters [4, 11]. The notion of the Kemeny score was the original
idea of Kemeny [29], whereas the extension to collections of rank-
ings was put forward by Faliszewski et al. [17], in the context of
election diversity. Specifically, they claimed that the appropriately
normalized weighted sum of an election’s k-Kemeny scores (for
varying k) captures its diversity. Indeed, the larger an election’s
k-Kemeny score, the more difficult it is to cluster its votes into k
groups, meaning that its votes are quite different from one another.
Consequently, these votes are diverse. The same view was taken
by Faliszewski et al. [19] and was recently applied to measure the
diversity of preference domains by Faliszewski et al. [21]. Specifi-
cally, given domain D over size-m candidate set, they defined its
Kemeny vector to be:

kem(D) = (1-kem(D)/|D|, 2-kem(D)/|D], ..., m-kem(D)/|D|)

and they said that a given domain Dy is more diverse than another
domain D5 (both over equal-sized candidate sets) if kem(D;) domi-
nates kem(Dy) or is close to dominating it; they did not formalize
this notion as they considered only a few domains.

We broadly refer to measures of diversity based on the difficulty
of clustering as capturing inner diversity.

3 Outer Diversity

Let C be a set of candidates and let D € £(C) be a domain over C.
By the average normalized swap distance of D, denoted ansd(D),
we mean the expected swap distance between a vote chosen from
L(C) uniformly at random and the closest vote in D, divided by the
maximal possible distance between two votes in .L(C). Formally:

ansd(D) = -3 Sue r(c) swap(D,u)/ (7).

The largest possible value of ansd(D) is 0.5, obtained when D
consists of a single vote, and the smallest one is 0, obtained for the
general domain. To ensure that outer diversity of a domain D is

Table 1: For each domain we give its size and the complexity
of finding its closest member (in terms of swap distance) to a
given input ranking. Running times marked with * do not
include the time needed for preprocessing.

Complexity of Finding
Domain Size Closest Ranking from D
GS(T) < 2m-l o(m?)
GS/cat 2m-1 O(mlogm)
GS/bal 2m-1 O(mlogm)
SP 2m-1 o(m?)
SP/DF 2+l _ 16 o(m%)
SPOC m2m=2 O(m?)
SP(T) - O(km*)
k = number of T’s leaves
SP(G) — NP-com.
SC 14 m(m-1)/2 o(m?)*
1ID-Int. 1+ m(m-1)/2 o(m?)*
2D-Square O(m*) O(m*)*
3D-Cube O(m®) o(m®)*

between 0 and 1 (where 0 means complete lack of diversity and 1
means full diversity), we define it as the following linear transfor-
mation of ansd(D).

Definition 3.1. For a domain D € L(C), its outer diversity is
defined as out-div(D) = 1 — 2 - ansd(D).

While outer- and inner diversity notions are based on different
principles, they are interrelated in several ways. For example, in-
ner diversity, as defined by Faliszewski et al. [17, 19, 21], relies on
analyzing k-Kemeny scores of given elections or domains, whereas
ansd(D) is simply the normalized k-Kemeny score of the input do-
main D, with respect to the UN election. Considered from a different
perspective, ansd(D) is equal to the smallest possible isomorphic
swap distance between UN and a D-election.

ProPoOsSITION 3.2. For every domain D C L(C), it holds that
ansd(D) = ming ;s ¢ p-election dswap (UN,E)/ (r;)

Since Faliszewski et al. [17] have shown that proximity to UN is
highly correlated with their form of inner diversity, we conclude
that both approaches are capturing the same high-level idea.

4 Computing Outer Diversity

For domains over sufficiently small candidate sets, it is possible to
compute outer diversity exactly. In the most basic approach, given a
domain D over candidate set C, we could simply compute the swap
distance between every vote in D and every vote in £ (C). Naturally,
this is very inefficient and computing outer diversity of, say, SP
with m candidates would require time O(m! - 2™~ ! - m+/log m); the
general domain has m! rankings, SP has 2Mm=1 of them, and it takes
O(m+/log m) time to compute the swap distance [8]. Fortunately,
there is a faster approach that given a domain D, for each i forms a
set D; of rankings at swap distance i from D.

PROPOSITION 4.1. There is an algorithm that given domain D
over m candidates (represented by listing its members), computes
out-div(D) in time O(m? - m!).

To compute outer diversity for larger candidate sets, we resort to
sampling. Namely, given a domain D over a size-m candidate set C,
we fix a number N, sample N rankings from £(C), for each sampled
ranking v we compute swap(D, v) and output the average of these
values, divided by (rg) This gives an estimate for ansd(D), based
on which we obtain out-div(D). However, to implement this idea
efficiently, we need fast algorithms for the following problem: Given
a ranking v and a domain D, compute swap(D, v). We dedicate the
rest of this section to seeking algorithms for this problem for various
domains, and to establishing its complexity.

On the outset, the problem can be even NP-hard. For example,
for each set of 4m candidates C = {c; j : i € [4], j € [m]}, let the
4-alignment domain contain each vote of the form {c11,...,c1,m} >
{co1,....cam}t > {e31,...,c3.m} > {ca1,...,cam}, in which the
order of the candidates, based on their second indices, is identical
in each block. Then we have the following hardness result (in
essence, for this domain the problem of finding a closest vote in
the domain becomes the problem of computing Kemeny score for 4
voters, known to be NP-hard [4, 11]).

THEOREM 4.2. Let D be the 4-alignment domain. Given vote v and
integer d € N it is NP-complete to decide whether swap(D,v) < d.

Despite this negative result, for most of our domains we find
efficient algorithms for computing the distance to a given vote (see
Table 1). In the following, we always use C = {c1, ..., ¢;n} to denote
the set of m candidates in the domain under consideration.

4.1 Single-Peaked Domains

Let us first consider the family of single-peaked domains. We note
that Faliszewski et al. [16, Theorem 4.5.] already gave a polynomial-
time algorithm for computing the distance between SP and a given
ranking, but their approach—based on dynamic programming—
required O(m?) time. We improve this algorithm to run in O(m?)
time. The main idea is to use dynamic programming to iteratively
compute the distance between a given ranking v and votes that
rank more and more bottom candidates as required by SP.

Assume that we are given a vote v and a societal axis ¢; > ¢ >
-+ > . For each £,r € {0,1,2,...,m} such that £ +r < m, let
Cy,r denote the set of the first £ and the last r candidates according
to >. Formally, we have Cp, = {c1,...,¢¢} U {cm+1-r,...,Cm}; bY
convention, for £ = 0 we have {c1,...,c,} = @, and for r = 0 we
have {¢+1-r,...,cm} = @. Then, by Up» we denote the set of all
votes u € L£(C) in which (a) candidates from C; are in the bottom
¢ + r positions, and (b) foreacht € {mym—1,....m—¢—-r+1},
the top t candidates of u form an interval within . Observe that
Uoo = L(C), whereas if £ + r = m, then Uy, = SP. We write
Agr to denote the minimal swap distance between v and u € Uy,
As we will show, all values of Az, can be computed efficiently in
Algorithm 1, using a recursive formula.

THEOREM 4.3. Algorithm 1 computes the distance between a given
vote and a single-peaked domain in time O(m?).

Proor. For the running time, observe that each of our loops is
over at most m elements, and we have at most two levels of nested

Algorithm 1 Distance between a ranking and SP

Input: Ranking v € £(C), societal axis ¢1 > - - > ¢y
PHASE 1, PRECOMPUTATION:

1: fori € [m] do

2 Ljj < 0,Rj; <0

3: fOI‘jE{i+1,...,m}d0Li,j <—Li,j,1+[c,- >UC]']

4: forje{i—l,.,.,l}dORj,i<—Rj+1,i+[ci >0 Cj]
PHASE 2, MAIN COMPUTATION:

50 Agp «— 0

6: for£ € [m—1] do Apo — Ap—10+Lem

7: forr € [m—1] do

8 Agr < Aor-1+Rims1-r

90 forte[m-r-1]do

10: Agy — min(Ap—1r + Lem—r, Aer—1+Revime1-r)
11: return minge(,) Ar-1,m-¢

loops. Each individual iteration can be completed in time O(1). The
final minimum in line 11 requires O(m) time.

Let us now analyze the correctness of the algorithm. For each
i,j € [m], withi < j, we let L; ; be the number of candidates in
{ci, ciy1, ..., cj} that o ranks below c;. Consequently, we have that
Lij =0and,if i < j, then either L; j = L; j—1 + 1 (if v ranks ¢; ahead
of ¢j) or Ljj = L; j—1 (otherwise). Similarly, for j < i, R; j is the
number of candidates in {cj, cj+1, ..., c;} that v ranks below ¢; (R; ;
satisfies analogous relations as L; j). The algorithm computes the
values of L; j and R;; in PHASE 1.

Then, in PHASE 2, the algorithm computes all the values Ay
for ¢,r € [m] such that £ +r < m — 1. Let us fix such ¢ and r.
We note that every ranking in Up, either ranks ¢, or ¢p41-r on
position m+1—¢ —r (i.e., on the £ + r’th position from the bottom).
Indeed, for all rankings in Up, we have that the first m+1—-¢ —r
candidates form an interval within . However, by definition, all of
these candidates, except for the one ranked on position m—£—r+1,
belong to C\ Cr,,. Consequently, to form the interval, the candidate
on position m — £ — r + 1 must be either c¢ or ¢y+1-r. Let Up,r be a
subset of votes from Up_1 , that additionally have c, in the position
m+1—¢—r. Similarly, let Ug ,, be a subset of votes from Up ,,—1 with
Cm41_r in the position m+1— £ —r. By the preceding argument, we
have that Uy, = Up,r U Upy (if £ = 0, we assume U, = @, if r = 0,
Up,r = @). Thus, Ag, = min(swap(Up,, v), swap(Uy,r,0)).

Let u be a vote in Up,r that minimizes swap(u, 0). Observe that
m — ¢ — r first candidates in u appear in the same relative order as
they appear in v (otherwise, ordering them as in v would decrease
the distance). Let u” be a vote obtained from u by ensuring that it
ranks its first m — £ — r + 1 candidates in the same relative order as
in v (in other words, u’ is the same as u, except that it might rank
c¢ some positions earlier). It must be that 4’ € Up_1,. Moreover,
we can show that 4’ minimizes swap distance to v among rankings
in Up—1r, ie, swap(u’,v) = Ap—1,. Indeed, the first m — ¢ — r +
1 candidates are in the optimal order (the same as in v), and if
rearranging the last £ +r — 1 candidates could decrease the distance,
we could also rearrange them in the same way in u. Now, when
we look at the inversions counted in swap(v, u), we see that we
count all inversions that we count in swap(v, u’) and additionally
those from having c, after all of the first m — £ — r candidates. But

those are exactly the inversions we store in L¢ ;,—r. Thus, we get
that swap(Ug,r,0) = Ag—1,r + Lg,m—r. Analogously, we can prove
that swap(Uy,r,v) = Ag,r—1 + Re+1,m+1-r. This way, we obtain the
recursive equation used in line 10, as well as the equations from
lines 6 and 8 (in their cases either r = 0 or ¢ = 0 so respective parts
of the equation disappear).

Finally, for ¢ € [m], we observe that Ay_1,,—, is the minimal
distance from v to a single-peaked ranking u in which ¢ is the top
candidate. Thus, to get the overall smallest distance, we take the
minimum from all these values.]

Every vote in SPOC is single-peaked along the axis obtained
by “cutting” the cycle between some two adjacent candidates [33].
There are m such axes, hence we can run Algorithm 1 for each of
them and choose the minimum distance. This gives as an algorithm
running in time O(m?). We can improve that and get an O(m?)
algorithm by a similar dynamic programming algorithm as for SP.

THEOREM 4.4. There is an algorithm that computes the swap dis-
tance between a given vote and SPOC in time O(m?).

We can also extend Algorithm 1 to work for the case of SP(T),
where T is an SP-tree. If T has k leaves (i.e., k nodes of degree 1), then
the algorithm requires O(km¥) time. The main idea is to implement
dynamic programming over sets of connected vertices in T, of which
there are O(m¥).

THEOREM 4.5. There is an algorithm that given an SP-tree that
has k leaves, computes the swap distance between a given vote and
SP(T) in time O(kmF).

Given the algorithms for SP, SPOC, and single-peaked-on-a-tree
domains, one could ask for a general polynomial-time algorithm
that works for all single-peaked-on-a-graph domains. We prove
that in this general case the problem is NP-complete.

THEOREM 4.6. Given a graph G, a votev € L(V(G)), and an
integer d € N, deciding if swap(SP(G),v) < d is NP-complete.

4.2 Group-Separable Domains

For a group-separable domain with an arbitrary tree, we show an
algorithm that computes the distance to a given vote in time O(m?).

Assume we are given a vote v and a group separable domain
D = GS(T). Then, observe that finding vote u € D that minimizes
swap(u, v) is equivalent to reversing the order of some of the chil-
dren of each internal node of T so that the frontier u of T minimizes
swap(u, v). Moreover, the change in distance we get by reversing
the order of the children of one particular node is independent of
the configuration of the other nodes. Hence, we can consider inter-
nal nodes of tree T one by one, and for each decide in which of the
two ways its children should be ordered. Fix such an arbitrary node
with k children, and let C1, Cy, . . ., Cy. denote the sets of candidates
associated with leaves that are descendants of each of the children,
when looking from left to right. This configuration would incur the
distance of:

Yi<i<j<k {(ab) € Ci X Cj : b >y a}l,

while reversing the order gives the distance of:

Yi<icj<k H{(ab) € Ci xCj:a =y b}|.

Thus, we compute the values of both sums and choose the configu-
ration that leads to the lower one (or make an arbitrary choice in
case of a tie). When considering all internal nodes of T in this way,
we check each pair of candidates exactly once. Hence, the running
time of this algorithm is O(m?).

THEOREM 4.7. There is an algorithm that given a GS-tree T and a
vote v, computes swap(GS(T),) in time O(m?).

For GS/bal and GS/cat, we give algorithms running in time
O(mlog m). Both algorithms follow the general approach outlined
above, but for GS/bal we speed up computing inversions using an
approach similar to that from the classic Merge Sort algorithm, and
for GS/cat we use a special data structure.

THEOREM 4.8. There are algorithms that compute the swap dis-
tance between a given vote and GS/cat and GS/bal (represented via
GS-trees) in time O(mlog m).

4.3 Single-Crossing and Euclidean Domains

Both single-crossing and Euclidean domains contain polynomially
many votes, so a brute-force algorithm that given a ranking v com-
putes its swap distance to all the rankings in the domain runs in
polynomial time. For example, for SC, which contains O(m?) rank-
ings, it would run in time O(m3+/log m) [8]. However, as we typi-
cally want to compute the distance from many votes to our domains,
we get better running times via appropriate preprocessing. Briefly
put, for each domain D € {SC, 1D-Int., 2D-Square, 3D-Cube} we
can arrange the rankings from these domains on a tree T(D)—or
even on a path, in case of 1D-Int. and SC—so that two neighboring
rankings are at swap distance one. Then, to compute a distance
from a given ranking v to each member of the domain, we compute
the distance between v and an arbitrary ranking in the domain, and
then traverse the tree, updating the distance on the fly, so for each
member of the domain we get its swap distance to v. Building T(D)
adds, at most, factor O(m?) to the complexity of computing the
rankings from the domain.

THEOREM 4.9. For each D that is either SC or a Euclidean domain,
there is an algorithm that given a ranking v and tree T(D) computes
swap(D, v) in time O(|D]).

5 Analysis of the Domains

Let us now analyze the outer diversity of our domains. We first con-
sider the case of 8 candidates, and then we analyze how the outer
diversities of our domains change as the number of candidates
grows. The case of 8 candidates is interesting for the following,
somewhat interrelated, reasons: (1) Faliszewski et al. [21] largely
focused on this case, and we want our results to be comparable to
theirs; (2) The case of 8 candidates is among the most popular ones
in experiments within computational social choice [7]; (3) Consid-
ering only 8 candidates allows us to perform exact computations.

5.1 Outer-Diversity for Eight Candidates

For each of our domains, in Table 2 we provide its size, average
normalized swap distance, outer diversity value, the number of
votes in £(C) that are exactly at swap distance 1 from this domain
(we refer to this as the size of the direct neighborhood), and the latter

Table 2: Size, average normalized swap distance, outer di-
versity, and size of direct neighborhood (also normalized) of
various domains, for the case of 8 candidates. The standard
deviation of outer diversity for domains that we need to sam-
ple (SC, 1D-Int., 2D-Square, 3D-Cube) is no larger than 0.005
(for ten samples).

Domain D |D| ansd(D) out-div(D) dist-1 dist-1/|D|

Vote+Its Rev. 2 0.384 0.232 14 7
GS/cat 128 0.194 0.613 704 5.5
GS/bal 128 0.257 0.486 384 3

SP 128 0.284 0.432 384 3
SP/DF 496 0.239 0.522 968 1.952
SPOC 512 0.196 0.608 1280 2.5

SC 29 0.316 0.368 130.3 4.493
1D-Int. 29 0.311 0.378 134.8 4.648

2D-Square 351 0.217 0.566 988.0 2.815
3D-Cube 2311 0.138 0.724 3878.2 1.678
Largest Cond. 224 0.282 0.435 544 2.429

number normalized by the size of the domain (we analyze these
values later on). Additionally, the table also includes LC domain, i.e.,
the largest Condorcet domain over 8 candidates, recently discovered
by Leedham-Green et al. [30]. Sorting our domains with respect to
their outer diversity values gives the following ranking:

3D-Cube {GS/cat , SPOC} o 2D-Square . SP/DF

0.719 0.613 0.608 0.565 0.522
GS/bal , (LC , SP 1D-Int. , SC
s 0.486 s {0.435 0.432} - { 0.386 0.37}‘

It is quite interesting that even though LC is the largest Condorcet
domain over 8 candidates, its outer diversity is very similar to that
of SP, which contains nearly half of the votes, and it is notably
lower than outer diversities of GS/cat and GS/bal (both of the
same cardinality as SP). However, a closer analysis of this domain
confirms that it is not as diverse as one might expect given its size.
For example, there are only 4 candidates that are ever ranked first in
its votes, and 4 different candidate that are ever ranked last (indeed,
the domain has further restrictions along these lines, which we omit
due to limited space). Next, we note that our ranking is very similar
to an analogous one obtained by Faliszewski et al. [21] based on
inner diversity (also for the case of 8 candidates; note in their case
there are no specific values measuring diversity and the ranking
was obtained by comparing Kemeny vectors of the domains):

GS/cat > 3D-Cube > {2D-Square, SPOC}
> {SP/DF, GS/bal} > SP > {SC, 1D-Int.}.

Both rankings put 3D-Cube and GS/cat as the most diverse domains,
and they both put 1D-Int. and SC as the least diverse ones. Further,
they both rank domains from the same families identically: SPOC
is more diverse than SP/DF, which is more diverse than SP, and
GS/cat is more diverse than GS/bal (not to mention the ranking of
the Euclidean domains). The fact that 3D-Cube has higher outer
diversity than GS/cat, as well as the tie between GS/cat and SPOC,
are artifacts of considering only 8 candidates and for larger numbers
of candidates these relations change (see Section 5.2).

Below, we analyze two features of our domains that are not di-
rectly related to capturing diversity, but which manifest themselves
during outer diversity computations and which shed some light on
how our domains are arranged within the general domain.

5.1.1 Direct Neighborhoods The size of the direct neighborhood of
a domain, normalized by the sizes of this domains, is interesting as it
gives some intuition on how the domain is “spread” over £(C). For
example, the domain that consists of a single ranking and its reverse
is “maximally spread:” Its two members are as far apart as possible
and, as we consider 8 candidates, there are exactly 7 rankings next
to each of the domain members, neither of which belongs to the
domain. Among our structured domains, GS/cat is the most spread
one, with the value of 5.5, and 3D-Cube is the least spread, with the
value of 1.678. Hence, members of 3D-Cube are packed quite closely
within £(C). While one could think that this is a consequence of
3D-Cube’s large size, L(C) contains more than 16 rankings for
every ranking in 3D-Cube. It is interesting that for some domains
the normalized sizes of their direct neighborhoods are appealing,
round numbers (such as 3 for GS/bal or 5.5 for GS/cat). For GS/bal
and GS/cat, we show that this is not a mere coincidence; for the
other domains we leave this issue open.

PROPOSITION 5.1. Let D be the GS/bal domain for m = 2 can-
didates. For every ranking v € D there are exactly 28=1 — 1 unique

ones from L(C) \ D at swap distance 1 fromv.

PROPOSITION 5.2. Consider GS/cat over m > 4 candidates. For
every ranking v € GS/cat there are exactly m — 3 unique ones from
L(C)\ D at swap distance 1 from v, and one ranking from L(C) that
is at swap distance 1 from v and one other ranking in GS/cat.

5.1.2 Popularity Given a domain D € £(C) and a ranking v € D,
we define its popularity, denoted pop(v), as the number of rankings
from L(C) for which v is the closest member of D (if for a given
ranking u € L(C) there are p members of D that are closest to
u, then u contributes 1/p to the popularity of each of them). The
average popularity of a ranking in |D| is equal to [£(C)|/|D| and by
normalized popularity of a ranking v we mean the ratio between its
popularity and this value. Namely, we have npop(v) = ILE)%WD\'
Popularity gives hints on both the internal symmetry of a domain,
and the arrangement of its rankings in £(C). Indeed, the more
uniform are the popularity values of the rankings, the more likely
it is that they are symmetrically spread within £(C). On the other
hand, a mixture of high and low popularity values suggests that the
more popular rankings are on the “outskirts” of the domain, and the
less popular ones belong to its “interior” We show the normalized
popularities of the rankings in our domains in Figure 1, on the
microscope plots of Faliszewski et al. [17].

REMARK 5.1. Let D be a domain. A microscope plot of D presents
each ranking from the domain as a dot, whose Euclidean distance
from the other dots is as similar to the swap distance between the re-
spective rankings as possible (exact correspondence between Euclidean
distances and swap distances is, typically, impossible to achieve, but
microscopes still give useful intuitions).

The plots show some remarkable features of our domains. The
first observation is that for both GS/bal and GS/cat, all rankings

have equal popularity, equal to the expected one. Indeed, this is a
general feature of group separable domains.

ProrosITION 5.3. Let D = GS(T) be a group separable domain
over candidate set C. Then, for eachv € GS(T), npop(v) = 1.

The other domains show a high variance in popularity among
their members. For example, the most popular rankings in SP are
the societal axis and its reverse, whereas most rankings in between
these two have low popularity. Overall, group-separable domains
are perfectly symmetric and clearly stand out.

5.2 Outer Diversity for Larger Candidate Sets

When considering more than eight candidates, we compute outer
diversity using the sampling approach, with sample size N = 1000
(see Section 4). For each domain, we repeat this computation 10
times, to also obtain standard deviation (it is so small as to be nearly
invisible on our plots, which justifies the use of sampling).

In Figure 3, we show how the outer diversity of our domains
evolves as a function of the number m of candidates, for m €
{2,3,...,20}. In particular, we note that the outer diversity of
polynomially-sized Euclidean domains drops much more rapidly
than that of the other, exponential-sized, ones. It is also notable how
SPOC becomes less diverse than GS/cat (for 9 candidates or more)
and how GS/cat becomes the most diverse among our domains
(for 12 candidates or more). Further, GS/cat is consistently more
diverse than GS/bal. As these two domains are extreme among
the group-separable ones (one uses the tallest binary GS-tree and
the other one the shortest), we ask if GS/cat is the most diverse
group-separable domain and GS/bal is the least diverse one.

It is interesting if outer diversity of our domains eventually
approaches zero, or if it stays bounded away from it. As shown
below, the former happens, e.g., if the size of the domain is bounded
by a constant, whereas the latter happens, e.g., for GS/cat. Hence,
outer diversity of a domain may be bounded away from zero even if
its size grows notably more slowly than that of the general domain
(as a function of the number of candidates).

PROPOSITION 5.4. Let us fix value k and let D, D3, ... be a se-
quence of domains, where each Dy, contains at most k rankings over
m candidates. Then limy;,—,c out-div(D,,) = 0.

PROPOSITION 5.5. If the number of candidates is even, then
out-div(GS/cat) > 1/2.

Proor. Take a GS/cat domain for candidate set C = {c1,...,cm},
where m is even, defined via binary caterpillar tree where the leaf
closest to the root is c1, the next one is ¢y, and so on.

Let v be some arbitrary ranking from £(C). To transform it into
a member of GS/cat we can, for example, sort its top half in the
increasing order of the candidate indices, and sort the bottom half
in the decreasing order of candidate indices. As shown by Boehmer
et al. [6], ensuring that candidate indices first increase and then
decrease is a necessary and sufficient condition for a ranking to
belong to GS/cat. The number of swaps needed to implement such
sorting in the top half of the ranking is equal to the number of
inversions there. Since the expected number of inversions in a
random permutation is %n(n — 1), when considering all votes from
L(C), on average we need to perform %(m/Z)(m/Z— 1) = llém(m—

GS/cat 2D-Square SP/DF

@ 0 ®o 3

o oF o X F ¥
®e Y g ¥ : ’ Rt

X Sy T T $ 3 -0ty

S e
F43 k. 3 s &gx
i 3 ; ! ﬁ%‘;f
S e g ‘ X % \‘}g

GS/bal Largest Cond. SP SsC
/ ¢} 4+§‘
—
8’@ (_D
: . 13
® ° o
° 0 =z

Figure 1: Microscope plots of our domains, where each dot/cross represents a ranking from the domain, colored according to
its normalized popularity (see Remark 5.1). Rankings with normalized popularity below 1 are marked with crosses, and the
remaining ones with dots. Dots marking rankings with normalized popularity equal to exactly 1 have a black border.

1.0 1.0
GS/cat
—— 3D-Cube
—— SPOC
0.8 —— 2D-Sq. 0.8
> >
= =
£ 0.6 9 0.6
[[T
2 2t
o [a T
[— |
Zoa Loa
3 3 |
— ~Max GS/cat
— IC e GS/bal
0.2 0.2 Thres.-IC e LC
e 2D-Sq. SP
e SPOC 1D-Int.
e SP/DF e SC
0.0 : ! : : : : 0.0¢ : :
2 5 8 11 14 17 20 0 200 400

Number of Candidates Domain Size

Figure 2: Outer diversity of several structured domains as
a function of the number of candidates (on the left), or as a
function of their size (on the right; including approximations
of most diverse domains). For SPOC and 3D-Cube, we omit
outer diversity for 20 candidates, due to computation time.

2) swaps in their top halves, and the same number of swaps in their
bottom halves. Altogether, we need to perform %m(m —2) swaps per

ranking in £(C), so we have ansd(GS/cat) < :E::f;;z = % . ﬁ—:f
This means that we have out-div(GS/cat) > 1 — % . ﬁ:% > % O

6 Most Diverse Domains

Given a number k, we ask for a domain of k rankings with the
highest outer diversity value. As per our observation in Section 3,
we can compute such a domain by solving the k-Kemeny problem
for the UN election using, e.g., integer linear programming (ILP).!
Unfortunately, solving this ILP is challenging, as its size for m
candidates is ©((m!)?). Hence, for m > 6 we use the following
heuristics (to compute the outer diversity of the domains produced
by them, we use the sampling approach, with N = 1000 samples):

(1) We sample k rankings uniformly at random from £(C) (this
is known as sampling from impartial culture, IC).

(2) We sample k rankings from IC and perform simulated an-
nealing (technical details available in the Appendix D.1).

!Finding k rankings that achieve the optimal k-Kemeny score for UN can be formulated
as the k-MEDIAN clustering applied on the metric space of all possible rankings under
the swap distance. We use the standard ILP formulation for this problem.

o
R .

e~ Max
GS/cat T
GS/bal

~Max
SP —— 2D-Square

8 12 1 2 5 8 12 16 2 5 8 12 16
Number of Candidates Number of Candidates

2 5
Number of Candidates

Figure 3: Outer diversity of several structured domains as a
function of the number of candidates, compared to the outer
diversity of (an approximation of) the most diverse domain
of the same size.

We also use a heuristic that does not allow us to control the size of
the domain, but selects rankings that are spread out over £(C):
(3) We choose a threshold t € {5,6,...,25} and keep on sam-

pling rankings from IC (altogether 10* of them), keeping only
those whose swap distance from the closest already-kept one
is greater or equal to ¢.

Instead of using this heuristic, we would rather keep on selecting

rankings that are at the largest possible swap distance from those

previously selected, but finding such rankings is NP-complete.

THEOREM 6.1. Given a positive integer t and a domain D C L(C),
represented by explicitly listing its rankings, deciding if there is a
ranking v such that min,ep swap(u,v) > t is NP-complete.

On the plots, we denote domains computed using the first heuris-
tic as IC, those computed using simulated annealing as ~Max, and
those using the threshold approach as Thres.-IC. In Figure 2 (right)
we show how the outer diversities of these domains for the case
of m = 8 candidates, as we increase k (for the first two heuristics)
or decrease t (for the third one). We see that for each given size of
the domain, all three heuristics produce very similar results. We
interpret this as suggesting that, indeed, we get close to the highest
possible diversities. For the case of 6 candidates we also compared
our heuristically computed domains to the optimal ones, obtained
using ILP, and the results were nearly identical (see Appendix D.1).
Figure 2 (right) also includes points corresponding to our structured
domains, illustrating how far off they are from the most diverse
domains of their size.

In Figure 3, for each domain D € {SC, GS/cat, GS/bal, SP,
2D-Square}, we plot the outer diversity of this domain and the
outer diversity of the most diverse domain of size |D| (as computed
using our second heuristic) as a function of the number of candi-
dates (for up to 16 of them, as beyond this number computations

proved too intensive). In particular, we see that for polynomial-sized
domains (SC and 2D-Square), the diversity of the most diverse do-
mains seems to be dropping up to 16 candidates. In contrast, for SP,
GS/bal, and GS/cat, which are all of size 2m=1 the outer diversity
of the most diverse domain seems to stabilize around the value 0.7
(indeed, by Proposition 5.5, we know that it cannot go below 0.5;
proving a stronger bound would be interesting).

7 Conclusions

Our main conclusion is that outer diversity is a useful, practical
measure of domain diversity. Using it, we have found that GS/cat
sharply stands out from many other structured domains in various
respects and, so, we recommend its use in experiments. Throughout
the paper, we have made a number of observations, and we have
explained some of them theoretically. We propose seeking such
explanations for the remaining observations as future work.

Acknowledgments

Tomasz Was was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/X038548/1. This
project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 101002854).

European Research Council

References

[1] M. Ammann and C. Puppe. 2025. Preference Diversity. Review of Economic Design
(2025). Online First.

[2] C.Baharav, A. Constantinescu, and R. Wattenhofer. 2025. Condorcet Winners and
Anscombe’s Paradox Under Weighted Binary Voting. In Proceedings of AAMAS-
2025.179-187.

[3] J. Bartholdi, III, C. Tovey, and M. Trick. 1989. Voting Schemes for Which it Can
Be Difficult to Tell Who Won The Election. Social Choice and Welfare 6, 2 (1989),
157-165.

[4] T.Biedl F.J. Brandenburg, and X. Deng. 2009. On the Complexity of Crossings
in Permutations. Discrete Mathematics 309, 7 (2009), 1813-1823.

[5] D.Black. 1958. The Theory of Committees and Elections. Cambridge University
Press.

[6] N. Boehmer, R. Bredereck, E. Elkind, P. Faliszewski, and S. Szufa. 2022. Ex-
pected Frequency Matrices of Elections: Computation, Geometry, and Preference
Learning. In Proceedings of NeurIPS-2022.

[7] N.Boehmer, P. Faliszewski, L. Janeczko, A. Kaczmarczyk, G. Lisowski, G. Pier-
czynski, S. Rey, D. Stolicki, S. Szufa, and T. Was. 2024. Guide to Numerical
Experiments on Elections in Computational Social Choice. In Proceedings of
IJCAI-2024. 7962-7970.

(8]

=
&

=
)

oy
o)

™
2

@
i

T. Chan and M. Patrascu. 2010. Counting Inversions, Offline Orthogonal Range
Counting, and Related Problems. In Proceedings of SODA-10. 161-173.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. 2001. Introduction to Algorithms
(second ed.). MIT Press/McGraw Hill.

G. Demange. 1982. Single-Peaked Orders on a Tree. Mathematical Social Sciences
3,4 (1982), 389-396.

C.Dwork, R. Kumar, M. Naor, and D. Sivakumar. 2001. Rank Aggregation Methods
for the Web. In Proceedings of WWW-01. 613-622.

E. Elkind, M. Lackner, and D. Peters. 2017. Structured Preferences. In Trends in
Computational Social Choice, U. Endriss (Ed.). AI Access Foundation, 187-207.
E. Elkind, M. Lackner, and D. Peters. 2022. Preference Restrictions in Computational
Social Choice: A Survey. Technical Report arXiv.2205.09092 [cs.GT]. arXiv.org.
J. Enelow and M. Hinich. 1984. The Spatial Theory of Voting: An Introduction.
Cambridge University Press.

J. Enelow and M. Hinich. 1990. Advances in the Spatial Theory of Voting. Cambridge
University Press.

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. 2014. The Complexity of
Manipulative Attacks in Nearly Single-Peaked Electorates. Artificial Intelligence
207 (2014), 69-99.

P. Faliszewski, A. Kaczmarczyk, K. Sornat, S. Szufa, and T. Was. 2023. Diversity,
Agreement, and Polarization in Elections. In Proceedings of IJCAI-2023. 2684~
2692.

P. Faliszewski, A. Karpov, and S. Obraztsova. 2022. The complexity of election
problems with group-separable preferences. Autonomous Agents and Multi-Agent
Systems 36, 1 (2022), 18.

P. Faliszewski, J. Mertlova, P. Nunn, S. Szufa, and T. Was. 2025. Distances Between
Top-Truncated Elections of Different Sizes. In Proceedings of AAAI-2025. 13823~
13830.

P. Faliszewski, P. Skowron, A. Slinko, K. Sornat, S. Szufa, and N. Talmon. 2025.
How Similar Are Two Elections? J. Comput. System Sci. 150 (2025), 103632.

P. Faliszewski, K. Sornat, S. Szufa, and T. Was. 2025. Diversity of Structured Do-
mains via k-Kemeny Scores. Technical Report arXiv:2509.15812 [cs.GT]. arXiv.org.
M. Garey and D. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company.

V. Hashemi and U. Endriss. 2014. Measuring Diversity of Preferences in a Group.
In Proceedings of ECAI-2014. 423-428.

E. Hemaspaandra, H. Spakowski, and J. Vogel. 2005. The Complexity of Kemeny
Elections. Theoretical Computer Science 349, 3 (2005), 382-391.

K. Inada. 1964. A Note on the Simple Majority Decision Rule. Econometrica 32,
32 (1964), 525-531.

K. Inada. 1969. The Simple Majority Decision Rule. Econometrica 37, 3 (1969),
490-506.

A. Karpov. 2019. On the number of group-separable preference profiles. Group
Decision and Negotiation 28, 3 (2019), 501-517.

A. Karpov, K. Markstrom, S. Riis, and B. Zhou. 2024. Local Diversity of Condorcet
Domains. Technical Report arXiv:2401.11912 [econTH]. arXiv.org.

J. Kemeny. 1959. Mathematics Without Numbers. Daedalus 88 (1959), 577-591.
C. Leedham-Green, K. Markstrom, and S. Riis. 2024. The Largest Condorcet
Domain on 8 Alternatives. Social Choice and Welfare 62, 1 (2024), 109-116.

J. Mirrlees. 1971. An Exploration in the Theory of Optimal Income Taxation.
Review of Economic Studies 38 (1971), 175-208.

K. Nehring and C. Puppe. 2002. A Theory of Diversity. Econometrica 70, 3 (2002),
1155-1198.

D. Peters and M. Lackner. 2020. Preferences Single-Peaked on a Circle. Journal
of Artificial Intelligence Research 68 (2020), 463-502.

K. Roberts. 1977. Voting Over Income Tax Schedules. Journal of Public Economics
8,3 (1977), 329-340.

S. Szufa, N. Boehmer, R. Bredereck, P. Faliszewski, R. Niedermeier, P. Skowron, A.
Slinko, and N. Talmon. 2025. Drawing a map of elections. Artificial Intelligence
343 (2025), 104332.

Algorithm 2 Computing outer diversity by BFS

Input: Domain D over candidate set C = {c1,...,cm}
1: Dy « D,‘i «—0
2: while U;‘:o D; # L(C) do

3: Dit1=10

4 forov € D; do

5 for u such that swap(u,0) = 1 do

6 ifu¢ Ujgo Dj: Diy1 < D; U {u}
7 i—i+1

8: return 1-— 2(% Z;..:Oj -1Dj)

A Missing Proof for Section 3
PROPOSITION 3.2. For every domain D C L(C), it holds that
ansd(D) = ming js q p-election dswap (UN,E)/ (r;z)

Proor. Fix election E = (C, V) yielding the minimal distance.
Without loss of generality, we can assume that the number of votes

in V is a multiple of m!, i.e, V = {v1,...,0.pu} for some k € N,
because creating k additional copies of all votes does not affect
the isomorphic swap distance. Let uy, . .., ug.,, be copies of voters

in UN as denoted in Definition 2.1 and 7 : [k - m!] — [k - m!]
be a matching of voters yielding the minimum distance. We can
assume that the matching of candidates, o, is the identity since for
the distance to UN every matching of candidates gives the same
sum of distances.

Observe that swap(u;, v, (;)) = swap(D, u;), forevery i € [k-m!]
as otherwise dswap (UN, E) could be decreased by exchanging v, (;)
for v yielding the minimum and keeping all other voters as is. This
also implies that for each i € [m!] and ¢ € [k — 1], we have
swap (Ui, Uy (j)) = SWaP (Ui+e-mls U (i+2-m!))- Then, we get

2res(c)swap(D,r) = Yicm!] swap(D, u;)
= Yie[m!] SWap(ui, vy (;))
= & Diclk-m] SWap(ui, vy ()
= m! - dsyap (E, UN),
which yields the thesis. O

B Additional Material for Section 4

In this appendix, we provide further details on algorithmic tech-
niques for establishing outer diversity of given domains.

Our exact algorithm, given as Algorithm 2 proceeds as follows:
Given domain D, we form a sequence of sets, Dy, D1, .. ., such that
for each i, D; contains rankings that are at swap distance i from D.
For each i, we compute D;;1 by considering all the votes that can be
obtained from those in D; by a single swap of adjacent candidates,
and include in Djy those that do not belong to Uj’:o D;j. Given Dy,
Dy, ..., we compute ansd(D) as the weighted sum of their sizes, and
out-div(D) as 1 — 2ansd(D). Fast implementation requires storing
each D; individually, as well as the growing union of these sets, for
increasing values of i.

PrROPOSITION 4.1. There is an algorithm that given domain D
over m candidates (represented by listing its members), computes
out-div(D) in time O(m? - m!).

ProoF. We use Algorithm 2, whose correctness follows directly
from the definitions of ansd(D) and out-div(D). In line 6 of the

algorithm, for each vote v € L(C) we consider all m — 1 votes u
obtained from v by a single swap of adjacent candidates, resulting in
O(m - m!) memberships checks. Rankings from U;":o Dj are stored
in a trie (prefix tree), which allows O(m)-time membership checks
and insertions. For the current iteration i, we store only sets D; and
Di+1 (each taking O(m - m!) space) while retaining the values |Dj|
for j < i. Hence, the computational bottleneck is line 6 executed
O(m - m!) times, each taking O(m) time, leading to a total running
time of O(m? - m!). O

THEOREM 4.2. Let D be the 4-alignment domain. Given vote v and
integer d € N it is NP-complete to decide whether swap(D,v) < d.

Proor. The verification is straightforward. Given the vote in
D that yields the closest distance to v, we can check whether this
distance is larger than d in polynomial time.

To show hardness, we give a reduction from KEMENYON4VOTEs.
In this problem we are given a candidate set C = {c1,...,cm},
four votes v1,0v2,v3,v4 € L(C), and an integer d € N, and we ask
whether there exists a ranking u € £(C) for which it holds that
Zie[4] SWap(v;, u) < d. This is known to be NP-complete [4, 11].

Now, for each instance of KEMENYON4VOTES, let us construct
an instance of our problem. To this end, let C’ = {cij:i€[4],j€
[m]} andleto € L£L(C’) be a concatenation of votes v1, v2, v3, and vy,
ie,cij o civjr,if and only if, i < i’ ori =i" and cj >, cjr. Also,
for every ranking u € £L(C) let f(u) denote a ranking in £(C’)
that is a concatenation of 4 copies of u, i.e., ¢; = Fu) €7, if and
only if, i < i’ ori =i and ¢j >y cjr. Then, 4-agreement domain
can be alternatively written as D = {f(u) : u € L(C)}. Moreover,
swap (v, f(u)) = X;e[4] SWap(v;, u), for each u € L(C). Therefore,
indeed, there exists u € L(C) such that };c[4] swap(v;, u) < d, if
and only if, swap(D,v) < d. O

Next, following the sampling approach, we give detailed descrip-
tions for computing a distance between a given vote v and domain
D, where D is either SPOC, SP(T), GS/cat, GS/bal, SC, or Euclidean
domain.

B.1 Algorithms for Single-Peaked Domains

Assume we are given a vote v and single-peaked-on-a-cycle domain
with cycle (c1, ..., ¢m). For convenience, we will sometimes allow
candidate indices to go over m and treat them as if they cycle over,
i.e., citm = cj for each i € [m].

For each i € [m] and j € {0,1,...,m — 1}, let C;;+; denote
the set of candidates {c;, ci41, ..., ci+j} that form an interval in the
cycle. Then, let U ;1 be a subset containing all votes u that rank
candidates from Cj ;+j as top j+1 candidates and for each t € [j+1]
the first ¢ candidates in u form an interval in the cycle. Also, let
Aji+j denote the minimum swap distance from v to a vote in Uj ;.
These can be efficiently computed using Algorithm 3.

THEOREM B.1. Algorithm 3 computes the distance between a given
vote and a single-peaked-on-a-circle domain in time O(m?).

Proor. For the running time, we observe that the loops in Al-
gorithm 3 are at most 2-nested, over at most m elements, and each
individual iteration runs in time O(1). The final minimum in line
14 runs in time O(m), but it is not part of any loop.

Algorithm 3 Distance between a ranking and SPOC

Input: Vote v € L(C), societal axis c1 > -+ > ¢
PHASE 1, PRECOMPUTATION:
: fori € [m] do ciym < ci
. fori € [m] do
Lii < 0,Riymi < 0
for je [m—1]do Ljjyj < Lijjrj-1+ [civj >0 cil
for j € [m—i—1] do Liym,i+m+j < Lii+j
for j € [m—1] do Rixm—j,i < Rivm—j+1,i + [Civm—j >0 Ci]
PHASE 2, MAIN COMPUTATION:
7: fori € [m]do Ajj < Lijtm-1, Am+im+i < Aii
8: forr € [m—2] do
9. forie[2m—r]do
10: Ajjvr < min(Agjrr—1 + Livri+m—1, Ai+1,i+r + Ritr+1,0)
11: return min;_[,,] Aii+m-2

AN A S

For the correctness, similarly as in the proof of Theorem 4.3, we
first note that for each i € [m],r € {0,...,m — 1} in L; ;4 ; we store
the number of candidates in {c;, ci+1,...,ci+j} that are preferred
over ¢; in v (in Algorithm 1 we counted the number of candidates
that are less preferred than c;, here it is reversed). Analogously, in
Ri+m-j,i» we store the number of candidates preferred over c; from
{Ci+m—j Ci+m—j+1, ..., Ci+m} (note that it is also an interval). We
can efficiently compute both sets of numbers recurrently.

For every i € [m], U;; is just the set of all votes that have c; as
the top candidate. Thus, A;; is just a number of candidates that are
preferred over ¢; in v, which is what is stored in L; j4m—1 (see line
7 of Algorithm 3).

Fori € [m] and r € [m — 1], we compute values of A; ;4 using
a recursive formula in line 10, in a similar way to how it was done
in Algorithm 1. Let U; ;4 be a subset of votes in Uj41 i+, that addi-
tionally have c; at the position r + 1. Similarly, let Ui, i+r be a subset
of votes in U; j4+r—1 With ¢4, at the position r + 1. Since every vote
in U; ;4 has candidates {c;, ci+1, . . ., ci+r} at the first r + 1 positions
and the first r candidates form an interval in the cycle, it must be
¢; or cj4r in the position r + 1. Thus, Uj j+r = Uj,i+r U Ui j+r. Hence,

swap (v, u), mingey, ,,, SWap(v, u)).

Fix a vote u € Uj,£+r minimizing swap(v, u). Observe that the
last m — r — 1 candidates in u have to appear in exactly the same
order as they appear in v. Let u’ be obtained from u by arranging
m — r last candidates in this way (so we additionally relocate c;).
Observe that ¥’ minimizes the swap distance to v among votes
in Ujyt,itr, L€, Ajs1,i0r = swap(u’,v). Moreover, the difference
between swap(u,v) and swap(u’,) is the number of candidates
outside of {cj41,...,ci+r} that are preferred over c;. Observe that
C\ {ci+1,---»Citr} = {Citr+1,---,Ci+m}. Therefore, we get that
swap(u,v) = Aj+1,i+r + Risr+1,i- Analogously, we can prove that
swap(v,u) = Aji+r—1 + Litri+m—1. This yields the re-

Aj iy = min(miny ey,

i,i+r

minyey; ;,,
cursive equation from line 10.

Finally, observe that for each i € [m], the set U; j+m-2 contains
all single-peaked-on-a-circle votes that have candidate cjym;—1 at
the bottom of the ranking. Thus, taking the minimum of distances to
each such vote we get the minimum distance to any single-peaked-

on-a-circle vote. O

We can also extend Algorithm 1 to work on arbitrary tree with
k leaves in time O(kmX). The pseudocode is summarized in Algo-
rithm 4.

THEOREM B.2. Algorithm 4 computes the distance between a given
vote and a single-peaked-on-a-tree domain in time O(kmk).

Proor. Let us fix such tree G on a set of candidates C and a
given vote v. Let S = (51, Sz, ..., S¢) be a sequence of subsets of C
such that each S € S, if and only if, S is nonempty and connected
in G, and for each i, j € [¢], we have that S; 2 S; only if i < j.
In particular, this means that S; = C. Observe that the length of
the sequence S is bounded by O(m¥), as each connected subset
of C can be uniquely identified by how far away from each leaf is
the closest node from S (and the maximal value of such distance
is bounded by m). We can also compute such sequence S in time
O(mX) by checking each possible k-tuple of such distances starting
from the smallest ones.

Then, for each S € S by Xg C S let us denote the set of nodes in
S that are leafs in the subgraph induced by S (note that there are at
most k of them). Furthermore, for each such x € X5 we denote the
number of candidates in S over which x is preferred in v by

Ls=[{ce€S:c»yx}|.
This corresponds to values L; j and R; j used in Algorithm 1. We
can compute all of them in time O(km) in the reversed order to
that in sequence S. This is since for each other leaf y € X \ {x}, it
holds that Iy s = I s\(y} + [x >0 Y]

Next, for each S € S we define Us as a set of all votes u € L(C)
in which candidates C \ S are in the last positions and for each
t € [m] \ [|S]], the first ¢t candidates in u form a connected subset
in G. Also, we denote Ag = minycyg swap(u, v).

Clearly, Ag, = 0 as S; = C, thus Uc = L(C). For each
S € (Sy,...,5¢), we compute Ag recursively, similarly to how we
computed A, in Algorithm 1. Let Yg C S be a subset of nodes in
C\ S that are connected to some node in S (again, there are at most
k of them). Then, for each y € Y5, we can denote Us, , as a subset of
votes in Ugy () that have y in the position |S| + 1. Since every vote
in Us has to have one of the nodes in Ys in the position |S|+1, we get
that Us = Uyeys Us,y- Thus, As = minyey; mingeys, swap(u, v).

Then, as in the proof of Theorem 4.3, we can show that

i ,0)=A +1 .
ugggyswap(u v) = Asu(y) +lysu(y)

To this end, take u € Usy minimizing swap(u,v) and observe
that in u the first |S| candidates are in the same order in which
they appear in 0. Let u’ be a vote obtained from u by having the
first |S| + 1 candidates ordered according to v (i.e., candidate y is
relocated). Then, u” actually minimizes swap(u, v) in Uy (the
first |S|+1 candidates are in the optimal order, and if reordering the
last m — |S| — 1 candidates was possible, it would also be possible
to reorder them in that way in u decreasing the distance). Finally,
swap(u,v) — swap(u’,v) is the number of candidates from S which
are less preferred by o than y, which is what we store in I 5y}

Observe that in this way, we have computed Ag for each single-
ton set S = {c} with ¢ € C. In Uy we have all votes in the domain
that start with c. Thus, taking the minimum over A() forallc € C
we get the minimum distance in question. O

Algorithm 4 Distance between a ranking and SP(G), where G is a
tree

Input: Vote v € L(C), tree G with C as nodes
PHASE 1, PRECOMPUTATION:

1: 8=(S1,---,Sr) <« asequence of subsets of C, such that:
Se€S & S # @andS connected in G
$i28j=>i<j

2: for S € (S[, Se—1,... ,51) do

Xs « leaves in graph induced by S

for x € X5 do

if S = {x} then
Ix,S «<0
else
y « arbitrary node from Xg \ {x}
Ix,S = Ix,S\{y} + [x > y]
PHASE 2, MAIN COMPUTATION:
10: Ag, <0
11: for S € (Sy,...,S¢) do
122 Yg « nodesin C\ S connected to S
13 Ag — minyey, (Agu(y) +Iysu{y})
14: return mingec Aqc)

B.2 Algorithms for Group-Separable Domains

Now, let us look at the specific cases of GS/bal and GS/cat. Let as
consider GS/cat first, and let v be the ranking whose swap distance
from GS/cat we want to compute. We use an algorithm very similar
to the general one, but processing the internal nodes in the de-
creasing order of their distance from the root, and using additional
data structures. Namely, when we consider an internal node whose
children are a leaf associated with some candidate ¢ and a subtree
whose leaves hold candidates from the set C’ = {ci, ...,c;}, then
we assume that we also have a data structure that for each ¢ € C
holds the position that ¢] has in 9. We require that it is possible to
insert positions into this data structure in time O(log m) and that
this data structure can also answer in O(logm) time how many
of the positions that it stores are earlier in v than a given one (so,
this data structure can be, e.g., a classic red-black tree, annotated
with sizes of its subtrees [9]). Now, we can simply query the data
structure for the number inv of candidates in D that are ranked
ahead of d (i.e., whose position is smaller than pos,(d)). This is the
number of inversions imposed by the current node in case we order
its children, so that in the frontier we have {d} > C’.t — inv is the
number of inversions imposed in the reversed configuration. We
implement the configuration that leads to fewer inversions (or we
choose one arbitrarily in case of a tie), we insert pos, (d) into the
data structure, and we proceed to the parent node of the current one
(or terminate, in case the current node was a root). The correctness
follows from the correctness of the general algorithm. The running
time follows from the fact that the tree has O(m) internal nodes,
and for each of them we need time O(log m).

THEOREM B.3. There is an algorithm that computes the distance
between a given vote and GS/cat (represented via a GS-tree) in time

O(mlogm).

In case of GS/bal, we proceed similarly as in the classic Merge
Sort algorithm. Let T be a balanced GS-tree and let v be the ranking

under consideration. As above, our algorithm manipulates the or-
dering of the children of each node, to obtain a tree whose frontier
u minimizes swap(u, v). We use a recursive procedure that given
an internal node z with two children, z; on the left and z, on the
right, such that A = {ay, ..., ax} is the set of candidates associated
with the leaves of the tree rooted at z; and B = {by, ..., by} is the
set of candidates associated with the leaves of the tree rooted at z,,
proceeds as follows:

(1) It calls itself recursively on z; and z, (unless a given subtree
is a leaf). These calls order the children within the respec-
tive subtrees to minimize the number of inversions between
the candidates in A and v and between the candidates in B
and v. Additionally, they return rankings v4 and vp that are
equal to o restricted to A and B, respectively. Without loss
of generality, we assume that v4 orders the candidates in A
according to their indices, and so does vp for the candidates
in B

(2) We perform the “merge” step, to decide whether to reverse
the order of children of z and to obtain v4p (i.e., v restricted
to the candidates in A U B). We first consider the case where
we do not reverse the order of z’s children. Initially, we set
the number of inversions between to be 0 and, then, we fill-in
vAuB from the top position to the bottom one, by considering
the prefixes of 4 and vg. Suppose that we have already filled-
in the top k — 1 positions in v4yp with i — 1 candidates from
A and j — 1 candidates from B. The candidate on the k-th
position in v4p will either be the i-th candidate from v4 or
the j-th candidate from v, i.e., either a; or bj. If a; >, b;
then we choose a;, and otherwise we choose b; and increase
the number of inversions by x — (i — 1) because, in this
configuration, in the frontier of our tree b; is ranked below
aj, @is1, - - -, ax. After we use up all the candidates of A or B,
then we fill-in v4upg with those from the other set, in the
order in which they appear in v4 or vp, respectively. Let
inv be the computed number of inversions. If we reversed
the order of children of z, then then number of inversions
would be |A||B| — inv; if this value is smaller than inv then
we reverse the children. Finally, we output v4p.

Our algorithm executes this procedure on the root of the tree. The
correctness is immediate, whereas the running time of O(mlog m)
follows from the fact that GS/bal trees have O(log m) levels, and
on each level, the merge steps require O(m) steps.

THEOREM B.4. There is an algorithm that computes the distance
between a given vote and GS/bal (represented via a GS-tree) in time
O(mlogm).

B.3 Algorithms for Single-Crossing and
Euclidean Domains

B.3.1 Single-Crossing Single-crossing domain contains O(m?)
votes, thus computing swap distance to each of them and taking
the minimum would give O(m>+/log m) algorithm [8].

However, in practice, we often want to compute the distance
from multiple given votes to a single fixed domain. For that case, we
present an algorithm that needs a preprocessing step that also runs
in time O(m3+/log m) (this time due to the bottleneck in recognizing

a single-crossing ordering of voters), but then, for each input vote,
allows for computation of the distance in O(m?).

The preprocessing step involves sorting the votes in the
domain in a sequence that witnesses the single-crossingness
(ug, u1, ..., upr), where M = (7). This can be done in time
O(Mmaflog M) = O(m3+/logm) [2, 13]. Next, for each i € [M],
we establish the unique pair of candidates (a;, b;) € C X C such
that a; =, b; but b; 4, | a;. We can establish all of them in time
O(m? log m) by looking at each pair of candidates and finding the
place where its ordering switches using binary search.

Now, for each input vote v € £(C) we first find the vector pos,
in which we keep the position of every candidate in C according to v.
This can be computed in time O(m log m) by sorting the arguments
of the list in which we store vote v. Next, we compute swap(uo, v),
again in time O(m+/log m) [8]. Further, for each i € [M], we check
whether pos,(a;) < pos,(b;). If it holds, then it means that in u;
candidates a; and b; are ordered in the same way as in v, which
is the opposite ordering to that in u;_;. Since all other pairs are
ordered in the same way in u; and u;_1, we get that swap(u;,v) =
swap(u;—1,0) — 1. If pos, (a;) > pos,(b;) holds, then analogously
swap(u;,v) = swap(uj—1,v) + 1. In this way, we can compute swap
distance from v to each of ug, uy, ..., up in time O(mz). Finally, we
output the minimum of these values.

B.3.2 Euclidean For Euclidean elections we proceed largely anal-
ogous to how we treated single-crossing elections. We know that
there are O(mZd) votes in the domain, where d is the dimension of
the Euclidean space. Hence, the brute-force algorithm of computing
the distances directly and taking the minimum would give us run-
ning time O(m%d+1 ylog m). However, we can find an alternative
algorithm with O(m%d+2) preprocessing step and O(m*d) running
time for each input vote.

For the preprocessing step we construct a graph in which the
votes in the domain are vertices and the edge appears when
the swap distance between two votes is equal to 1. Then, let
(uo, u1, ..., up) be a sequence of votes we get when we run a DFS
on this graph. Also, for each i € [M] let p; denote the parent of u;
in the spanning tree that we get as a result. Then, let (a;, b;) € CXC
be a unique pair of candidates such that a; >, b; but b; >, a;.

We construct the graph and identify the associated pair of can-
didates on each edge in overall time O(m2d+2). To do so, we first
organize all votes in the domain using a trie (prefix tree) in time
O(m2+1) which enables lexicographic ordering and allows mem-
bership checks in O(m) time. Next, for each vote and for each pair
of consecutive candidates in a node, we check whether the vote
obtained by swapping this pair belongs to the domain. DFS consider
at most O(m29*1) many edges. Since each membership check takes
O(m), the total running time is O(m2d+2).

Now, as in Appendix B.3.1 for each input vote v € L(C) we
first find the vector pos, with position of every candidate in C
according to v, which we compute in time O(mlogm). Then, in
time O(m+/logm) [8] we compute swap(uo,v). Next, iteratively,
for each i € [M] we check whether pos,(a;) < pos,(b;). If
yes, swap(uj,v) = swap(p;j,v) — 1, otherwise, swap(u;,0) =
swap(p;, v)+1.In this way, we compute the swap distances between
v and all the votes in the domain in time O(m?¢). Finally, we output
the minimum of these values.

B.4 Hardness for Single-Peaked-on-a-Graph
Domains

In this section, we provide a complete proof of Theorem 4.6 that
finding a distance to an arbitrary single-peaked-on-a-graph domain
is NP-complete.

THEOREM 4.6. Given a graph G, a votev € L(V(G)), and an
integer d € N, deciding if swap(SP(G),v) < d is NP-complete.

Proor. If we are given a ranking u € SP(G) that is the closest
to the given vote, v, then checking if swap(u, v) < d can be done in
polynomial time. Thus, the problem belongs to NP. Hence, in the
remainder of the proof, we focus on showing the hardness.

To this end, we will provide a reduction from SETCOVER. In this
problem, we are given a universe of elements U = {uy,...,un}, a
family of U’s subsets S = {S1,...,Sn}, and an integer k € N. The
question is whether there exists a subset K C S of size |K| = k,
known as a set cover, that contains all elements from the universe,
ie, Us;ex Sj = U. Answering this question is known to be NP-
complete [22]. Without loss of generality, we assume that n > 2
and m > k.

For each instance of SETCOVER we construct an instance of our
problem as follows (see Figure 4 for an illustration). We let the
set of candidates C = V(G) contain three groups of candidates: (1)
n-m element candidates (¢ j)ie[n], je [m]> among which n candidates,
(¢i1)ie[n]> are called first element candidates; (2) m subset candidates
$1,...>Sm; and (3) n?-m?+1 path candidates po, p1, . . ., Pp2. 2. As
for the edges in graph G, for each i € [n], we connect all element

candidates ¢; 1, . . ., ¢im, to form a path, and the same we do with all
of the path candidates po, p1, . . ., Pp2. 2. Additionally, we connect
po to all set candidates s, ..., sp,. Finally, for each j € [m], we

connect set candidate s; to the first element candidates with indices
corresponding to the indices of the elements of subset S;. Formally,

E(G) ={{cijicijn} i€ [n]je[m-1]}
U {{pi-1,pi} : i € [n® - m*]}
U {{po.sj}:j€ml}
U{{sj,ci1} :j € [m],u; € S;}.
In the given input vote v, the top candidate is pg, followed by all

element candidates, then remaining path candidates, and lastly the
subset candidates at the bottom of the ranking, i.e.,

po>vcCi,1 >0 €12 >0 " o Clm o
€21 70 """ "o Cn-1m "o Cnl "o Cn2 v """ >v Cnm >v
P >0P2 ' Rt pnz_mz 081 >0S82 >0 " >u Sm-

Finally, we set d = (k + 1)n? - m? — 1.

First, let us show that if there exists a set cover K in the original
instance, then swap(SP(G),v) < d. Let K’ contain all the subset
candidates corresponding to subsets in K, i.e, K’ = {sj : §j €
K}. Then, let u be a vote obtained from v by moving all subset
candidates in K’ upwards in the ranking so that all of them are
between candidates po and cj,1 (the ordering of the remaining
candidates is the same). For each s; € K ’, there are exactly n - m
element candidates, n? - m? path candidates, and at most m subset

Figure 4: An illustration of the construction from the proof
of Theorem 4.6.

candidates for which the ordering in u and v is different. Hence,
swap(u,v) < kn?m? + knm + km
=kn’m® + km(n+1)
< (k+1Dn’m? -1
=d,

where the last inequality comes from our assumption that n > 3
and m > k. Moreover, we can observe that u belongs to the SP(G)
domain. Indeed, for each t € [k + 1], the first ¢ candidates in u form
a connected subgraph in G, as each subset candidate is connected
to po. Then, for each t € {k +2,...,k + 1+ n - m}, each element
candidate c; j for i € [n], j € [m] is connected through the path
of element candidates (that all appear before it in u) to the first
element candidate ¢; 1, which in turn is connected to some s; € K’
(as there is Sj € K such that u; € Sj). Finally, fort > k+1+n-m,
every path candidate p; for i € [n?m?] is connected to pg through
a path of path candidates (that all appear before it in u), and every
set candidate s; ¢ K’ ’ is connected directly to pg. Therefore, indeed,
swap(SP(G),v) < swap(u,0) < d.

In the remainder of the proof, let us assume that there is no set
cover in the original SETCOVER instance and let us show that this
implies that swap(SP(G),v) > d. Take an arbitrary vote u € SP(G).
Let i* € [n] be such that c;« 1 is the least preferred among the first
element candidates in u, i.e., ¢j1 >y ¢+ 1, for each i € [n] \ {i*}.

Observe that it must hold that c;«; >y 2 =4 - -+
(otherwise, if there is j < j* < m such that ¢;= j =y ¢;+ j, then the

subset of the first ¢ candidates up to c;+ j» is not connected in G,
as c¢j+ j is on the only path from ¢;« j» to ;1 for any i € [n] \ {i*}).

~u Ci*.m

Moreover, by the definition of SP(G) domain, the set of candidates
that are weakly preferred over ¢; 1 inu, ie,C’ = {c € C:c >
ci* 1} U {cj* 1}, must form a connected subgraph in G. This means
that C’ must contain at least one subset candidate connected to
each first element candidate. Let K’ = {s1,...,5,} N C’ be a subset
of all subset candidates in C’ and let K = {S; : s; € K’} be a set of
corresponding subsets in S. We know that K covers all the elements
in U, but since there is no set cover of size k, in the SETCOVER
instance, we get that |K’| = |K| > k + 1.

Now, let P denote the set of path candidates, excluding py that
are ranked above ¢;1 inu, ie., P = C' N{p1,...,Ppp2. 2} Then,
there are at least m - | P| pairs of an element candidate from the path
(¢i*,j) je[m] and a path candidate in P that are ordered differently in
u and 0. Moreover, there are at least (k+1) - (n? - m? — | P|) pairs of a
subset candidate in K’ and a path candidate in {p1,..., pp2. 2} \ P
that are ordered differently in u and v. Hence,

swap(u,0) = m- [P|+ (n?-m? = |P|)- (k+1)
(k+1)-|P|+(n®-m?=|P]) - (k+1)

=n?-m? (k+1)

v

> d,
where the second inequality comes from our assumption that m >
k + 1. This concludes the proof. O

C Missing Proofs for Section 5

PROPOSITION 5.1. Let D be the GS/bal domain for m = 2K can-
didates. For every ranking v € D there are exactly 2k=1_ unique
ones from L(C) \ D at swap distance 1 from v.

PROOF. Letm = 2% be the number of candidates, let the candidate
set be C = {c1,...,¢m}, and let D be our GS/bal domain for C.
Further, let v be ranking in £(C). W.l.o.g., we can assume that v
ranks the candidatesascy > ¢z > - -+ > ¢;p. Foreachi € [m—1], let
(i) be the ranking obtained from v by swapping candidates ¢; and
ci+1. These are all the rankings from £(C) that are at swap distance
1 from v. By definition of D, for every odd i € [m — 1], v(i) is in D,
and for each even i it is in £(C) \ D. Further, for each even i, swap
distance of v(i) to every member of D other than v is larger than 1:
Indeed, in every vote from D, ¢; and c¢;—1 must be ranked next to
each other. To achieve this, by performing a single swap on v(i),
we need to swap cj41 with ¢;—1 or ¢;. The former, does not lead to
a vote from D, the latter leads to v. This completes the proof. O

PROPOSITION 5.2. Consider GS/cat over m > 4 candidates. For
every ranking v € GS/cat there are exactly m — 3 unique ones from
L(C)\ D at swap distance 1 from v, and one ranking from L(C) that
is at swap distance 1 from v and one other ranking in GS/cat.

PRroOF. Let T be a binary caterpillar tree with ¢; being the leaf
closest to the root, followed by c2, and so on up to ¢y,. Let D be a
GS/cat domain consistent with tree T.

Observe that in each vote v € D, when we read the candidates
along >, the indices are increasing until candidate ¢, after which
they are decreasing.? After swapping any pair of candidates in o,
except for the pair {¢;—1, ¢ }, we obtain v’ that does not have this

2This property makes GS/cat in some sense dual to SP, which was observed e.g. in [6].

property, hence v’ ¢ D. Moreover, unless we swapped c;;,—2 with
either ¢y, or ¢;—1, the only way to restore this property by a single
swap, is to go back to v. Thus, swap(v’,u) > 1, for eachu € D\ {v}.

On the other hand, if v’ is obtained from v by swapping cy,—2
with ¢, or ¢;—1 (Whichever is adjacent to ¢j,—2 in v), then in o/,
candidate ¢y, is ranked exactly between ¢y, and ¢;;,—1. Swapping
it with any of these two candidates yields a vote from D (and no
single swap apart from these two results in that). O

ProrosITION 5.3. Let D = GS(T) be a group separable domain
over candidate set C. Then, for eachv € GS(T), npop(v) = 1.

Proor. For a contradiction, assume that the thesis does not hold.
Then, there exist u,o € D such that npop(u) > npop(v). Let 7 :
C — C be a permutation such that v = 7(u), where 7 (u) denotes a
vote in which each candidate ¢ € C is replaced by 7(c). In this way,
by a slight abuse of notation, r is also a permutation of £(C).

By the definition of GS domain, 7 corresponds to rotating the
children of certain internal nodes in T. Thus, for every w € £(C)
it holds that w € D if and only if 7(w) € D. Moreover, for each
w,w’ € L(C) we have that swap(w,w’) = swap(r(w), 7(w’)).
Both facts imply that npop(u) = npop((u)), as npop(-) is invari-
ant under 7 (since 7 does not affect the domain, nor the swap
distance). However, this leads to a contradiction as npop(u) =
npop(7(u)) = npop(v) < npop(u). o

PROPOSITION 5.4. Let us fix value k and let Dy, D3, ... be a se-
quence of domains, where each Dy, contains at most k rankings over
m candidates. Then limpy, e out-div(D,,) = 0.

Proor. Let UN,, denote the UN election with m candidates. As
already noted, the average normalized swap distance of a domain
D is equal to the normalized Kemeny score of D with respect to the
UN,, election, i.e., m! (’;) -ansd(D) = kemyy,,, (D). This, in turn, is
not smaller than the k-Kemeny score of the UN,, election, where
k = |D|, which gives us m!(';l) -ansd(D) > k-kem(UN,;). This
yields the following bound on the outer diversity:
k-kem(UN,,)

m(3)
Faliszewski et al. [19, Proposition 3.6] showed that for every k € N,
it holds that

out-div(D) =1-2-ansd(D) <1-2-

. k-kem(UNy,)
lim —— =

m ()

1.

Thus,

k-kem(UN
lim out-div(D;;) <1 - lim Lm) =0.
m—oo m—

© gem(3)

D Most Diverse Domains

Below, we provide a formal definition for the MosT D1vERSE Do-
MAIN.

Definition D.1. For a set of candidates C and an integer k < |C|!
the MosT DIVERSE DOMAIN problem asks for a set D € L(C) of
size k that maximizes out-div(D).

We observe that an optimal solution to MosT DIVERSE DOMAIN is
a set of k rankings that achieves the optimal k-Kemeny score for the
election (C, L(C)). Moreover, finding k rankings that realize the

optimal k-Kemeny score of (C, £L(C)) can be formulated as the clas-
sic clustering problem k-MEDIAN of the metric space of all possible
rankings together with the swap distance, i.e., (L(C), swap).

To compute optimal solutions for MosT DIVERSE DOMAIN, we
used a standard Integer Linear Program (ILP) for k-MEDIAN. Unfor-
tunately, this approach is computationally expensive because the
ILP has size ©((m!)?). A faster, heuristic alternative is simulated
annealing: We initialize a random set of k rankings and iteratively
attempt to improve the solution by replacing a single ranking to
reduce the total swap distance. This heuristic appears surprisingly
effective, likely because randomly sampling k rankings from the
impartial culture model already yields near-optimal solutions, es-
pecially for large k.

For completeness, we provide an ILP formulation for MosT D1-
VERSE DOMAIN below that is equivalent to an ILP for k-MEDIAN
in a specific metric space (L(C), swap) and with a specific set of
points to cluster L(C).

Let L(C) = {u1,...,um} be a set of rankings over a set C of
m candidates, and let k denote the size of domain. For readability,
we define n = m!. For each ranking u; € L(C), we define a binary
variable y; with the intention that value 1 indicates that ranking u;
is selected to a solution. For each pair of rankings u;, u; € L(C), we
define a binary variable x;; with the intention that value 1 means
that a ranking u; has u; as the closest ranking in a solution (u; is
a representative, or cluster center, of ;). Let d;; denote the swap
distance between rankings u; and u;, i.e., djj = swap(u;, uj). We
introduce the following constraints:

Xij, yi € {0, 1}, Vi, j € [n]
2ie[n] Xij =1, Vj € [n] (1
Xij < Yis Vi, j € [n] 2
Zie[n] Yi = k. ®3)

Constraint (1) ensures that each ranking is assigned to exactly
one selected ranking. Constraint (2) ensures that a vote can only
be assigned to another vote if that vote is selected. Constraint (3)
ensures that exactly k rankings are selected. The objective function
defined in (4) minimizes the total cost, i.e., the total swap distance:

min Z Z dij - xij. (4)

i€[n] je[n]

D.1 Computing Most Diverse Domain

Our simulated annealing algorithm operates as follows. We begin
with a randomly generated set of rankings. At each iteration, we
uniformly at random remove one of the rankings and add one
ranking sampled from IC. If the new solution is better than the
current one, it is always accepted. Otherwise, it is accepted with

probability
_ (Enew — Ecurrent)
P=exp|————],

T

where T denotes the current temperature. The initial temperature
is set to Ty = 0.5, and it decreases geometrically with a cooling rate
of 0.95 per iteration. Moreover, we perform at most 256 iterations.
In Figure 5, we compare the performance of simulated annealing
and ILP for the case of six candidates. As shown, the solution found

1.0

0.8

o
o

Outer Diversity
o
Y

021 ' —— ILP (Optimal)
— ~Max
—IC

0.0

0 10 20 30

Domain Size

Figure 5: Comparison of the optimal diversity (red line) and
the one achieved by simulated annealing (black line) for 6
candidates.

by simulated annealing is nearly optimal. Moreover, note that sim-
ply sampling votes from the IC distribution serves as an effective
heuristic.

D.2 Largest Gap in a Domain

A domain can be considered diverse if it is well distributed across a
metric space of all possible rankings, i.e., (£(C), swap). This implies
that there are no large gaps between rankings within the domain.
Consequently, it is natural to search for the largest such gap. To
formalize this, we define a decision problem of finding the center
of a ball in (£, swap) with a given radius that contains no rankings
from the given domain D.

Definition D.2. In the FARTHEST PERMUTATION problem we are
given D € L(C) and rg,, € {—1,0} UN. We ask if there exists a
ranking f € £(C) which swap distance to D is at least rg,,, i.e.,

rfay < minswap(o, f) = swap(D, f).
veD

We emphasize that the definition uses a strict inequality because
the goal is to identify a ball that excludes all rankings from D.
For example, if D = £(C) then the only value of rg,, for which a
response is YES, is —1. For D ¢ L(C), every f € L(C) \ D is at
distance 1 from D, so rg,, > 0 in this case. We can also define an
optimization version of FARTHEST PERMUTATION, searching for a
maximum rg,, for which a response is YES.

In the subsequent proofs, we will rely on results concerning
the KEMENY 1-CENTER problem, which may be regarded as a dual
problem to FARTHEST PERMUTATION in the sense that FARTHEST
PERMUTATION looks for a ball of radius rg,, where none of domain
rankings are included, but KEMENY 1-CENTER looks for a ball of
radius rcenter Where all of domain rankings are included.

Definition D.3. In the KEMENY 1-CENTER problem we are given
D € L(C) and rcenter € {0} UN. We ask if there exists a ranking
¢ € L(C) which swap distance to every element in D is at most

Tcenters 1.€.,
max swap(v, ¢) < reenter-
veD

The duality mentioned can be formalized in a quantitative way
as done in Lemma D.4 which essentially says that for every per-
mutation x € L(C), the sum of radii of two balls: 1) a ball with a
FARTHEST PERMUTATION objective and a center in x and; 2) a ball
with a KEMENY 1-CENTER objective and a center in rev(x), where
rev(x) is a reversed permutation of x; is always equal to (7)) — 1,
i.e., a maximum distance between two permutations of m elements
decreased by 1.

Formally, for D € L(C) and x € L(C) we define the radii
described above as: FP(D, x) = swap(D,x) — 1 and K1C(D, x) =
maxyep swap (v, x).

Lemma D.4. For every D € L(C) and every x € L(C) we have
FP(D, x) + K1C(D, rev(x)) = (3) — 1.

Proor. Let us fix D € L(C) and x € L(C). First we observe
that, by the swap distance definition, we have

swap(v, x) + swap(v, rev(x)) = (’;’)
Using it, we obtain a sequence of equalities:
FP(D, x) = —1 + min swap(v, x)
veD

= —1+min (('g) — swap (v, rev(x)))

veD
= (g’) — 1 — maxyep swap(v, rev(x))
= (") —1-K1C(D, rev(x)).
This finishes the proof. o

The lemma implies that hardness of finding a solution to Ke-
MENY 1-CENTER implies hardness of finding a solution to FARTHEST
PERMUTATION as well as an additive approximation algorithm with
additive loss guarantee of at most f for KEMENY 1-CENTER is also
an approximation algorithm for FARTHEST PERMUTATION with the
same additive loss guarantee. The two results results are formally
presented in the following two theorems. We observe that Theo-
rem D.5 directly implies the result stated in Theorem 6.1.

THEOREM D.5. FARTHEST PERMUTATION is NP-complete, even when
|D| = 4.

Proor. The inclusion in NP is straightforward as this is enough
to compute all pairwise distances between a solution and elements
of a domain and check if any of them is equal or smaller than r.

In order to show NP-hardness for |D| = 4, we will construct a
reduction from KEMENY 1-CENTER which is NP-hard for |D| = 4,
where all input orders are distinct (see [11] for the original proof
and [4, Theorem 5] for its correction).

Let D € L(C),rcenter € {0} UN be an input of KEMENY 1-
CENTER.? We define an input of FARTHEST PERMUTATION simply
by providing the same domain D and ry,, = (’;’) — 1 — reenter-

Correctness of the reduction directly follows from Lemma D.4.
For completes we provide the two formal implications below.
3While the original definition of KEMENY 1-CENTER allows inputs with non-distinct

orders, every such instance can, without loss of generality, be reduced to an equivalent
instance consisting solely of distinct orders.

3D-Cube

1 I|||||ll,
0 5

0 15 20 25 30
Number of swaps

SP/DF ~ GS/cat GS/bal

l llllllllllll., -
0 5 10 15 20 25 30 [5 10 15 20 25 30

Number of swaps Number of swaps

2D-Square SPOC

lllllIIIIlL III|||||I. §
] 5 100 15 20 25 30 0 5 10 15 20 25 30

Number of swaps Number of swaps

Size increase

SowsGIo
Size increase
Size increase

Size increase
[NTeRre
Size increase
Size increase

Number of swaps

SP SC 1D-Int.
$7 & 87
S 4 3
5 4 o
53 5]
£3 £ £
eI L] 2 i %
V0TS 0 15 20 25 30”2 % s 10 15 20 25 307 % s 10 15 20 25 30
Number of swaps Number of swaps Number of swaps

Single Vote

__..lllllllllllllll..._
0 5 10 15 20 25

Number of swaps

Ext. Single Vote

_.llll|I|||I _
0 5 10

15 20 25 30
Number of swaps

Largest Cond.

L llll““lllh.)
) 5 10 15 20 25

Number of swaps

Size increase

SowsGIo
Size increase
Size increase

Figure 6: Histograms of votes at a given swap distance.

(=) If (D, reenter) is a YES-instance of KEMENY 1-CENTER then
there exists ¢ € £(C) such that KIC(D, ¢) < reenter and we obtain

swap(D, rev(c)) = FP(D,rev(c)) + 1

Lemma D.4

(") =1 =KI1C(D,c) + 1

> (rzn) — Tcenter > Tfar-
Therefore, rev(c) is a solution to the FARTHEST PERMUTATION in-
stance (D, rgyy)-
(&) If (D, rgyy) is a YES-instance of FARTHEST PERMUTATION
then, analogously, there exists f € £(C) such that FP(D, f) > rg,,
and we obtain

mEal))(swap(v, rev(f)) = K1C(D, rev(f))

L D.4
TET () - 1-FPD.f)
< (’;) — 1= rfar = eenter-

Therefore, rev(f) is a solution to the KEMENY 1-CENTER instance
(D, rcenter)- This finishes the proof. m]

The duality between FARTHEST PERMUTATION and KEMENY 1-
CENTER presented in Lemma D.4 holds for centers of balls at x and

rev(x). The duality can be also expressed,in Lemma D.6, in terms of
how far radii of balls with centers at x and rev(x) are from optimum
solutions. For that we will need a few more definitions. For a given
D ¢ L(C), let FP(D) be a maximum rg,, for which (D, rg,,) is a
YES-instance of FARTHEST PERMUTATION. Analogously, let K1C(D)
be a minimum reepter for which (D, reenter) is a YES-instance of
FARTHEST PERMUTATION.

LemMA D.6. ForeveryD C L(C),x € L(C) and f € N we have
FP(D,x) > FP(D) — & K1C(D,rev(x)) < K1C(D) + B.

Proor. We fix D € L(C),x € L(C) and € N. Let xg,, be
such that FP(D, xg,,) = FP(D). Then, by Lemma D.4, we have that
K1C(D, rev(xg,,)) = K1C(D). We obtain a sequence of equivalent
inequalities:

FP(D,x) > FP(D) - j8
FP(D, x) > FP(D, xg,;) — f
(") = 1 =KI1C(D,rev(x)) = (}) — 1 - K1C(D, rev(xg,)) — f
—K1C(D,rev(x)) > -K1C(D) - f
K1C(D,rev(x)) < K1C(D) + f,
where the second equivalence comes from Lemma D.4. This finishes
the proof. O

An algorithm for FARTHEST PERMUTATION is an (additive) -
approximation if for an input D it outputs x € L(C) such that
FP(D, x) > FP(D) — f. An algorithm for KEMENY 1-CENTER is an
(additive) S-approximation if for an input D it outputs x € L(C)
such that K1C(D, x) < K1C(D) + f. The following corollary is an
implication of Lemma D.6.

CoroLLARY D.7. Fora given D C L(C) it holds:
(1) Let x be an output of an additive f-approximation algorithm
for KEMENY 1-CENTER on D. Then, rev(x) is an additive f3-

approximate solution to FARTHEST PERMUTATION on D.
(2) Let x be an output of an additive f-approximation algorithm

for FARTHEST PERMUTATION on D. Then, rev(x) is an additive
B-approximate solution to KEMENY 1-CENTER on D.

E Additional Plots

Additional histograms of swap distances are shown in Figure 6.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Outer Diversity
	4 Computing Outer Diversity
	4.1 Single-Peaked Domains
	4.2 Group-Separable Domains
	4.3 Single-Crossing and Euclidean Domains

	5 Analysis of the Domains
	5.1 Outer-Diversity for Eight Candidates
	5.2 Outer Diversity for Larger Candidate Sets

	6 Most Diverse Domains
	7 Conclusions
	References
	A Missing Proof for Section 3
	B Additional Material for Section 4
	B.1 Algorithms for Single-Peaked Domains
	B.2 Algorithms for Group-Separable Domains
	B.3 Algorithms for Single-Crossing and Euclidean Domains
	B.4 Hardness for Single-Peaked-on-a-Graph Domains

	C Missing Proofs for Section 5
	D Most Diverse Domains
	D.1 Computing Most Diverse Domain
	D.2 Largest Gap in a Domain

	E Additional Plots

