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Abstract: This study aimed to investigate the possibility of using one-shot hyperspectral airborne1

images to recognize crops for an area with many small plots. The results showed that unsupervised2

clustering methods could classify crops with an accuracy of 80%, which improved to 90% when3

restricted to only grain crops, using a single airborne hyperspectral recording. However, additional4

layers such as NDVI, DTM, slope, and aspect did not improve classification accuracy. For comparison,5

the accuracy of clustering time series Sentinel-2 images with NDVI layers and DTM-derived data6

yielded an accuracy of: 74%, Sentinel-2 time series 68% and single one registration before harvest 39%.7

The results of the random forest classification were slightly less accurate due to a lack of sufficient8

reference data. However, it is challenging to verify the reported accuracy of crop recognition in9

the literature above 90% due to differences in analysis methodologies, reference data selection,10

pixel/object approaches, metric choice, and calculation formulas used.11
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1. Introduction13

Remote sensing-based land use classification in agricultural areas is not a new topic. The number14

of publications in this area has been steadily increasing and exceeded 1400 in 2022 Fig. 1. Machine15

learning techniques accounted for just over 200 of these publications. In addition, there has been a16

rapid growth trend in Random Forest and Deep Learning since 2015, with less growth in Support17

Vector Machine.18

By studying this topic, one can find articles describing both various case studies and reviews.19

Despite the abundance of material in this area, the problem of recognizing crops or land use types in20

agricultural areas is not a closed, solved, or trivial problem [33]. This applies to both the choice of data21

and classification methods, as well as the assessment of accuracy [32].22

Figure 1. Increasing of the remote sensing applications in agriculture based on the literature, Scopus
March 2023

Agricultural land cover monitoring is performed for various purposes such as yield forecasting23

[1–3], precision farming [4,5], and control of direct agricultural subsidies and sustainable development24

[6,7]. When recognizing land cover in agricultural areas, we have to deal with the delimitation of25

built-up areas, industrial areas and, in particular, areas of mineral extraction by the open-pit method.26

The first aspect is the selection of data. In recognition of agricultural land cover, long-time series27

data from Sentinel-2 (S2) and Sentinel-1 (S1) covering the entire plant phenological cycle is the standard28

approach. Other data, such as indices calculated from the S1/S2 time series such as the Normalized29

Differential Vegetation Index (NDVI) [11] and radar backscattering coefficient (SIGMA) [12], as well as30

cadastral parcels or Digital Elevation Model (DTM), are often also included in the input data set.31

The use of long time series is time-consuming and limited in many countries in the temperate32

climate zone, including many European countries due to cloud cover. In literature, however, this topic33

is rarely addressed.34

Machine learning algorithms, including Random Forest (RF), Support Vector Machine (SVM),35

Convolutional Neural Network (CNN), Deep Learning (DL), and others, are used exclusively to36

automatically classify these large data sets. Recently, the majority of research papers on agriculture37

land cover recognition have focused on using either RF or SVM methods, despite the increasing38

popularity of DL techniques. This is due to the challenge of obtaining sufficient reference data to39

support deep learning models.40
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The selected publications that employ the RF method are presented in Table 1. The information41

provided includes the test region, the data utilized for classification, no of agriculture land cover (no of42

classes), and the Overall Accuracy (OA).43

Table 1. RF crop classification

Author Test area Features No of classes OA

Bolognesi et al. 2020 Italy L8, S2, NDVI 3 90%
Hutt et al. 2020 Germany S1, ancillary data 12 96.7%%
Sun et al. 2019 China S1, S2, L8, NDVI 3 93%
Sun et al. 2020 China S1,S2 5 86.98%
VanTricht 2018 Belgium S1,S2, NDVI 8 82%

Selected studies that showcase the results of agriculture land cover classification using the SVM44

method are similarly summarized in 2.45

Table 2. SVM crop classification

Author Test area Features No of classes OA

Brinkhoff et al.2020 Australia 7 3 84.2%
Maponya et al. 2020 South Africa S2 5 82.4%%
Mustak et al. 2019 India S1, S2 3 88.94%

In all of these studies, the input data for analysis was time series created from multiple satellite46

images taken at different points in time. The accuracy of the results was generally greater than47

80%. It should be noted that the time series was often generated from a large number of image48

acquisitions, which is a prevalent trend in research using remote sensing methods in agriculture49

land cover recognition. This approach can be seen in such services as Sen2Agri [22] or Sen4Cap [9]50

dedicated to agricultural areas.51

However, processing long time series is time-consuming and requires many unclouded images,52

which can be a challenge in temperate climates. As a result, methods based on single image acquisition53

are promising. Our study followed the suggestion of Maponya et.al. [19], who compared the accuracy54

obtained from time series versus the accuracy that could be achieved from a single image. The55

highest accuracy from a single image acquisition was achieved about 4 weeks before harvest, at 77.2%56

(compared to a maximum of 82.4% for time series). We repeated this experiment in the north of57

Poland, where land plots are relatively large and can be recognized in Sentinel images and obtained58

similar accuracy for a single registration 79% [23]. This suggests that using optical images from a59

single acquisition, a recognition accuracy of 80% at the plant level can be achieved for agriculture land60

cover. Our research was also motivated by the study presented in [24] which highlights the use of61

deep learning for mapping agriculture land cover during cloudy seasons with a single hyperspectral62

satellite image and achieved high accuracy (94%). However, the resolution of satellite images could be63

an issue in areas with highly fragmented agricultural structures, such as southern Poland and other64

regions globally. Therefore, we have established our research objective as determining the accuracy65

that can be obtained through the use of a single airborne hyperspectral image in recognizing land66

cover in areas with small plots and complex structures.67
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2. Methods and Materials68

The research was carried out according to the scheme shown in Fig. 2. The activities can be69

divided into 3 groups: acquisition and processing of satellite images, aerial images, and acquisition of70

information on land cover types. Cloudless S2 images downloaded from Copernicus hub (ESA) and71

the SRTM numerical terrain model downloaded from the Jet Propulsion Laboratory (JPL) were used72

for analysis from the satellite ceiling. The result of the preparation work was an S2 stack containing73

processed data from ESA and JPL. From the aerial altitude, a HySpex stack was similarly prepared74

using hyperspectral imagery (registered by MGGP, https://www.mggpaero.com/) and Digital Tarrain75

Models, Digital Surface Models (DSM) from the National surveying and cartographicla service76

(geoportal.gov.pl). During the field work, reference data was generated, which was preprocessed and77

divided into training and test data. Next, image classification was performed using methods: RF and78

SVM with accuracy analysis based on an independent test set.79

Figure 2. Workflow

2.1. Test area80

Poland is characterized by a varied agricultural landscape, with large, regularly shaped fields81

in the northern and central regions and small, elongated and irregular plots in the south. The use of82

S1/S2 imagery for crop monitoring may prove feasible for fields in the northern and central areas, but83

could pose difficulties for those in the south. In collaboration with the Agency for Restructuring and84

Modernisation of Agriculture (ARMA https://www.gov.pl/web/arimr-en) in Poland, a test area near85

the town of Kolbuszowa was selected as a representative sample (as shown in Figure 3). Information86

was obtained from ARMA on the agricultural plots that receive subsidies, with roughly 5000 such plots87

registered annually (as shown in Figure 4). Most of these plots are small, with 75% of the agricultural88

plots being less than 1 hectare in size, with a third quartile of 9499 square meters (as shown in Figure89

5).90
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Figure 3. Test area location on the south of Poland, small red area in the background
of S2 and SRTM, geographical coordinate system, EPSG:4326 (on topographic map
https://mapy.geoportal.gov.pl/wss/service/img/guest/TOPO/MapServer/WMSServer )

Figure 4. Parcels submitted for subsidies each year (thanks to https://www.gov.pl/web/arimr-en)
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Figure 5. Histogram of the parcels’ areas (thanks to https://www.gov.pl/web/arimr-en)

2.2. Data91

The choice of data is dependent on its intended usage. For our research aimed at recognizing92

agricultural land cover types, we needed to consider the phenological stage of the crops on the93

agricultural plots. Based on a promising suggestion in the literature, we decided to investigate the94

feasibility of using data collected approximately four weeks before harvest. In Poland, the harvest95

season typically lasts for 2 months (July and August), starting with the small harvest of rapeseed and96

winter barley, followed by the large harvest of rye, spring barley, wheat, and oats [25]. To examine97

the potential of using a single registration for agricultural land cover recognition, a survey campaign98

was conducted in 2021 that collected the following data: S2 time series, one-shot hyperspectral, in-situ99

measurement, and topographical data. The data acquisition dates are in Table 3.100

Table 3. Data

Data Date

Sentinel-2 March-September
Hyperspectral 5th of July 2021

In-situ measurements 7 July 2021
SRTM (jpl.nasa.gov) 2000

TOPO (geoportal.gov.pl) 2017

During the 2021 growing season, only six Sentinel-2 registration dates were cloud-free Table 4.101

Table 4. S2_image

Data S2 ID

27.03.2021 S2B_MSIL2A_20210327T093039_N0214_R136_T34UEA_20210327T120034
11.04.2021 S2A_MSIL2A_20210411T093031_N0300_R136_T34UEA_20210411T122810
09.05.2021 S2B_MSIL2A_20210509T094029_N0300_R036_T34UEA_20210509T120133
25.07.2021 S2B_MSIL2A_20210725T093039_N0301_R136_T34UEA_20210725T115620
28.07.2021 S2B_MSIL2A_20210728T094029_N0301_R036_T34UEA_20210728T125908
06.09.2021 S2B_MSIL2A_20210906T094029_N0301_R036_T34UEA_20210906T113414

Sentinel-2 images were acquired from Copernicus Open Access Hub as granules with a size of102

100 per 100 km with a radiometric correction level of 2A in geographical coordinate system EPSG:4326.103

The images were not further corrected either geometric or radiometric. The pixel size depending on the104

channel is 10, 20 and 60m. A single S2 scene in SAFE (ESA) format takes approximately 1.2 gigabytes105

when packed (S2 range in shown in Fig. 3).106
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Hyperspectral data were acquired for the area ca. 5 x 4 km using HySpex VS-725 which is a very107

small area compared to the S2 range (in red in Fig. 3) . The registration was performed at an altitude108

of 867 - 882 m. The HySpex VS-725 consists of two SWIR-384 scanners and one VNIR-1800 scanner109

which provide 430 spectral channels (414.13 nm - 2357.43 nm). The test area was covered with 16110

strips. Radiometric, geometric (PARGE), atmospheric (ATCOR4) correction was performed using the111

MODTRAN physical model. The final product, an orthophotomap with a pixel size of 0.5 m was112

registered in the UTM 34N coordinate system (EPSG:32634) and takes up about 60 gigabytes.113

DTM and DSM (Digital Surface Model) were obtained from the national server: geoportal.gov.pl.114

Three DSM sheets (about 150 megabytes) and 15 DTM sheets (about 160 megabytes) with a pixel size115

of 1m.116

A field visit was conducted to obtain information about the ground truth (the plant that was117

2021 grown on the agriculture parcels). Information of the location was acquired using handheld118

GPS. In the field 10 agricultural land cover types was recognized: beet, soil, barley, maize, oats, wheat119

rye, wheat winter, grass, potato and rye. Soil, oats and grassland is easy to delimitation. Wheat, rye120

and wheat rye are important cereal crops with a rich content of starch, protein, and other nutrients121

(https://eos.com/products/crop-monitoring/crops/). Wheat is more commonly cultivated and122

used for the production of bread, pasta, and other food products, while rye is more resistant to low123

temperatures and used in bread production under difficult climatic conditions, as well as for animal124

feed and alcohol production. Wheat has awnless spikes, while rye spikes have characteristic awns,125

although not as long as those of barley. In the field, it is easy to distinguish wheat, rye, and barley.126

Triticale (wheat rye) is a hybrid of wheat and rye, obtained by crossing these two plants. Triticale has127

characteristics of both wheat and rye, making it more resistant to adverse weather conditions and128

having higher nutritional value. Triticale is mainly used as a fodder crop for animals and as a crop to129

produce grain for flour. In the field, it is difficult to recognize triticale from rye, and often the decision130

must be consulted with the farmer who sowed the grain. Some types of land cover occurred on single131

plots, so it was decided to omit them from further analysis. In the end, it was resolved to reduce the132

number of classes to as in Table 5. The spatial distribution of the reference vectors can be seen in Fig. 6133

and 7.134

Table 5. Crops

Id Crop

2 soil
5 oats
6 wheat rye
7 wheat winter
8 grass
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Figure 6. Parcels visited in the field with average spectral curves, S2 RGB - 27.03.2021 in background

Figure 7. Parcels visited in the field, zoom-in, left - north part, right - south part

2.3. Data preprocessing135

Six Sentinel-2 images were subset and resampled into 10 m. From each Sentinel-2 set 10 bands136

were selected (B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12) for area of interest (AOI): 1295 columns x137

922 rows (UL: 552250, 5567620 ; LR: 5558400, 5565200 ; EPSG:32634). The channels of all the images138

prepared in this way were saved in a single TIF file. In addition, NDVI was calculated for each139

registration date and added to the above mentioned TIF file. Image classification also uses other data140

that can increase the accuracy of classification, such as numerical terrain models and the slopes/aspects141

calculated from them. So SRTM was acquired, cropped to the AOI, and resampled to 10m. SRTM and142

calculated: slope and aspect were added to the TIF file as well. This means that the S2 time series stack143

consists of 60 Sentinel-2 channels, 6 NDVI images and 3 images containing topography information of144

the area.145

The original Sentinel-2 images are recorded on 12 bits and stored on 16 bits as uint16 (in the146

metadata there is a size by which DN should be divided to calculate the reflection coefficient: 0-1 as a147

float32 number, which is 10,000). The values of NDVI coefficients change from -1 to 1 and were stored148

as float32 numbers.149



Version March 18, 2023 submitted to Remote Sens. 9 of 37

The SRTM layer is of float32 type and includes for AOI values in the range of 230-310m, slope and150

aspect are also float 32 type and include values in the range of: 0 to 26 degrees, and 0 to 360 degrees.151

For the purposes of machine learning, all layers were scaled to a range: 0.0 - 1.0.152

Due to the large size of the hyperspectral image, it was cropped of the area where the field visit153

was conducted and resampled to a pixel size of 1m and 3m. Numerical terrain models were merged154

and clipped to the extent of the hyperspectral image. In addition, slopes and aspects were calculated155

from the DTM and NDVI from hiperspectral channels. All rasters were merged into a single TIFF file156

(5340 cols x 6840 rows, UL: 557062, 5566510 ; LR: 559732, 5563090, 430 bands, NDVI, DTM, DSM, slope157

and aspect).158

The hyperspectral mosaic (9484 rows x 7478 cols, UL: 554995, 5566821 ; LR: 559737, 5563082) made159

from the processed hyperspectral images has a spatial resolution of 0.5 m, consists of 430 spectral160

channels (414.13 nm - 2357.43 nm) is registered in the UTM 34N coordinate system (EPSG:32634) and161

takes up about 60 gigabytes162

2.4. Methods163

The image data, numerical terrain models and their derivatives were merged using own code in164

Python as a stack and saved as a single tif file. Separately, one file from the Sentinel-2 time series, at165

10m resolution, and one file with hyperspectral data at 3m resolution (the original HySpex 0.5 data166

was resampled to 3m). There are 68 layers (bands) in the Sentinel-2 time series stack file, Table 6. From167

1-60 Sentinel-2 channels, 61 to 66 NDVI for each date (the channels used for calculation are also given),168

67-68 DTM, aspect and slope. There are 435 layers (bands) in the Hyperspectral stack file Table 7.169

From 1-430 HySpex channels, 431-434 DTM, DSM aspect and slope, 435 NDVI (the channels used for170

calculations are also given).171

Table 6. Sentinel-2 time series stack

Band number Details

1-10 B0327
11-20 B0411
21-30 B0509
31-40 B0725
41-50 B0728
51-60 B0906

61 0327_7/3
62 0411_17/13
63 0509_47/43
64 0725_57/53
65 0728_37/33
66 0906_27/23
67 DTM
68 aspect
68 slope

Table 7. Hyperspectral stack

Band number Details

1-430 HySpex bands
431 DTM
432 DSM
433 slope
434 aspect
435 ndvi_142_80
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Image processing was carried out using custom scripts in Python and free plug-ins for QGIS172

(EnMAP-Box and GRASS). Automatic classification was performed in an unsupervised (K-means173

method) and supervised (Random Forest method) manner. RF classification accuracy analysis was174

analyzed by k-fold cross validation in EnMAP-Box. Analysis of the accuracy of the final classification175

result was done on independent test fields in GRASS.176

Clustering in EnMAP proceeds in two stages: FitKMeans and Predict Clustering177

FitKMeans in EnMAP-Box is executed using the following script:178

f rom − sklearn.pipeline − import − make_pipeline179

f rom − sklearn.preprocessing − import − StandardScaler180

f rom − sklearn.cluster − import − KMeans181

clusterer = KMeans()182

KMeans(nclusters = 8, ∗, init =′ k − means ++′, ninit = 10, maxiter = 300,183

tol = 0.0001, verbose = 0, randomstate = None, copyx = True, algorithm =′ lloyd′)184

estimator = make_pipeline(StandardScaler(), clusterer)185

outEstimator.pkl186

Argument init of class sklearn.cluster.KMeans - "‘k-means++’ : selects initial cluster centroids187

using sampling based on an empirical probability distribution of the points’ contribution to the overall188

inertia" (scikit-learn 1.1.2). Number of clusters n_clusters can be modified (default = 8).189

Another issue is standardize features by removing the mean and scaling to unit variance. The190

standard score of a sample x is calculated as: z = (x - u) / s where u is the mean of the training191

samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if192

with_std=False (scikit-learn 1.1.2).193

The second step performs PredictClustering, which applies a clusterer to a raster.194

The resulting clusters were mapped to crop type and analyzed in the context of reference fields to195

evaluate the effectiveness of the method.196

Random Forest in EnMAP in classic approach proceeds using the following script:197

f romsklearn.ensembleimportRandomForestClassi f ierestimator =198

RandomForestClassi f ier(n_estimators = 100, oob_score = True)199

The set of reference parcels was divided into two separate sets using stratified random sampling.200

The learning process was based on the training set. The model’s accuracy, known as validation201

accuracy, was determined using k-fold cross-validation (defaulting to 3 folds). To select the optimal202

hyperparameters for our Random Forest (RF) model, we utilized the widely used grid search method203

through scikit-learn’s Grid Search CV class. Our training phase employed three evaluation metrics204

- accuracy, balanced accuracy (mean recall), and f1-weighted (weighted average of precision and205

recall) - to measure the model’s performance. After testing various configurations using 10-fold206

cross-validation, we ultimately settled on the following classification settings.207

• classification:scikit-learnlibrary, sklearn.ensemblemodule, RandomForestClassifier,208

• number of trees: 100,209

• min_samples_split’: 2,210

• min_samples_lef: 2,211

• bootstrap: True,212

• max_depth: None,213

• max_features: None.214

In the next stage, we conducted an accuracy analysis based on a test set that was not involved in the215

learning process. Although accuracy analysis on independent test fields is available in EnMAP-Box,216

the r.kappa function from the GRASS plugin was used for technical reasons. Function "r.kappa217

tabulates the error matrix of classification result by crossing classified map layer with respect to218

reference map layer. Both overall kappa (accompanied by its variance) and conditional kappa values219

are calculated. This analysis program respects the current geographic region and mask settings"220

(https://ibiblio.org/pub/packages/gis/grass/grass63/manuals/html63_user/r.kappa.html). In this221
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manner, pixel accuracy was determined. In addition, accuracy was analyzed at the plot level by222

performing an automatic majority class extraction for each polygon (QGIS-Processing tools-Zonal223

statistic).224

Even though researchers have investigated different metrics over the years [26–31]), the most225

commonly recommended metric remains Overall Accuracy (OA) [32], which is defined as OA = TP /226

(TN + FP + FN) [28]. Therefore, in our study, we limited our analysis to OA.227

The study aimed to compare the accuracy of classification results from Sentinel-2 and228

hyperspectral images captured at significantly different altitudes (10 m for satellites and 1-3 m for229

aerial images). Processing of single registrations from both types of images as well as time series of230

Sentinel-2 was conducted to achieve this goal. The complete dataset (stack) was used for classification,231

and the accuracy was compared to the classification results obtained by excluding NDVI, DEM, and232

their processing from the remote sensing data.233



Version March 18, 2023 submitted to Remote Sens. 12 of 37

3. Results234

Before presenting the classification results, we would like to showcase the crop structure in the235

test area, as seen in Figure A1. The plots have a complex and intricate cultivation pattern, with small,236

elongated, and often irregular shapes. A clearer view can be seen in the False Color Composite (FCC =237

B8A, B4, B3) of the image captured on July 28th, 2021, just before the first harvest, as shown in Figure238

A2. The image clearly displays green vegetation (represented in red), buildings and bare soil (in cyan),239

fields of mature crops (in dark green), forests, and water. The stacks were created according to the240

table, and in the attachment there is an example: composition in false colors (FCC) of the first S-2241

image, NDVI, DTM, Slope and Aspect (Figures A3 to A6). HySpex_stack data is similarly provided.242

Further in the attachment are the results of clustering and classification, with details on the243

calculation of accuracy.244

The first part of the results presents a mask showing the areas excluded from the analyses. The245

second part contains the results obtained using the K-means method, and the third part presents the246

results from RF method.247

3.1. Mask preparation248

The best clustering results were obtained from the S2 stack, as shown in Figure A9. The results249

from clustering other datasets can be found in Appendix A (Figures A7 and A8). Figure A7 shows250

correctly classified green vegetation (green) and crops in some fields (yellow). However, a phenomenon251

of indistinguishability between built-up areas and bare soil (white and gray) can always be noted for a252

single registration date.253

The clustering of the time series, both in the S2 stack (Figure A9) and the S2 time series (Figure254

A8), allows for the separation of built-up areas (gray), industrial areas (violet), and bare soils (brown).255

Additionally, mature cereals can be differentiated from green vegetation in the fields (yellow and256

green). Clustering the time series of remote sensing data alone, however, provides better differentiation257

within the green vegetation (represented in light green and cyan in Figure A9).258

From the clustering results, we extracted classes to mask the areas not analyzed further for crop259

recognition.260

• residential and industrial areas (Fig. A9 class 4 and 3),261

• forests (Fig. A9, class 1 and 6)262

• bare soils mixed with industrial areas (Fig. A7, Class 8)263

In creating the mask, we analyzed the effectiveness of separating industrial areas, including264

open-pit mineral extraction from developed areas and bare soils. Just across the road to the south of265

the area shown in Fig. 11 et seq. is the Wienerberger Kupno open pit mineral extraction plant. Only the266

class covering industrial areas is shown in Fig. 8, the rest of the classes are transparent. The red color267

shows the separations made from one registration S20728. The separation on the S2 stack subsection268

covers the S20728 separation and slightly extends outside. To compare industrial areas on entire image269

see in Fig. A7, A8 and A9) in violet color).270
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Figure 8. Open-pit mineral extraction (geoportal.gov.pl)

Figure 9. Open-pit mineral extraction - distinguished form urban and bare soils, clustering comparison
S2 stack and one shot before harvest S2 0728
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3.2. Clustering271

Clustering numerates classes in automatic way, so it is necessary to map them to the ground272

classes. There is interpretation of the classes in the description of each figure, however the palettes are273

unified. Zoom of the best result using the K-means method for S2 is with the mask presented in Fig. 10274

(entire image - in Fig. A10). Clustering S2 resulted in the separation of mature cereals (two classes:275

3, 4 - yellow, olive) and grass (2 - grass). The bare soil in the area shown in the figure Fig. 10 was276

generalized within the cereal crop. Total data on separated classes in different S2 variants can be found277

in Table A1, (best score for S2 stack OA=0.74). Grain classes: 5 - oats as 4, 6 - wheat rye as 3 and 8 -278

grass were separated well. Errors in classification appeared for class: 2 - bare soil and 7 - wheat winter.279

For hyperspectral data, the best results were obtained when the spatial resolution was reduced280

to 3m, as shown in Figures A18 and 14. The classification resulted in a separation within the cereal281

class: wheat rye and wheat winter. The bare soil within the crop classes was also distinguished. This is282

due to the significantly higher spatial resolution (3 m instead of 10 m). Total data on separated classes283

in different HySex variants can be found in Table A3, (best score for HySpex stack OA=0.81). Grain284

classes: 2 - soil as 2, 5 - oats as 1 and 8 - grass as 3 were separated well. Unfortunately class 6 - wheat285

rye was mixed with 7 - wheat winter as 6.286

The results of the clustering accuracy analysis are presented in Figure 12, Detailed results of the287

accuracy analysis are provided in Appendix A, including Tables A1, A2 for Sentinel-2 data, and Tables288

A3, A4 for HySpex data, along with Figures A20 and A21.289

The highest clustering accuracy was obtained for HySpex 3m with a score of 0.81, and adding290

additional data did not increase accuracy (Figure 12 blue bars). However, the accuracy of HySpex 1m291

clustering was low, at 0.55. The maximum accuracy from Sentinel-2 was obtained for the S2 stack,292

which scored 0.74, for the S2 time series 68% and for single registration S2 0728 39%. For grain crops293

excluding bare soil and corn (Figure 12 red bars), the accuracy was above 0.90, with scores of 0.93294

for the S2 stack and 0.97 for HySpex 3m. The accuracy of clustering was determined for all reference295

objects/parcels as no teaching data are required in this case.296
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Figure 10. Cluster S2 stack masked; 1-conifer forest (masked), 2-grass, 3-maturing/mature cereals,
4-maturing/mature cereals, 5-deciduous forest (masked), 6-urban (masked), 7-residual class (no visible),
8-industrial (masked)

Figure 11. HySex 3m K-means, 1/7 - wheat rye, 2/5 - grass, 3/6 - soil, 4 - wheat winter
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Figure 12. Comparison of clustering accuracy - object level, all reference data

3.3. Random Forest297

Details of RF classification results can be found in Attachment. In Fig. 13 and Fig. 14 are298

enlargements of the best results obtained from the satellite and airborne ceiling. As a result of299

supervised classification, the class numbers are consistent with the identifiers used for learning (Tab. 5).300

In addition, the same palette was adopted for visualization. Visually, the classification results obtained301

by the RF method appear to be better than the K-means results. Due to the spatial resolution, more302

detail can be observed in the aerial images. At the same time, generalization is observed on satellite303

results. The generalization of exposed soils that occurred on the clustering results was repeated.304

However, analyzing the aggregate results in the Tables, it can be seen that the RF method yielded305

worse results than the clustering method. In the case of the RF method, unlike the clustering method,306

it is possible to analyze the results of method validation, from training data and the accuracy of the307

method on test data.308

The RF method had a greater difference in accuracy between the validation and testing for309

Sentinel-2 images than for hyperspectral data (Figure 15). The validation accuracy on the S2 stack310

was 0.97 and the accuracy on the test pixels was 0.70, while the validation accuracy for HySpex 3m311

was 0.85 and the accuracy on the test pixels was 0.73. The object accuracy was slightly less than312

the pixel accuracy for the S2 stack (0.69), but greater than the pixel accuracy for HySpex 3m (0.75).313

The effectiveness of the RF method in correctly classifying grain crops excluding bare soil and cereal314

merged 100%.315
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Figure 13. RF S2 stack masked (zoom); legend and polygon labels - according Table 5, 2-soil, 5-oats,
6-winter rye, 7- wheat winter, 8-grass

Figure 14. RF HySpex 3m
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Figure 15. Comparison of overall accuracy obtained in RF classification; pixel (OA p ); object (OA o)

In summary of the above described results, it can be concluded that:316

• With a single airborne hyperspectral recording, it was possible to classify crops at 80% accuracy317

using unsupervised clustering methods. When restricted to only grain crops, accuracy improved318

to 90%.319

• Additional layers (NDVI, DTM, slope and aspect) did not increase the classification accuracy of320

aerial hyperspectral images.321

• The accuracy of S2 stack (S2 Sentinel-2 time series plus NDVI, DTM, slope, and aspect) clustering322

was relatively high - 74%, especially for an area with a large number of small plots; in comparison,323

the accuracy of clustering only S2 time series was 68%.324

• The accuracy of a single Sentinel-2 recording was surprisingly low, at less than 50%. The reason325

for this discrepancy is unclear, but it may be related to differences in crop structure in northern326

Poland where a one-shot FR S2 test had an accuracy of approximately 80% ([23]).327

• The results of the random forest classification were slightly less accurate due to a lack of enough328

reference data. Clustering methods did not require training data, while random forest methods329

required dividing reference data into learning and test sets.330

• The accuracy of crop recognition reported in the literature above 90% is difficult to verify due to331

differences in accuracy analysis methodologies, reference data selection, pixel/object approaches,332

metric choice, and calculation formula used.333
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4. Discussion334

When comparing classification results, three aspects should be taken into account:335

• which metric was chosen to assess accuracy336

• whether the results concern method validation or testing on independent test data not used for337

learning338

• whether the reference data was divided in a way that prevents data correlation339

4.1. Metrics340

Often, articles present the learning process and report only the validation accuracy, which is341

always higher than the accuracy obtained on independent test data. K-fold cross validation is used342

to analyze learning effectiveness and results in higher validation accuracy compared to independent343

test data [33]. Reference data is also often divided in a way that falsely increases accuracy, such as344

selecting pixels from the same plot for the training and testing sets, which are correlated with each345

other. To avoid this issue in agriculture land cover recognition, reference set separation should be346

made at the plot level, not the pixel level. Therefore, for testing, plots that have never been seen during347

learning should be selected. Finally, it is sometimes reported as OA values that are actually ACC348

values. Machine learning typically uses four classification results types (TP, TN, FP, FN) and metrics349

like sensitivity, specificity, and accuracy (ACC=(TP+TN)/(FP+FN+TP+TN) [34]), which is only equal350

to OA in one-class classification. In multi-class classification, OA is calculated as TP/(TN+FP+FN) [28],351

while ACC results in much higher accuracy estimates than OA. Examples can be found in journals of352

both proper and improper use of ACC for classifying features [35,36].353

Our article was influenced by a publication [24] that explored the use of one-shot hyperspectral354

satellite imagery compared to multispectral time series for crop recognition. The authors reported an355

accuracy of 94%. However, it is important to keep in mind that the accuracy was calculated using356

OA=(TP+TN)/(TP+TN+FP+FN), which is the de facto ACC accuracy, and only two crops, winter357

wheat and rapeseed, were tested. This calculation method gives a higher value for ACC compared358

to OA for many classes OA=TP/(TP+TN+FP+FN) as it takes into account both TPs and TNs. If we359

compiled from Table A4 confusion matrix we could calculate, in addition to OA (0.75), producer360

accuracy (PA) and user accuracy (UA). It is also possible to calculate the ACC for each class, it is the361

same in the ACC column and ACC row.362

It is worth noting that all ACC values are high (greater then 0.80), even if PA(7 - wheat winter)=0.00,363

ACC=0.81. This is due to the fact that there are a large number of TN=13 (only 3 FN cases).364

In the case in discussion, we gave an accuracy of 0.75 (as OA), if we had counted the average365

ACC we would have reported 0.90.366

Table 8. Confusion matrix based on Table A4

Test
2 5 6 7 8 PA ACC

Ref 2 3 0 0 0 0 1.00 1.00
5 0 5 1 2 0 0.63 0.81
6 0 0 1 0 0 1.00 0.88
7 0 0 1 0 0 0.00 0.81
8 0 0 0 0 3 1.00 1.00

UA 1.00 1.00 0.33 0.00 1.00 0.75
ACC 1.00 0.81 0.88 0.81 1.00 0.90

4.2. Validation, testing sets367

[37] classified 6 classes with the correct calculation of accuracy, resulting in 95.85% for SVM and368

an increase in accuracy using deep learning: PCA = 8, epoch = 30 - 97.1%; PCA = 16, epoch = 30 - 98%;369

and PCA = 24, epoch = 30 - 98.6%. However, the reference data was divided at the pixel level, meaning370
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only selected test pixels were analyzed, which makes it difficult to assess the reported accuracy. As the371

authors mentioned, potatoes were the worst misclassified crop with a total of 32 pixels misclassified372

(19 too few and 13 too many). The producer accuracy was 93.04% and user accuracy was 95.15%.373

However, looking at Fig. 16 [37], there is a mismatch between the reference plot with potatoes and the374

SVM classification results, making it challenging to trust the accuracy based on pixel analysis.375

In the reference set (in Fig. 16 in the middle), only one plot is covered with potatoes. As a result of376

the classification (in Fig. 16) right), many plots are classified as potatoes. Mainly it is the class (others),377

which the authors write about as not in agricultural use. In our case, this type of land cover was either378

masked or classified as bare soil and taken in whole for accuracy analysis.379

Figure 16. FCC from hyperspectral image, reference plots and result of SVM classification [37]

4.3. Reference to other comparable works380

The classification accuracy of agricultural land cover types, calculated as OA using uncorrelated381

training and test sets, typically falls between 80-90%, sometimes even higher, especially when dealing382

with time series data (Table 1 and 2). While most publications focus on time series, some suggest using383

a data reduction approach to classification, such as a single registration [23]. The accuracy obtained in384

this scenario is significantly impacted by the registration deadline. Maponya et.al. suggest registering385

four weeks before harvest to achieve 77% accuracy, which is just 5% lower than the accuracy achieved386

using time series data. Despite this recommendation, we were unable to attain such accuracy using387

a single Sentinel-2 registration. The S2 stack accuracy reached only 74%, and a single registration388

resulted in an accuracy of less than 50% in our study.389

This may be due to the crop structure specific to the test area, as our earlier research [23] in390

northern Poland, with larger plots, yielded more optimistic results that were even slightly better than391

reported by Maponya et al.392

It also seems that the proposed registration date is appropriate, as aerial imagery allowed us to393

achieve an accuracy of 81%.394
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5. Conclusions395

Prior to making any conclusions, it is crucial to consider the role of metrics in evaluating the396

precision of image classification. One commonly employed metric is accuracy, which plays a significant397

role in its computation. Traditionally, accuracy in remote sensing is measured using OA, while machine398

learning employs ACC. ACC is always higher than OA since it incorporates both true positive and399

true negative cases.400

In our analysis, we obtained the highest accuracy 0.81 (calculated as OA) but we could report401

0.96 or even 0.98 if we use ACC. Therefore, in any comparative study, it is crucial to carefully analyze402

the metrics used to calculate the classification accuracy. This is especially important now, as there are403

numerous publications presenting various machine learning models with high reported accuracies.404

Regarding the primary objective of the study, which was to evaluate the accuracy of one-shot405

registration for agricultural land cover mapping, the research found that an accuracy of 80% can be406

achieved using airborne hyperspectral data. It is also recommended to perform the registration about407

four weeks before harvest, as confirmed by the research [19].408

Undoubtedly, the future belongs to machine learning, including deep learning. The practical409

use of such models will be possible if a very large amount of training data is provided, which may410

pose a certain problem. However, it is always necessary to remember about the proper assessment of411

accuracy.412
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Appendix A. Results of classifications and accuracy analysis427

Figure A1. Test area - Google Maps
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Appendix A.1. Satellite level428

Figure A2. S2 FCC 0728

Figure A3. S2 NDVI 0728
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Figure A4. SRTM

Figure A5. SRTM - slope
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Figure A6. SRTM - aspect
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Figure A7. Cluster S2 0728; 1-deciduous forest, 2-maturing cereals, 3-conifer forest, 4-industrial, rocks,
5-mix forest, 6-mature cereals, urban, 7-green vegetation, 8-bare soils
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Figure A8. Cluster S2 time series; 1-mix forest, 2-mature cereals, 3-industrial, 4-urban, 5-maturing
cereals, green vegetation, 6-conifer forest, 7-mature cereals, green vegetation, 8-grass

Figure A9. Cluster S2 stack; 1-conifer forest, 2-grass, 3-maturing/mature cereals, 4-maturing/mature
cereals, 5-deciduous forest, 6-urban, 7-residual class, 8-industrial
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Figure A10. RF S2 stack masked, classes according Table 5, 2-soil, 5-oats, 6-winter rye, 7- wheat winter,
8-grass
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Table A1. Object accuracy analysis Sentinel-2 cluster - class mapping

Id crop S2 stack S2 time series S2 0728

2 4 2 8
2 3 2 4
2 8 3 4
2 4 7 2
2 3 2 8
2 8 3 8
5 4 7 6
5 6 4 2
5 4 7 6
5 4 7 6
5 4 7 6
5 4 7 6
5 4 7 6
5 4 7 6
5 4 7 2
6 3 2 6
6 3 2 6
6 3 2 8
6 3 2 6
6 3 2 6
6 3 4 6
6 3 2 6
7 4 2 6
7 3 2 8
7 4 7 8
7 4 7 6
8 2 5 7
8 2 5 7
8 2 5 2
8 2 5 7
8 2 5 7

OA 0.74 0.68 0.39
OA without bare soils 0.92 0.84 0.48

Figure A11. Pixel accuracy analysis, confusion matrix S2 stack RF, train, OA=0.97
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Figure A12. Pixel accuracy analysis, confusion matrix S2 stack RF, test

Table A2. Object accuracy analysis S2 stack RF, test

Id crop S2 stack RF

2 5
2 6
2 2
5 5
5 5
5 5
5 5
5 5
6 6
6 6
6 5
7 5
7 5
8 8
8 8
8 8

OA 0.69
OA without bare soils and corn merged 1.00

Appendix A.1.1. Clustering - distinguish between industrial areas/mining pits and bare soils429

Figure A13. Topographical map (geoportal.gov.pl)
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Figure A14. FCC S2

Figure A15. Clustering S2 stack
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Figure A16. Clustering S20728

Appendix A.2. Airborne level430

Figure A17. HySex FCC 1m
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Figure A18. HySpex FCC 3m

Figure A19. HySex FCC 1m K-means
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Table A3. Object accuracy analysis HySpex cluster - class mapping

Id crop HySpex 1m HySpex 3m HySpex stack

2 6 6 4
2 1 3 2
2 7 3 2
2 1 3 2
2 1 3 2
2 7 3 2
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
5 5 4 1
6 6 1 6
6 5 4 1
6 3 1 6
6 6 1 6
6 6 1 6
6 6 1 6
6 6 1 6
7 6 1 6
7 6 1 6
7 6 1 6
7 6 1 6
8 5 2 3
8 5 2 3
8 5 2 3
8 5 2 3
8 5 2 3

OA 0.55 0.81 0.81
OA corn together 0.71 0.97 0.97

Figure A20. Pixel accuracy assessment, confusion matrix HySpex 3m stack RF, train, OA=0.85
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Figure A21. Pixel accuracy assessment, confusion matrix HySpex 3m stack RF, test, OA=0.73

Table A4. Object accuracy analysis RF HySpex 3m stack, test

Id crop HySpex 3m stack RF

2 2
2 2
2 2
5 5
5 5
5 5
5 5
5 5
6 6
6 5
6 7
7 5
7 5
8 8
8 8
8 8

OA 0.75
OA corn merged 1.00
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