

Study programme

Major: Remote Sensing and Geo Informatics

Table of contents

General characteristics of the major	3
General information about the study programme	5
Admission criteria, rules and policies	7
Learning outcomes	8
Directional outcomes coverage matrix	9
Characteristics matrix of learning outcomes in relation to modules	11
Matrix of directional learning outcomes with related forms of classes and the method of testing	12
Study plans	14
ECTS credits calculations	16
Syllabuses	18
Detailed rules of the implementation of the study programme estabilished by the Dean of the Faculty (the so- called Study Rules)	49

General characteristics of the major

Basic information

Faculty name:	Faculty of Mining Surveying and Environmental Engineering
Major name:	Remote Sensing and Geo Informatics
Level:	Second-cycle studies
Profile:	General academic
Form:	Full-time studies
ISCED classification:	0788
Number of ECTS credits necessary to complete studies at a given level:	120
Professional title awarded to graduates:	magister
Cycle start date:	2023/2024, winter semester
Duration of studies (number of semesters):	4

Field of science to which the major is assigned:

Field engineering and technical sciences

Discipline of science to which the major is assigned:

Discipline	Percentage	ECTS
Civil engineering and transport	100%	120

Relationship between the major and the AGH UST development strategy and the AGH UST mission

The new faculty is in line with the strategic goals and mission of AGH, in particular in terms of education point: 3. broadening the educational offer, in particular:

- increasing the flexibility of the forms of studying, especially for the best students a modular and block approach along the lines of short courses has been proposed,
- launching new majors and specializations with curricula adapted to the changing expectations of the labour market, also thanks to the cooperation with employers
- a new major in English has been proposed meeting the expectations of the market in the field of all-round remote sensing, which is in line with state initiatives e.g. the creation of the Polish Space Agency and various centres in this field,
- introduction of new subjects taught by eminent scientists from Poland and abroad, as well as specialists from industry, business and administration, improvement of the educational offer in foreign languages
- the specialisation is in English
- development of education through the use of new technologies, including teaching via the Internet (e-learning), a large part of classes is on-line, which made it possible to concentrate classes to 5 weeks in a semester.

Information on taking into account the socio-economic demand while creating the study programme and indication of the assumed learning outcomes matching the identified demand

Socio-economic demand for graduates in this specialisation is high. This is evidenced by the high activity of various centres around the world and in Poland in developing web-based solutions using ESA satellite imagery, mainly Sentinel (Sentinel-hub Playground, esa-sen4cap, Copernicus DIAS (CREODIAS, mundi, sobloo, Wekeo, ONDA), Landsat App, CENAGIS and others).

Learning paths - scope in Polish and in English

Not applicable.

Diploma paths - scope in Polish and in English

Not applicable.

The names of the specialties in Polish and in English

Name [pl]

Name [en]

General information about the study programme

Major: Remote Sensing and Geo Informatics

General information related to the study program (general learning objectives and employment opportunities, typical jobs and opportunities for graduate continuing education)

The course is available in English at Master's degree II and lasts 4 semesters. Recruitment is possible after the first engineering degree or after the bachelor's degree. Classes are scheduled in blocks, i.e. they are clustered thematically and time-wise. There are 5 blocks of classes scheduled each semester lasting 5 days each. There are two modules in the first semester. The first module, the initial 2.5 blocks, covers issues related to remote sensing Earth observation (Earth observation and Geoinformation Science). Within the module, students will gain an in-depth knowledge of remote sensing in the optical, thermal and radar domains. Topics covered in the module include: methods of acquiring and processing remote sensing data from satellite, airborne, unmanned aerial vehicles (BSPs) and via ground-based measurements. The second module, the next 2.5 blocks, covers programming issues (Python for remote sensing). Within the module, students will systematise, deepen their knowledge and skills in the use of the Python language in the broad field of GeoScience.

In semester two there are 4 modules also clustered into two blocks. First block, 2 modules: time series analysis (Time series analysis) and machine learning, applications of mathematics (Machine Learning, applications of mathematics). The second block, comprises 2 modules: data science for smart environment, fundamentals of negotiation (Data Science for Smart Environment,) and geo-information tools (Geo-information Tools).

Semester three consists of two modules delivered in two blocks. Students will acquire knowledge and skills in: natural hazards and disaster risk reduction (Natural hazards and disaster risk reduction) and urban planning and environmental management, basics of negotiations (Urban planning and environmental management, basics of negotiations).

The final semester is devoted to the preparation of the master's thesis.

Semesters 1, 2 and 3 have a separate unit: the project, in which the student carries out a larger individual task thematically related to the modules in the semester.

The project is given credit by examination.

In semesters 1 and 3 there is an optional course (from UBO or selected from the range of optional courses available at WGGilŚ). The course is designed according to the idea of short courses that can be taken separately or assembled into a larger whole (e.g. master's degree, postgraduate studies). This allows for a modular nature, block classes and a large proportion of hours provided for remote consultations. The specialisation is open to both undergraduates and engineers and is taught in English, which broadens the group of interested students.

Information on the study programme including the conclusions from the students and graduates careers monitoring

During the development of the study programme, the conclusions from the analysis of the results of the monitoring of careers of the "Geodesy and cartography" faculty contained in the report entitled "Career fate of AGH graduates 2013 three years after graduation" were used.

"Professional fate of AGH 2013 graduates three years after graduation AGH University of Science and Technology St. Staszic in Kraków Full-time second-cycle studies - November 2016", made by the AGH Career Centre, as well as individual knowledge of the faculty staff on the basis of maintained contacts with graduates.

Information on the study programme taking into account the requirements and recommendations of the accreditation committees, in particular the Polish Accreditation Committee and industry accreditation committees

The faculty has not yet been accredited. Accreditation at the Faculty of GCC was conducted in 2014 (accreditation of the GCC faculty) and 2016 (institutional accreditation). In both cases, the faculty received a positive assessment. The positive assessment is valid until the academic year 2022/2023.

Information on including examples of good practice in the study program

The design of the curriculum for the course "Remote Sensing and Geo Informatics" took into account good practices of

universities educating in a similar field in the world (e.g. University of Twente or Wageningen University https://www.utwente.nl/.uc/fca6a749701030fc63500febec4049b4bd62e1def838b00/master-of-science-geo-inform ation-science-and-earth-observation.pdf

; https://www.wur.nl/en/education-programmes/master/msc-programmes/msc-geo-information-science/programme-of-geo-in formation-science.htm).

The concept of short courses was used, which consists of clustering contact classes at AGH in the form of remote classes. http://www.explore.agh.edu.pl/availablecourses.html This should make the course significantly more attractive.

Information on cooperation in the preparation of the study programme with external stakeholders, in particular associations, professional and social organizations

A number of graduates and employees of the Faculty are members of Management Boards or Supervisory Boards, co-owners of firms or enterprises, start-ups, which allows them to follow the development trends of the industry and know its problems. Employees of companies are often invited to the Faculty to give lectures or specialised talks for students, in order to show them not only modern technologies, but also the problems of everyday operation of companies in this industry.

Duration, rules and form of the apprenticeship

Not applicable.

Admission criteria, rules and policies

Major: Remote Sensing and Geo Informatics

Description of competences expected from the candidate applying for admission to studies

The prospective student should have competence in mathematics, finance or computer science at a good level.

Recruitment conditions, including the winners and finalists of the central level high school scientific Olympics, as well as winners of international and national contests

The rules and conditions of recruitment are set out in Resolution No. 62/2022 of the AGH Senate of May 25, 2022 on the conditions, procedure and date of commencement and completion of recruitment for the first year of first- and second-cycle studies starting the academic year 2023/2024. The entrance exam is mandatory.

The expected limit of admissions to studies along with an indication of the minimum number of admitted candidates required to successfully launch a study cycle

Minimum number of students: 15 Maximum number of students: 30

Learning outcomes

Major: Remote Sensing and Geo Informatics

Knowledge

Directional learning outcomes	CEU symbol
has a deep knowledge of mathematics in remote sensing data analysis	P7S_WG_A
has an enhanced knowledge of physics necessary to understand the interaction of electromagnetic radiation in the atmosphere and with the Earth's surface	P7S_WG_A
has a deep understanding of remote environmental data acquisition methods	P7S_WG_A
has a deep understanding of methods, algorithms and automation of spatial data processing	P7S_WG_A
has an enhanced knowledge of the use of computer science in geoscience	P7S_WG_A
knows selected social, economic and legal aspects of the geo-information society	P7S_WK_A
knows the basic concepts and principles of intellectual property protection, copyright and patent information resources	P7S_WK_A
	 has a deep knowledge of mathematics in remote sensing data analysis has an enhanced knowledge of physics necessary to understand the interaction of electromagnetic radiation in the atmosphere and with the Earth's surface has a deep understanding of remote environmental data acquisition methods has a deep understanding of methods, algorithms and automation of spatial data processing has an enhanced knowledge of the use of computer science in geoscience knows selected social, economic and legal aspects of the geo-information society knows the basic concepts and principles of intellectual property protection, copyright

Skills

KEU symbol	Directional learning outcomes	CEU symbol
RSGI2A_U01	can apply knowledge of mathematics and physics to analyze geospatial data	P7S_UW_A
RSGI2A_U02	can acquire remote environmental data	P7S_UW_A
RSGI2A_U03	is able to process geospatial data and automate data processing in an advanced manner	P7S_UW_A
RSGI2A_U04	is able to use IT tools for spatial data processing	P7S_UW_A
RSGI2A_U05	can work both individually and in teams; can prepare a proposal for a research project	P7S_UK_A, P7S_UO_A, P7S_UU_A
RSGI2A_U06	is able to communicate on specialist topics in the field of remote sensing and geoscience with a diverse audience; Student can use a foreign language at the B2 + level of the European System for the Description of Languages and specialist and proper Terminology	P7S_UK_A

Social competence

KEU symbol	GI2A_K01 is ready to resolve conflicts, negotiate, work in a team	CEU symbol
RSGI2A_K01	is ready to resolve conflicts, negotiate, work in a team	P7S_KR_A, P7S_KK_A,
		P7S_KO_A
		P7S_KR_A,
RSGI2A_K02	is ready for creative time management, working under time pressure	P7S_KK_A, P7S_KO_A
RSGI2A_K03	maintain an ethical attitude while performing and presenting the results of assigned	P7S_KR_A, P7S_KK_A,
-	tasks	P7S_KO_A

Directional outcomes coverage matrix

Major: Remote Sensing and Geo Informatics

2023/2024/S/II/GGiIS/RSGI/all

Subject	Code	RSGI2A_W01	RSGI2A_W02	RSGI2A_W03	RSGI2A_W04	RSGI2A_W05	RSGI2A_W06	RSGI2A_W07	RSGI2A_U01	RSGI2A_U02	RSGI2A_U03	RSGI2A_U04	RSGI2A_U05	RSGI2A_U06	RSGI2A_K01	RSGI2A_K02	RSGI2A_K03
Earth Observation and Geoinformation Science	DRSGIS.II1P.638491401bfbd.23		х	х	х				х	x	х	х		х	х	х	x
Python for Remote Sensing	DRSGIS.II1K.638491410ada8.23				х	х					х	х			х		х
Transitional work on geo-informatics in remote sensing – individually selected issue solved under the supervision of a tutor	DRSGIS.II1K.63849141ede89.23	х	х	х	x	x	x	х	x	х	x	х	x	x	x	x	x
Time Series Analysis	DRSGIS.II2K.61d8360e0cfef.23		х	х	х	х		_		х	х	х	х			х	
Machine Learning, Application of Mathematics	DRSGIS.II2P.63849144b7161.23	х			х	х				x	х	х			х	х	
Data Science for Smart Environment	DRSGIS.II2K.6384914579b98.23			х	х	х	x	х			х	х			х		x
Geo-information Tools	DRSGIS.II2K.63849146398d9.23	х		х	х	х			x	x	х	х	х		х	х	x
Transitional work on machine learning in smart environment – individually selected issue solved under the supervision of a tutor	DRSGIS.II2K.63849146ecd47.23	х		х	x	x	x	х		x	x	x				x	
Natural Hazards and Disaster Risk Reduction	DRSGIS.II4K.63849149651f2.23	х			х	х		_		х	х	х			х	х	
Urban Planning and Environmental Management	DRSGIS.II4K.6384914a27632.23	х		х	х				_		х	х			х	х	
Transitional work on geoscience in environmental management – individually selected issue solved under the supervision of a tutor	DRSGIS.II4K.6384914ae3c24.23	x	x	х	x	x	x	х	х	x	x	x	х		x	x	x
Diploma Thesis	DRSGIS.II8K.e53bc1ffec52171870fc55d1cec2fa6a.23	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х

Subject	Code	RSGI2A_W01	RSGI2A_W02	RSGI2A_W03	RSGI2A_W04	RSGI2A_W05	RSGI2A_W06	RSGI2A_W07	RSGI2A_U01	RSGI2A_U02	RSGI2A_U03	RSGI2A_U04	RSGI2A_U05	RSGI2A_U06	RSGI2A_K01	RSGI2A_K02	RSGI2A_K03
Sum (Obligatory):		8	5	9	12	10	5	5	5	9	12	12	5	3	10	10	7
Sum:		8	5	9	12	10	5	5	5	9	12	12	5	3	10	10	7

Characteristics matrix of learning outcomes in relation to modules

Major: Remote Sensing and Geo Informatics

2023/2024/S/II/GGiIS/RSGI/all

Subject	Code	P7S_WG_A	P7S_WK_A	P7S_UW_A	P7S_UK_A	P7S_U0_A	P7S_UU_A	P7S_KR_A	P7S_KK_A	P75_K0_A
Earth Observation and Geoinformation Science	DRSGIS.II1P.638491401bfbd.23	х		х	х			х	х	х
Python for Remote Sensing	DRSGIS.II1K.638491410ada8.23	х		х				х	х	х
Transitional work on geo-informatics in remote sensing – individually selected issue solved under the supervision of a tutor	DRSGIS.II1K.63849141ede89.23	x	х	х	х	х	х	x	x	x
Time Series Analysis	DRSGIS.II2K.61d8360e0cfef.23	х		х	х	х	х	х	х	х
Machine Learning, Application of Mathematics	DRSGIS.II2P.63849144b7161.23	х		х				x	х	x
Data Science for Smart Environment	DRSGIS.II2K.6384914579b98.23	х	х	х				x	х	x
Geo-information Tools	DRSGIS.II2K.63849146398d9.23	х		х	х	х	х	х	х	x
Transitional work on machine learning in smart environment – individually selected issue solved under the supervision of a tutor	DRSGIS.II2K.63849146ecd47.23	x	х	x				x	x	x
Natural Hazards and Disaster Risk Reduction	DRSGIS.II4K.63849149651f2.23	x		х				x	х	x
Urban Planning and Environmental Management	DRSGIS.II4K.6384914a27632.23	х		х				х	х	x
Transitional work on geoscience in environmental management – individually selected issue solved under the supervision of a tutor	DRSGIS.II4K.6384914ae3c24.23	x	х	x	x	x	x	x	x	x
Diploma Thesis	DRSGIS.II8K.e53bc1ffec52171870fc55d1cec2fa6a.23	х	х	х	х	х	х	х	х	х
Sum (Obligatory):		12	5	12	6	5	5	12	12	12
Sum:		12	5	12	6	5	5	12	12	12

Matrix of directional learning outcomes with related forms of classes and the method of testing

Major: Remote Sensing and Geo Informatics

2023/2024/S/II/GGiIS/RSGI/all

Name of the module	Activity	Method of verification and assessment of learning outcomes achieved by the student in individual forms of classes and activities for the entire module	KEU references
Earth Observation and Geoinformation Science	Lecture, Workshop classes	Examination, Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation	RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U06, RSGI2A_K01, RSGI2A_K02, RSGI2A_K03
Python for Remote Sensing	Lecture, Workshop classes	Participation in a discussion, Examination, Participation in a discussion, Examination, Involvement in teamwork	RSGI2A_W04, RSGI2A_W05, RSGI2A_U03, RSGI2A_U04, RSGI2A_K01, RSGI2A_K03
Transitional work on geo-informatics in remote sensing – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments	Participation in a discussion, Examination, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07, RSGI2A_U01, RSGI2A_U02, RSGI2A_U05, RSGI2A_U06, RSGI2A_U03, RSGI2A_U04, RSGI2A_K01, RSGI2A_K02, RSGI2A_K03
Time Series Analysis	Lecture, Workshop classes	Participation in a discussion, Case study, Participation in a discussion, Report, Case study, Involvement in teamwork	RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05, RSGI2A_K02
Machine Learning, Application of Mathematics	Lecture, Workshop classes	Test, Activity during classes, Participation in a discussion, Project, Report	RSGI2A_W01, RSGI2A_W05, RSGI2A_W04, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_K01, RSGI2A_K02
Data Science for Smart Environment	Lecture, Workshop classes	Participation in a discussion, Case study, Participation in a discussion, Report, Case study, Involvement in teamwork	RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07, RSGI2A_U03, RSGI2A_U04, RSGI2A_K01, RSGI2A_K03
Geo-information Tools	Lecture, Workshop classes	Activity during classes, Participation in a discussion, Test, Case study	RSGI2A_W01, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05, RSGI2A_K01, RSGI2A_K02, RSGI2A_K03

Name of the module	Activity	Method of verification and assessment of learning outcomes achieved by the student in individual forms of classes and activities for the entire module	KEU references
Transitional work on machine learning in smart environment – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research	RSGI2A_W01, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_K02
Natural Hazards and Disaster Risk Reduction	Lecture, Workshop classes	Test, Participation in a discussion, Execution of a project, Report	RSGI2A_W01, RSGI2A_W04, RSGI2A_W05, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_K01, RSGI2A_K02
Urban Planning and Environmental Management	Lecture, Workshop classes	Test, Examination, Project, Preparation and conduct of scientific research	RSGI2A_W01, RSGI2A_W04, RSGI2A_W03, RSGI2A_U04, RSGI2A_U03, RSGI2A_K02, RSGI2A_K01
Transitional work on geoscience in environmental management – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments	Participation in a discussion, Examination, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07, RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05, RSGI2A_K01, RSGI2A_K02, RSGI2A_K03
Diploma Thesis	Diploma Thesis	Report on completion of a practical placement, Preparation and conduct of scientific research	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07, RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05, RSGI2A_U06, RSGI2A_K01, RSGI2A_K02, RSGI2A_K03

Study plans

Major name: Remote Sensing and Geo Informatics

Semester 1

Subject	Number of hours	ECTS points	Form of verification	
Earth Observation and Geoinformation Science	Lecture: 30 Workshop classes: 120	10,0	Exam	0
Python for Remote Sensing	Lecture: 10 Workshop classes: 140	10,0	Exam	0
Transitional work on geo-informatics in remote sensing – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments : 150	10,0	Exam	0
Sum	450	30,0		

Semester 2

Subject	Number of hours	ECTS points	Form of verification	
Time Series Analysis	Lecture: 10 Workshop classes: 40	4,0	Assessment	0
Machine Learning, Application of Mathematics	Lecture: 15 Workshop classes: 60	6,0	Assessment	0
Data Science for Smart Environment	Lecture: 15 Workshop classes: 60	6,0	Assessment	0
Geo-information Tools	Lecture: 10 Workshop classes: 40	4,0	Assessment	0
Transitional work on machine learning in smart environment – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments : 150	10,0	Exam	0
Sum	400	30,0		

Semester 3

Subject	Number of hours	ECTS points	Form of verification	
Natural Hazards and Disaster Risk Reduction	Lecture: 30 Workshop classes: 120	10,0	Exam	0
Urban Planning and Environmental Management	Lecture: 30 Workshop classes: 120	10,0	Exam	0
Transitional work on geoscience in environmental management – individually selected issue solved under the supervision of a tutor	Progress evaluation and interim assignments : 150	10,0	Exam	0
Sum	450	30,0		

Semester 4

Subject	Number of hours	ECTS points	Form of verification	
Diploma Thesis	Diploma Thesis: 0	20,0	Assessment	0
Humanities and Social Science		5,0	Assessment	0
The student chooses subjects for a total number of 5 ECTS				
Humanities and Social Science Subject	Lecture: 15 Workshop classes: 60	5,0	Assessment	W
Elective		5,0	Assessment	0
The student chooses subjects for a total number of 5 ECTS				
Elective Subject	Lecture: 30 Workshop classes: 60	5,0	Assessment	W
Sum	165	30,0		

O - Obligatory W - Elective

ECTS credits calculations

Major: Remote Sensing and Geo Informatics

The total number of ECTS credits the student needs to obtain in the form of:

classes conducted with the direct participation of academic teachers or other persons conducting classes	60
core science classes relevant to a given major	16
practical classes, developing practical skills, including laboratory, design, practical and workshop classes	60
classes subject to choice by the student (in the amount of not less than 30% of the number of ECTS points necessary to obtain qualifications corresponding to the level of education)	50
classes in the field of humanities or social sciences - in the case of fields of study assigned to disciplines within fields other than humanities or social sciences, respectively	5
foreign language classes	10
apprenticeships	0
classes related to the academic activity conducted at the University in the discipline or disciplines to which the field of study is assigned, in the amount greater than 50% of the number of ECTS points required to complete studies at a given level, taking into account the participation of students in classes preparing to conduct scientific activity or participate in this activity (applies only to studies with a general academic profile)	65
classes shaping practical skills in the amount greater than 50% of the number of ECTS points required to complete studies at a given level (applies only to studies with a practical profile)	

Syllabuses

Earth Observation and Geoinformation Science Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II1P.638491401bfbd.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form Full-time studies	Foundation Modules Subject related to scientific research
Education profile General academic	Yes Subject shaping practical skills No

Period Semester 1	Examination Exam	Number of ECTS points 10.0
	Activities and hours Lecture: 30, Workshop classes: 120	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:	·	·
W1	fundamentals knowledge of remote sensing and geoinformation	RSGI2A_W02, RSGI2A_W03	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation
W2	methods and algorithms of remote sensing and geospatial data processing	RSGI2A_W02, RSGI2A_W03, RSGI2A_W04	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation

Skills - St	udent can:		
U1	apply remote sensing and geoscience knowledge in practice	RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U06	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation
U2	apply methods and algorithms of remote sensing data processing	RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U06	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation
U3 perform remote sensing image analysis using multisensor data		RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U06	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation
Social co	npetences - Student is ready to:		
K1	intentionally select fit-to-use data	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation
K2	apply the appropriate remote sensing technologies depending on the needs	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Activity during classes, Participation in a discussion, Examination, Report, Case study, Presentation

Activity form	Average amount of hours* needed to complete each activity form
Lecture	30
Workshop classes	120
Realization of independently performed tasks	50
Examination or Final test	2
Preparation of project, presentation, essay, report	50
Preparation for classes	40
Student workload	Hours 292
Workload involving teacher	Hours 150

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Lecture	W1, W2, U1, U2, U3, K1, K2	The module is designed to provide knowledge about the possibilities of remote sensing applications in solving tasks carried
Workshop classes	W1, W2, U1, U2, U3, K1, K2	out by various fields.

Python for Remote Sensing Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II1K.638491410ada8.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form	Core Modules
Full-time studies Education profile General academic	Subject related to scientific research Yes Subject shaping practical skills Yes

Period Semester 1	Examination Exam	Number of ECTS points 10.0
	Activities and hours Lecture: 10, Workshop classes: 140	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:	·	
W1	Python language and tools for remote sensing	RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Examination, Involvement in teamwork
W2	algorithms for telemetry data processing	RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Examination, Involvement in teamwork
W3	interfacing principles with external software	RSGI2A_W05	Participation in a discussion, Involvement in teamwork

Skills - Student can:					
U1	apply programming skills in practice	RSGI2A_U03, RSGI2A_U04	Examination, Involvement in teamwork		
U2	use Python with remote sensing data	RSGI2A_U03, RSGI2A_U04	Examination, Involvement in teamwork		
U3	perform spatial analysis within language framework	RSGI2A_U03, RSGI2A_U04	Examination, Involvement in teamwork		
Social co	Social competences - Student is ready to:				
K1	intentionally select fit-to-use data	RSGI2A_K01	Participation in a discussion, Examination, Involvement in teamwork		
K2	solve problems related to the use of spatial analysis in decision support	RSGI2A_K03	Participation in a discussion, Examination, Involvement in teamwork		

Activity form	Average amount of hours* needed to complete each activity form
Lecture	10
Workshop classes	140
Realization of independently performed tasks	50
Preparation of project, presentation, essay, report	50
Student workload	Hours 250
Workload involving teacher	Hours 150

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module	
Lecture	W1, W2, W3, U1, U2, U3, K1, K2	The student will acquire advanced knowledge of the Python	
Workshop classes	W1, W2, W3, U1, U2, U3, K1, K2	application in romate concing	

Transitional work on geo-informatics in remote sensing – individually selected issue solved under the supervision of a tutor Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II1K.63849141ede89.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form Full-time studies	Core Modules Subject related to scientific research
Education profile General academic	Yes Subject shaping practical skills Yes

Period Semester 1	Examination Exam	Number of ECTS points 10.0
	Activities and hours Progress evaluation and interim assignments: 150	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:		
W1	advanced knowledge of remote sensing	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07	Examination, Report, Involvement in teamwork, Preparation and conduct of scientific research

W2	advanced knowledge in geoscience	RSGI2A_W01, RSGI2A_W04, RSGI2A_W06, RSGI2A_W07	Examination, Report, Involvement in teamwork, Preparation and conduct of scientific research
W3	Python tools for remote sensing and geoscience	RSGI2A_W03, RSGI2A_W04, RSGI2A_W05	Examination, Report, Involvement in teamwork, Preparation and conduct of scientific research
Skills - S	tudent can:		
U1	apply remote sensing knowledge in practice	RSGI2A_U01, RSGI2A_U02, RSGI2A_U05, RSGI2A_U06	Participation in a discussion, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
U2	use Python in remote sensing and geoscience	RSGI2A_U03, RSGI2A_U04, RSGI2A_U05, RSGI2A_U06	Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
U3	perform advanced spatial analysis using remote sensing data	RSGI2A_U01, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05	Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
Social co	mpetences - Student is ready to:		
К1	intentionally select fit-to-use data	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Participation in a discussion, Examination, Involvement in teamwork
K2	solve ethical problems related to the use of spatial analysis in decision support	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Participation in a discussion, Examination, Involvement in teamwork

Activity form	Average amount of hours* needed to complete each activity form
Progress evaluation and interim assignments	150
Realization of independently performed tasks	80
Preparation of project, presentation, essay, report	20
Examination or Final test	2
Student workload	Hours 252
Workload involving teacher	Hours 150

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Progress evaluation and interim assignments	W1, W2, W3, U1, U2, U3, K1, K2	The student will acquire advanced knowledge of the possibilities of using geo-informatics in remote sensing

Time Series Analysis Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II2K.61d8360e0cfef.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form Full-time studies	Core Modules Subject related to scientific research
Education profile General academic	Yes Subject shaping practical skills Yes

Period Semester 2	Examination Assessment	Number of ECTS points 4.0
	Activities and hours Lecture: 10, Workshop classes: 40	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledge - Student knows and understands:			
W1	the technologies, capabilities of recording satellite multi-temporal data and repositories of archived data	RSGI2A_W02, RSGI2A_W03	Participation in a discussion, Report, Case study, Involvement in teamwork
W2	techniques and algorithms for processing multi- temporal images	RSGI2A_W02, RSGI2A_W04	Participation in a discussion, Report, Case study, Involvement in teamwork

W3	contemporary concepts, methods and techniques from geoinformatics applied to spatial and spatio-temporal environmental analysis	RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Report, Case study, Involvement in teamwork		
Skills - S	kills - Student can:				
U1	acquire and integrate remote sensing data in preparation for multi-temporal analyses	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Participation in a discussion, Report, Case study, Involvement in teamwork		
U2	select and apply appropriate spatial-temporal techniques and algorithms, including machine learning, to analyse and solve environmental problems	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05	Participation in a discussion, Report, Case study, Involvement in teamwork		
Social co	ocial competences - Student is ready to:				
К1	intentionally select fit-to-use data	RSGI2A_K02	Participation in a discussion, Involvement in teamwork		
K2	dissemination of information on ongoing environmental changes, including climate change	RSGI2A_K02	Participation in a discussion, Involvement in teamwork		

Activity form	Average amount of hours* needed to complete each activity form
Lecture	10
Workshop classes	40
Preparation for classes	15
Examination or Final test	2
Preparation of project, presentation, essay, report	25
Realization of independently performed tasks	15
Contact hours	3
Student workload	Hours 110
Workload involving teacher	Hours 50

* hour means 45 minutes

outcomes outcomes for the module

Lecture	W1, W2, W3, U1, U2, K1, K2	The student will acquire advanced knowledge of the time series
Workshop classes	W1, W2, W3, U1, U2, K1, K2	analysis

Machine Learning, Application of Mathematics Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II2P.63849144b7161.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level Second-cycle studies	Obligatory Block
Study form	Foundation Modules
Full-time studies	Subject related to scientific research
Education profile	Yes
General academic	Subject shaping practical skills Yes

Period Semester 2	Examination Assessment	Number of ECTS points 6.0
	Activities and hours Lecture: 15, Workshop classes: 60	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledge - Student knows and understands:			
W1	machine learning and basic deep learning methods and algorithms and their theoretical basis	RSGI2A_W01, RSGI2A_W05	Participation in a discussion, Test, Project, Report
W2	measures for assessing the quality of machine learning models	RSGI2A_W01, RSGI2A_W05	Participation in a discussion, Test, Project, Report
W3	currently available Python libraries dedicated to machine learning and deep learning tasks	RSGI2A_W01, RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Test, Project, Report

Skills - S	tudent can:			
U1	design and implement effective solutions based on machine learning and deep learning algorithms, to solve practical problems		Activity during classes, Participation in a discussion, Project, Report	
U2apply machine learning and deep learning techniquesRSGI2A_U03,Partin remote sensing and geoinformation tasksRSGI2A_U04discussion		Activity during classes, Participation in a discussion, Project, Report		
U3	qualitatively and quantitatively compare the outcomes of machine learning models	RSGI2A_U03, RSGI2A_U04	Activity during classes, Participation in a discussion, Project, Report	
Social competences - Student is ready to:				
K1	responsible use of learned machine learning and deep learning techniques in practice, while being aware of their capabilities and limitations	RSGI2A_K01, RSGI2A_K02	Participation in a discussion, Project, Report	

Activity form	Average amount of hours* needed to complete each activity form
Lecture	15
Workshop classes	60
Preparation for classes	30
Examination or Final test	2
Preparation of project, presentation, essay, report	45
Realization of independently performed tasks	20
Student workload	Hours 172
Workload involving teacher	Hours 75

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
------------	------------------------------	---

Lecture	W1, W2, W3, U1, U2, U3, K1	 nethods for regression, classification, and clustering as well as the possibilities of using machine learning methods in remote sensing and geoinformation science applications. The course will include both a theoretical basis and an applied part, where students will
Workshop classes	W1, W2, W3, U1, U2, U3, K1	

Data Science for Smart Environment Educational subject description sheet

Basic information

Field of study Remote Sensing and Geo Informatics	Didactic cycle 2023/2024
Speciality All	Subject code DRSGIS.II2K.6384914579b98.23
Department Faculty of Mining Surveying and Environmental	Lecture languages English
Engineering Study level	Mandatory Obligatory
Second-cycle studies	Block
Study form Full-time studies	Core Modules Subject related to scientific research
Education profile	Yes
General academic	Subject shaping practical skills
	Subject shaping practical skills Yes

Period Semester 2	Examination Assessment	Number of ECTS points 6.0
	Activities and hours Lecture: 15, Workshop classes: 60	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledge	e - Student knows and understands:		
W1	new technology e.g. loT, smart metering, industry 4.0	RSGI2A_W03, RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Report, Case study, Involvement in teamwork
W2	the roles of social media and ethical issues related to smart environment	RSGI2A_W06, RSGI2A_W07	Participation in a discussion, Report, Case study, Involvement in teamwork

W3	problems related to the processing of large spatial- temporal data	RSGI2A_W03, RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Report, Case study, Involvement in teamwork
Skills - Stu	ident can:		
U1	integrate and analyze data obtained from new technologies	RSGI2A_U03, RSGI2A_U04	Case study, Involvement in teamwork
U2	application of machine learning and geo-informatics tools for smart environment development	RSGI2A_U03, RSGI2A_U04	Case study, Involvement in teamwork
Social competences - Student is ready to:			
К1	intentionally use of social media	RSGI2A_K01	Participation in a discussion, Report, Case study, Involvement in teamwork
K2	consciously manage ethical risks with smart technologies	RSGI2A_K01, RSGI2A_K03	Participation in a discussion, Report, Case study, Involvement in teamwork

Activity form	Average amount of hours* needed to complete each activity form
Lecture	15
Workshop classes	60
Realization of independently performed tasks	100
Student workload	Hours 175
Workload involving teacher	Hours 75

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Lecture	W1, W2, W3, U1, U2, K1, K2	The student will acquire advanced knowledge of the possibilities of
Workshop classes	W1, W2, W3, U1, U2, K1, K2	using datageignes for smart environment

Geo-information Tools Educational subject description sheet

Basic information

Field of study Remote Sensing and Geo Informatics Speciality All	Didactic cycle 2023/2024 Subject code DRSGIS.II2K.63849146398d9.23
Department Faculty of Mining Surveying and Environmental Engineering	Lecture languages English Mandatory
Study level Second-cycle studies Study form	Obligatory Block Core Modules
Full-time studies Education profile General academic	Subject related to scientific research Yes
	Subject shaping practical skills Yes

Period Semester 2	Examination Assessment	Number of ECTS points 4.0
	Activities and hours Lecture: 10, Workshop classes: 40	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:	-	
W1	methods and algorithms and their theoretical basis in geo-information tools	RSGI2A_W01, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05	Activity during classes, Participation in a discussion, Test, Case study
Skills - St	udent can:	·	
U1	process data in the field of geoinformation	RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05	Activity during classes, Test, Case study

U2	apply geo-information tools in remote sensing and geoscience	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Activity during classes, Test, Case study
Social competences - Student is ready to:			
К1	responsible use of process data in the field of geoinformation in practice, while being aware of their capabilities and limitations	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Activity during classes, Participation in a discussion, Test, Case study

Activity form	Average amount of hours* needed to complete each activity form
Lecture	10
Workshop classes	40
Realization of independently performed tasks	30
Preparation of project, presentation, essay, report	30
Contact hours	2
Student workload	Hours 112
Workload involving teacher	Hours 50

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Lecture	W1, U1, U2, K1	The student will acquire knowledge about the theory of different
Workshop classes	W1, U1, U2, K1	methods for use of process data in the field of geoinformation

Transitional work on machine learning in smart environment – individually selected issue solved under the supervision of a tutor Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II2K.63849146ecd47.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form Full-time studies	Core Modules Subject related to scientific research
Education profile General academic	Yes Subject shaping practical skills Yes

Period Examination Semester 2 Exam Activities and hours Progress evaluation and interim assignments: 150	Number of ECTS points 10.0
--	----------------------------------

Code	Outcomes in terms of	Directional learning outcomes	Examination methods	
Knowledge - Student knows and understands:				
W1	advanced knowledge of time series analysis	RSGI2A_W01	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research	

W2	advanced knowledge in machine learning	RSGI2A_W03, RSGI2A_W04	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research
W3	advanced knowledge about application of geo- informatics in smart environment	RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research
Skills - S	tudent can:		!
U1	apply time series analysis and machine learning in practice	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Participation in a discussion, Report, Case study, Preparation and conduct of scientific research
U2	perform advanced spatial analysis for smart environment	RSGI2A_U03, RSGI2A_U04	Participation in a discussion, Report, Case study, Preparation and conduct of scientific research
Social co	mpetences - Student is ready to:		:
К1	intentionally select fit-to-use data	RSGI2A_K02	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research
К2	independently and creatively solve problems in the scope of smart enivironment	RSGI2A_K02	Participation in a discussion, Examination, Report, Case study, Preparation and conduct of scientific research

Activity form	Average amount of hours* needed to complete each activity form	
Progress evaluation and interim assignments	150	
Examination or Final test	2	
Realization of independently performed tasks	50	
Preparation of project, presentation, essay, report	30	
Preparation for classes	30	
Student workload	Hours 262	
Workload involving teacher	Hours 150	

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Progress evaluation and interim assignments	W1, W2, W3, U1, U2, K1, K2	The student will acquire knowledge about characteristics of scientific research

Natural Hazards and Disaster Risk Reduction Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II4K.63849149651f2.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies Study form	Block Core Modules
Full-time studies Education profile General academic	Subject related to scientific research Yes Subject shaping practical skills Yes

Period Semester 3	Examination Exam	Number of ECTS points 10.0
	Activities and hours Lecture: 30, Workshop classes: 120	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods		
Knowledg	Knowledge - Student knows and understands:				
W1	knowledge about methods and algorithms for disaster managment	RSGI2A_W01, RSGI2A_W04, RSGI2A_W05	Execution of a project, Test, Report		
Skills - Student can:					
U1	apply optimal technologies and techniques in monitoring of disasters and natural hazards	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Execution of a project, Report		

U2	perform advanced spatial analysis using remote sensing and lidar data	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Execution of a project, Report	
U3	recognize the requirements for ensuring an ongoing hazard and risk assessment process	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04	Execution of a project, Report	
Social co	Social competences - Student is ready to:			
K1	intentionally select fit-to-use data	RSGI2A_K01	Participation in a discussion, Execution of a project, Test, Report	
K2	independently and creatively solve problems in the scope of disaster and natural hazards monitoring	RSGI2A_K02	Participation in a discussion, Execution of a project, Report	

Activity form	Average amount of hours* needed to complete each activity form
Lecture	30
Workshop classes	120
Preparation for classes	30
Examination or Final test	2
Preparation of project, presentation, essay, report	50
Realization of independently performed tasks	20
Student workload	Hours 252
Workload involving teacher	Hours 150

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module	
Lecture	W1, U1, U2, U3, K1, K2	knowledge and skills about monitoring, detection and manager of disasters, based on emerging technologies and optimal	
Workshop classes	W1, U1, U2, U3, K1, K2	techniques.	

Urban Planning and Environmental Management Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II4K.6384914a27632.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form	Core Modules
Full-time studies	Subject related to scientific research
Education profile	Yes
General academic	Subject shaping practical skills Yes

Period Semester 3	Examination Exam	Number of ECTS points 10.0
	Activities and hours Lecture: 30, Workshop classes: 120	

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:	·	
W1	advanced knowledge of photogrammetry and laser scanning	RSGI2A_W01, RSGI2A_W04	Test, Examination, Preparation and conduct of scientific research
W2	advanced knowledge of point cloud generation methods	RSGI2A_W04	Test, Examination, Preparation and conduct of scientific research
W3	advanced knowledge of 3D modelling	RSGI2A_W04	Test, Examination, Preparation and conduct of scientific research

W4	knowledge of urban planning	RSGI2A_W03	Test, Examination, Preparation and conduct of scientific research
Skills - S	tudent can:		
U1	apply photogrammetric and laser scanning knowledge in practice	RSGI2A_U04	Project, Preparation and conduct of scientific research
U2	use photogrammetric and laser scanning data to 3D modelling and urban planning	RSGI2A_U03	Project, Preparation and conduct of scientific research
U3	perform advanced modelling processes for urban objects	RSGI2A_U03	Project, Preparation and conduct of scientific research
Social co	mpetences - Student is ready to:		·
K1	intentionally select data for 3D modelling	RSGI2A_K02	Project, Preparation and conduct of scientific research
K2	solve problems of application of geospatial data for urban planning	RSGI2A_K01	Project, Preparation and conduct of scientific research

Activity form	Average amount of hours* needed to complete each activity form
Lecture	30
Workshop classes	120
Preparation for classes	60
Realization of independently performed tasks	40
Examination or Final test	2
Student workload	Hours 252
Workload involving teacher	Hours 150

* hour means 45 minutes

ActivitiesSubject learning outcomesProgramme content that ensure achieving learning outcomes for the module	g
---	---

Lecture	W1, W2, W3, W4, U1, U2, U3, K1, K2	Using point clouds from different sources to build 3D models; Methods for developing 3D models; Conducting spatial analysis to
Workshop classes	W1, W2, W3, W4, U1, U2, U3, K1, K2	check the spatial and social relations of a new object with the surrounding.

Transitional work on geoscience in environmental management – individually selected issue solved under the supervision of a tutor Educational subject description sheet

Basic information

Field of study Remote Sensing and Geo Informatics	Didactic cycle 2023/2024
Speciality	Subject code
All	DRSGIS.II4K.6384914ae3c24.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandahan
Charles Israel	Mandatory
Study level	Obligatory
Second-cycle studies	Block
Study form	Core Modules
Full-time studies	
	Subject related to scientific research
Education profile	Yes
General academic	Subject shaping practical skills
	Yes

Period Semester 3	Examination Exam Activities and hours Progress evaluation and interim assignments: 150	Number of ECTS points 10.0
-----------------------------	---	----------------------------------

Code	Outcomes in terms of	Directional learning outcomes	Examination methods
Knowledg	e - Student knows and understands:		
W1	methods and algorithms and their theoretical basis for transitional work on geoscience in environmental management	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05	Participation in a discussion, Examination, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research

W2	advanced knowledge of applied geoscience for environmental monintoring and management	RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07	Participation in a discussion, Examination, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
Skills - St	udent can:		·
U1	perform advanced spatial analysis using remote sensing data for natural hazards and disaster risk reduction	RSGI2A_U01, RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05	Participation in a discussion, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
U2	perform advanced spatial analysis using remote sensing data in urban planning and environmental management	RSGI2A_U02, RSGI2A_U03, RSGI2A_U04, RSGI2A_U05	Participation in a discussion, Examination, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research
Social cor	npetences - Student is ready to:	•	·
К1	responsible use of process data in the field of transitional work on geoscience in environmental management in practice, while being aware of their capabilities and limitations	RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	Participation in a discussion, Report, Case study, Involvement in teamwork, Preparation and conduct of scientific research

Activity form	Average amount of hours* needed to complete each activity form
Progress evaluation and interim assignments	150
Realization of independently performed tasks	40
Contact hours	2
Preparation of project, presentation, essay, report	40
Preparation for classes	30
Examination or Final test	2
Student workload	Hours 264
Workload involving teacher	Hours 150

* hour means 45 minutes

Activities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Progress evaluation and interim assignments	W1, W2, U1, U2, K1	The student will acquire knowledge about the theory of different methods for transitional work on geoscience in environmental management

Diploma Thesis Educational subject description sheet

Basic information

Field of study	Didactic cycle
Remote Sensing and Geo Informatics	2023/2024
Speciality	Subject code
All	DRSGIS.II8K.e53bc1ffec52171870fc55d1cec2fa6a.23
Department	Lecture languages
Faculty of Mining Surveying and Environmental	English
Engineering	Mandatory
Study level Second-cycle studies Study form Full-time studies	Obligatory Block Core Modules
Education profile General academic	Subject related to scientific research Yes Subject shaping practical skills No

Period Semester 4	Examination Assessment Activities and hours Diploma Thesis: 0	Number of ECTS points 20.0
-----------------------------	--	----------------------------------

Code	Outcomes in terms of	Directional learning outcomes	Examination methods	
Knowledge - Student knows and understands:				
W1	selected problems in the field of selected specialities and ways to solve them, and also has knowledge of development trends in this area	RSGI2A_W01, RSGI2A_W02, RSGI2A_W03, RSGI2A_W04, RSGI2A_W05, RSGI2A_W06, RSGI2A_W07	Report on completion of a practical placement, Preparation and conduct of scientific research	
Skills - Stud	dent can:	—		

	anna shi andh kina kinanin wakinin in a shaka ila d	RSGI2A_U01,	Demost on completion of		
U1	correctly edit the thesis, which is a detailed presentation and discussion of the results of the	RSGI2A_U02, RSGI2A_U03,	Report on completion of a practical placement,		
	conducted research and analysis, including an	RSGI2A_U04,	Preparation and conduct		
	abstract in English	RSGI2A_U05,	of scientific research		
		RSGI2A_U06			
U2	present in the form of an oral presentation the most important elements of one's own thesis and engage in a discussion about it	RSGI2A_U04, RSGI2A_U05, RSGI2A_U06	Report on completion of a practical placement, Preparation and conduct of scientific research		
	acquire, integrate, interpret and critically evaluate	RSGI2A U02,	Report on completion of		
U3	information from various sources, as well as draw conclusions and formulate and fully justify opinions on	RSGI2A_U03,	a practical placement, Preparation and conduct		
	a given topic	RSGI2A_U04	of scientific research		
Social con	Social competences - Student is ready to:				
	Able to work in a group and manage the research development process	RSGI2A K01,	Report on completion of		
К1		RSGI2A_K01, RSGI2A_K02, RSGI2A_K03	a practical placement,		
			Preparation and conduct of scientific research		

Activity form	Average amount of hours* needed to complete each activity form	
Preparation for classes	200	
Realization of independently performed tasks	100	
Contact hours	5	
Preparation of project, presentation, essay, report	200	
Student workload	Hours 505	

* hour means 45 minutes

Α	ctivities	Subject learning outcomes	Programme content that ensure achieving learning outcomes for the module
Dipl	loma Thesis	W1, U1, U2, U3, K1	The module involves completing and passing a master's thesis, as well as preparing for and taking the diploma exam.

Detailed rules of the implementation of the study programme estabilished by the Dean of the Faculty (the so-called Study Rules)

Major: Remote Sensing and Geo Informatics

Enrollment rules for the next semester

The rules for entry into the next semester are governed by the Academic Regulations in force for the academic year. In order to obtain registration it is necessary to:

- 1. obtaining credit for all courses (learning modules) compulsory for the chosen field of study, educational profile included in the plan of that semester (year) of study.
- 2. obtain at least 30 ECTS credits, depending on the number of ECTS credits provided for in the study schedule for a given semester (year) of study.

Enrollment rules for the next semester as a part of the so-called ECTS credits debt ceiling

The rules for entry into the next semester with a deficit are regulated in the Academic Regulations. If the standard conditions for entry into the next semester are not met, it is possible to apply for entry into the next semester of study with a so-called acceptable total credit deficit.

The acceptable cumulative deficit of credits is 10 ECTS.

ECTS credits debt ceiling

10

Organization of classes within the so-called blocks of classes (i.e. such organization of subjects or individual forms of classes that creates exceptions to the cyclical nature of classes in particular weeks of a given semester of studies)

The degree programme lasts four semesters. Programme content per semester contained in large modules. Classes are planned in blocks, i.e. they are clustered thematically and time-wise. Modules are completed one after the other. Study requires attendance at AGH for 25 days per semester (5 blocks of 5 days each).

Monitoring semesters

2

Study rules in case of the individual organization of studies approved for a specific student

There is no provision for an individual mode of study due to the English language of study.

Implementation of apprenticeships including monitoring system and completion rules

Not applicable.

Rules of elective modules taking

Students choose elective courses from the UBPO or from the course offerings in English. Students may also choose elective courses in Polish.

Rules of study paths, diploma paths, specialty choice/eligibility

Not applicable.

Rules related to the preparation of diploma projects and theses as well as the implementation of the degree granting

The graduation process involves the preparation of a diploma thesis (individual or team) and taking the diploma examination. The diploma examination includes:

- 1. presentation of the diploma thesis,
- 2. discussion of the thesis,
- 3. verification of the level of mastery of knowledge and skills in the field of study studied, the so-called master's exam.

Diploma thesis topics together with their supervisors and additional conditions for thesis realisation are approved by the Dean upon the proposal of the head of the department submitting a given topic. A list of thesis topics and their supervisors is made available to students one year before the diploma semester. Enrolment in a given topic takes place on an individual basis. The selection of a topic is a condition for the student's entry into the final year of study. Changing the topic of the thesis, changing the supervisor or submitting an additional topic is possible at the request of the supervisor with the written consent of the Dean. Resignation from the thesis supervisor shall be made in writing, stating the reasons for the resignation. The scope and form of the thesis to enable its timely completion. In the case of a team thesis, a detailed definition of each performer's contribution to the thesis is required. After completing the diploma thesis, receiving a positive mark for it from the thesis supervisor and passing all the subjects provided for in the study programme (obtaining a pass mark), students submit and register their thesis at the Dean's Office, after which the thesis is made available to a reviewer for review and a date is set for the thesis defence.

The thesis reviewer is appointed by the Dean of the Faculty. The reviewer may be a professor, postdoctoral researcher or doctor. It is recommended that if the supervisor of a thesis is a doctor, the reviewer of that thesis should be a professor or a postdoctoral doctor. Once the thesis has been registered, the supervisor and the reviewer prepare written evaluations of the thesis.

After obtaining a positive review of the thesis, the student takes the diploma exam at a designated date before a Commission appointed by the Dean of the Faculty.

Normally, the diploma examination commission consists of:

- 1. the Dean of the Faculty as chairperson or a person authorised by him/her, who may be an academic teacher with the title of professor or the degree of doctor habilitated,
- 2. the thesis supervisor,
- 3. the thesis reviewer.

The master's examination consists of answering at least two cross-cutting questions in the field of study, one of which is asked by the thesis supervisor and the other by the thesis reviewer. The general scope of the master's exam is made available to students at the latest in the semester preceding the graduation semester. When preparing it, the directional learning outcomes for the second-cycle studies in a given field of study and the modular learning outcomes resulting from the programme of a given specialisation shall be taken into account. The scope of this examination may also include basic knowledge for a given field of study resulting from the directional learning outcomes for first-cycle studies conducted at the Faculty. The partial grades obtained for the thesis presentation and the answers to the set questions are included in the diploma examination report , as is the final grade for the thesis, resulting from the grades obtained from the thesis supervisor's and reviewer's grades, the final grade for the thesis is determined at the Examination Board meeting. The diploma examination grade is determined by the Examination Board as the arithmetic mean of the partial grades obtained for the thesis presentation and the answers to both questions posed (assessed by those asking the questions).

For preparation of the thesis and submission of the diploma thesis confirmed by obtaining a positive final grade for the thesis and a positive grade for the diploma examination, the student is awarded 20 ECTS points in the last semester of studies (allocated by the Dean in accordance with the Study Regulations).

Principles for determining the overall evaluation of graduation (the final grade)

The degree completion result is determined as a weighted average of the following grades:

- 1. the average grade of the degree programme with a weighting of 0.6;
- 2. the final grade of the diploma thesis with a weighting of 0.2, with the final grade of the thesis being determined by a committee appointed by the Dean in the event of a discrepancy between the grades of the supervisor and the reviewer;
- 3. the grade of the diploma examination with a weighting of 0.2, with the grade being calculated as the arithmetic mean of the grade of the master's examination and the grade of the presentation and discussion of the thesis (defence grade). In the event that a student passes the diploma examination on a resit date, the average of the grades from the primary and resit dates, but not less than 3.0, shall be taken into account in the calculation. The

rules resulting from the Study Regulations shall be taken into account when determining individual grades, including the average grade. The Examination Board may award a distinction to a graduate who fulfils all of the following criteria (listed in the AGH Study Regulations):

- a. has submitted his/her diploma thesis and taken the diploma examination on the scheduled date,
- b. has obtained an average mark from his/her studies (first or second degree) above 4.71,
- c. has obtained a very good grade from the diploma thesis,
- d. has obtained a very good grade from the diploma examination.

The award of a distinction should be recorded in the examination report. Confirmation of the distinction will be an appropriate document attached to the diploma of graduation.

Other requirements related to the implementation of the study programme resulting from the AGH UST Study Regulations or other regulations in force at the University

Not applicable.