DT9205A Digital Multimeter

1. INTRODUCTION

The DT9205A Digital Multimeter is a precision, battery powered, 3-1/2 digit LCD Digital Instrument.

- High accuracy
- Digit height 33mm
- Single 32 position rotary switch for FUNCTION and RANGE selection, allows fast and convenient operation.
- Curvilinear soft case.
- Auto-Power Off

2. GENERAL SPECIFICATION

- Display: 3-1/2 digits LCD with a maximum reading of 1999.
- Measurement rate: updates 2-3 sec.
- Over range indication: "1" figure only in the display
- Automatic negative polarity indication.
- The 🗄 symbol is displayed when the battery voltage drops below the operating voltage.
- Full range over load protection.
- Capacitance measurement Auto-zeroing.
- Auto Power Off. Automatic cut off approx. 15 minutes after the power on. It needs to be switched off and on again to continue operation.
- Operating temperature: 0°C~40°C, 0~75% R.H. Storage temperature: -10°C~50°C, 0~75% R.H.
- Power: Single standard 9V battery.
- Dimensions: 191mm L x 89mm W x 35mm H.
- Weight: approx 310g (including battery)
- Accessories: test leads, spare fuse 0.5A (in case), Operating instructions.

3. ELECTRICAL SPECIFICATIONS

Accuracy is given as ± (% of reading + number of least significant digits) for one year, at 23°C±5°C RH<75%

3.1 DCV

Range	Accuracy
200mV	
2V	0 50/ . 1
20V	0.5% ± 1
200V	
1000V	0.8% ± 2

3.2 ACV

Range	Accuracy
200mV	1.2% ±3
2V	
20V	0.8% ± 2
200V	
750V	1.2% ±3

Input impedance: $10M\Omega$ Frequency range: $40 \sim 400Hz$

3.3 DCA

Range	Accuracy
2mA	1% ± 3
20mA	
200mA	1.8% ±3
20A	2% ±5

Measuring voltage drop: 200mV

3.4 ACA

Range	Accuracy
2mA	0.8% ± 1
20mA	
200mA	1.2% ±1
20A	2% ±5

Measuring voltage drop: 200mV Frequency range 40 ~ 400Hz

3.5 CAPACITANCE

Range	Accuracy
2nF	
20nF	
200nF	2.5% ±3
2uF	
20uF	

3.6 OHM

Range	Accuracy
200Ω	0.8% ± 3
2Κ Ω	
20Κ Ω	0.8% ± 1
200Κ Ω	
2Μ Ω	
20M Ω	1% ±2
200Μ Ω	5% ±1

4. PRECAUTIONS AND PREPARATIONS FOR MEASUREMENT

- 1. Ensure the battery is correctly placed in the battery compartment.
- 2. Do not exceed the input limits shown below:

Function Range	Input Terminals	Maximum Input
DCV 200mV	V/OHM COM	250VDC
ACV 200mV		250VAC
DCV 2~1000V		1000 VDC
ACV 2~750V		750VAC
ОНМ	V/OHM COM	250V DC/AC
Diode	V/OHM COM	
DCA 200mA		200mA DC/AC
ACA 200mA	A COM	
DCA2A	ACOM	2A DC/AC
ACA2A		
DCA 20A	20A COM	20A DC/AC

- 3. Inspect the test leads for damaged insulation or exposed metal. Check Test lead continuity. Damaged leads should be replaced.
- 4. Select the proper function and range for your measurement
- 5. Check the input terminal position for red test lead depending on measurement ranges.
- 6. Either one of the test leads should be removed from the circuit under test when changing the test ranges.
- 7. To avoid electrical shock or damage to the meter Do not apply more then 500V between any terminal and earth ground.
- 8. To avoid electrical shock, use caution when working above 60VDC or 25VAC rms. Such voltage poses a shock hazard.
- 9. When measurement is completed switch off the power. Remove the battery when not used for extended periods to avoid leakage problems.
- 10. Do not tamper with the circuitry to avoid damage.
- 11. Do not use or store the instrument in conditions of high temperature and high humidity.

5. METHOD OF MEASUREMENT

5.1 DCV & ACV MEASUREMENT

- 1. Set the Function range switch at the required position.
- 2. Connect black test lead to "COM" terminal and red test lead to the "V/OHM" input terminal.
- Connect test leads to measuring point and read the display value. The polarity of the red lead connection will be indicated at the same time as the voltage. Note:
 - a. If the voltage to be tested is unknown beforehand, set the Function range switch to the highest range and work down.
 - b. When only the figure "1" is displayed over range is being indicated and the function range switch has to be set to a higher range.
 - c. Never try to measure voltage above 1000V! Although indication is possible, there is danger of damaging the internal circuitry.

5.2 DCA & ACA MEASUREMENT

- 1. Connect the black test lead to the "COM" terminal and the red test lead to "A" terminal for a maximum of 0.5A
- 2. Set the function range switch at the required position.
- Connect test leads to measuring points and read the display value. The polarity at the red test lead connection will be indicated at the same time as the current. Note:
 - a. If the current range is unknown beforehand, set the function range switch to the highest range and work down.
 - b. When only the figure "1" is displayed, over range is being indicated and the function range switch has be set to a higher range.

- c. When the input is from the "A" terminal, excessive current will blow the fuse which must then be replaced. Fuse value is 0.5A.
- d. The 20A range is not protected by a fuse and has a maximum 10A continuous current rating. The 20A range measurement time should not exceed 15 seconds.

5.3 RESISTANCE MEASUREMENT

- 1. Connect black test lead to "COM" terminal and red test lead to the "V/OHM" input terminal.
- 2. Set the function range switch to the OHM range.
- 3. Connect the test leads across the resistance under measurement and read the display value. Note:
 - a. The polarity of the red test lead is "+".
 - b. When the input is not connected, i.e at open circuit, the figure "1" will be displayed for the over range condition.
 - c. If the resistance value being measured exceeds the maximum value of the range selected an over range indication "1" will be displayed and function range switch must be set to a higher range.
 - d. 200M Ω range has a 10 digits (1M Ω) constant. This figure will appear in short circuit status and it should be subtracted from any measurement result on this range. For instance: when measuring a100M Ω resistor a figure of 101.0 will be shown in the display. A value of 1M Ω should be subtracted from the indicated value.

5.4 CAPACITANCE MEASUREMENT

- 1. Set the function range switch to the "Cx" position. Before connecting the capacitor, wait until the display automatically zeros.
- 2. Connect the test capacitor to the "Cx" input socket (not test leads) and read the display value. Note:

The tested capacitor should be discharged before the testing procedure. Never apply voltage to the "Cx" input socket, or serious damage may result.

5.5 DIODE & CONTINUITY TEST

- 1. Set the function range switch to the ➡) position.
- 2. Connect the black test lead to "COM" terminal and red test lead to V/OHM input terminal; (Note: the polarity of the red test lead is "+").
- 3. This range has an "AUDIBLE CONTINUITY TEST" function. Built-in buzzer sounds if the resistance between the two probes is less than $30\pm10\Omega$.
- 4. Connect the test leads across the diode and read the display value. Note:
 - a. When the input is not connected, i.e. at open circuit, the figure "1" will be displayed
 - b. Test condition: Forward DC current approx 1mA. Reversed DC voltage approx. 2.8V
 - c. The meter displays the forward voltage drop and displays figure "1" for overload when the diode is reversed.

5.6 TRANSISTOR hFE TEST

- 1. Set the function range switch to the "hFE" position.
- 2. Determine whether the transistor is "NPN" or "PNP" type.
- 3. Correctly insert transistor into E.B.C connector.
- 4. Displayed reading is approx. transistor hFE value. Note:

Test condition: Base current approx 10uA. Vce approx.2.8V

6. BATTERY AND FUSE REPLACEMENT

- 1. Battery and fuse replacement should only be performed after the test leads have been disconnected and power turned off.
- 2. Loosen screws with suitable screwdriver and remove case bottom
- 3. The meter is power by a single 9V battery. Snap the battery connector leads to the terminals of a new battery and reinsert the battery into the case top. Arrange the battery leads so that they will not be pinched between the case bottom and case top.
- 4. The meter is protected by a fast fuse 0.5A/250V. Fuse dimensions are $5mm\Phi \times 20mm$.
- 5. Replace the case bottom and reinstall the three screws. Never operate the meter unless the case bottom is in place.

