

Moore machine

Design a thermostat that stabilizes the temperature to 22°C with a hysteresis of ± 2°C. The circuit should work as follows: when temperature drop below 20°C, the state machine will turn on heating and turn off above 22°C. Next, fluctuation of temperature between 20-24°C shouldn't turn on heating or cooling. When temperature rise above 24°C, the state machine will turn on cooling and turn off below 22°C. And next, fluctuation of temperature between 20-24°C shouldn't turn on heating or cooling. The state machine uses 3 digital 1-bit sensors to measure the temperature. Each sensor on his output sets logic 1 when the temperature is higher than the setting level and logic 0 when the temperature is lower that the setting level. Individual thresholds of temperature for each sensor are set: 24°C (sensor a), 22°C (sensor b) and 20°C (sensor c). System design as a Moore machine.

Temperature	Sensors indications				
	а	b	С		
2490	1	1	1		
24°C	0	1	1		
22°C	0	0	1		
20°C	0	0	0		

Sensor indications (a b c):

> 24°C – 111;

22°C ÷ 24°C – 011;

20°C ÷ 22°C – 001;

< 20°C – 000;

Lab: Sequential Logic Circuits II - State Machines

In order to test the system, use the **ThermoObject** module. **ThermoObject** is a control object simulator. The outputs of this object shows the states of sensors a, b and c (HEX5 display diodes). Additionally, the **ThermoObject** displays the current temperature on 7-segment displays (HEX2..HEX0). Connect the module as shown in Fig. 2.

Fig. 1: LED indications corresponding to sensors a, b and c and current temperature in °C

Fig. 2: Connection of the ThermoObject and Moore machine

Synthesis of the Moore machine

State coding (assignment of binary values):

S0 -> 00 S1 -> 01 S2 -> 10

	Sn	_	Х				\mathbf{S}_{n+1}	_
Sn	q_1	q ₀	а	b	С	q ₁ ′	q ₀′	S _{n+1}
S0	0	0	0	0	0	0	0	S0
S0	0	0	0	0	1	0	0	S0
S0	0	0	0	1	1	0	1	S1
S0	0	0	1	1	1	1	0	S2
S1	0	1	0	0	0	0	0	S0
S1	0	1	0	0	1	0	1	S1
S1	0	1	0	1	1	0	1	S1
S1	0	1	1	1	1	1	0	S2
S2	1	0	0	0	1	0	1	S1
S2	1	0	0	1	1	1	0	S2
S2	1	0	1	1	1	1	0	S2

Tab. 1: The state transition table of Moore machine

D flip-flops were selected for the synthesis of the Moore machine.

a b c $q_1 q_0$	000	001	011	010	110	111	101	100
00	0	0	1	-	-	0	-	-
01	0	1	1	-	-	0	-	-
11	-	-	-	-	-	-	-	-
10	-	1	0	-	-	0	-	-

$D_0 =$	$q_1\overline{b}$ +	$q_0 \overline{a}c +$	$\overline{q_1}\overline{a}b$
0		10	

a b c q1 q0	000	001	011	010	110	111	101	100
00	0	0	0	-	-	1	-	-
01	0	0	0	-	-	1	-	-
11	-	-	-	-	-	-	-	-
10	-	0	1	-	-	1	-	-

$$D_1 = a + q_1 b$$

	Sn	Y		
Sn	q_1	q₀	y 1	y o
S0	0	0	0	1
S1	0	1	0	0
S2	1	0	1	0

Tab. 2: The output table of Moore machine

$$y_0 = \overline{q_1} \, \overline{q_0}$$
$$y_1 = q_1 \, \overline{q_0}$$