

Actuating, Sensing and Control Mechatronic Systems

System on Chip

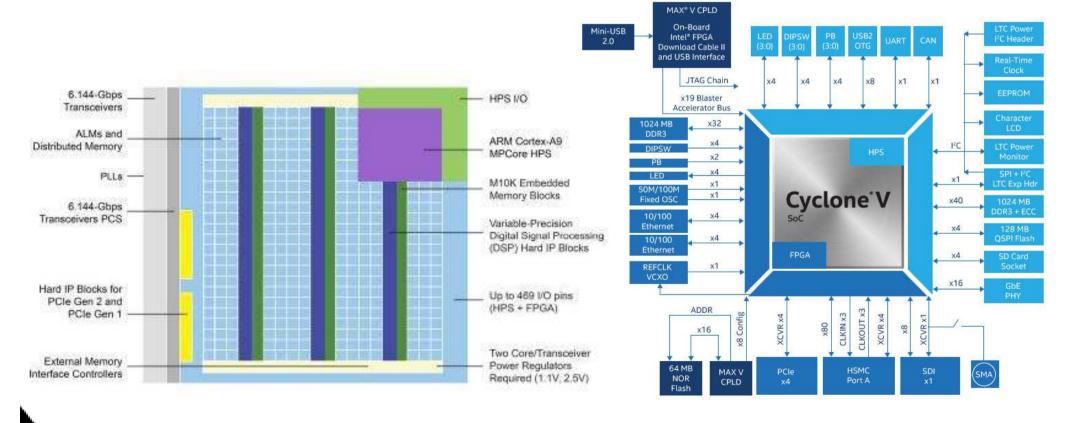
Grzegorz Góra PhD

D1-Lab 20

ggora@agh.edu.pl

http://home.agh.edu.pl/~ggora/

Department of Robotics and Mechatronics
Faculty of Mechanical Engineering and Robotics
AGH University of Science and Technology


AGENDA

- 1. SoC = FPGA + HPS (MCU)
- 2. Power Configurations
- 3. FPGA and HPS Communications
- 4. Memory mapping
- 5. SD Card Image
- 6. HSP Peripherals
- 7. HPS Booting Process
- 8. DE10-Nano

Cyclone V SoC FPGA + HPS

Cyclone V SoC FPGA devices offer a dual-core Arm Cortex-A9 MPCore processor surrounded by rich peripherals and a hardened memory controller. The FPGA fabric is connected to the hard processor system (HPS) through a high-speed >100Gbps interconnect backbone.

Cyclone V SoCPossible HPS and FPGA Power Configurations

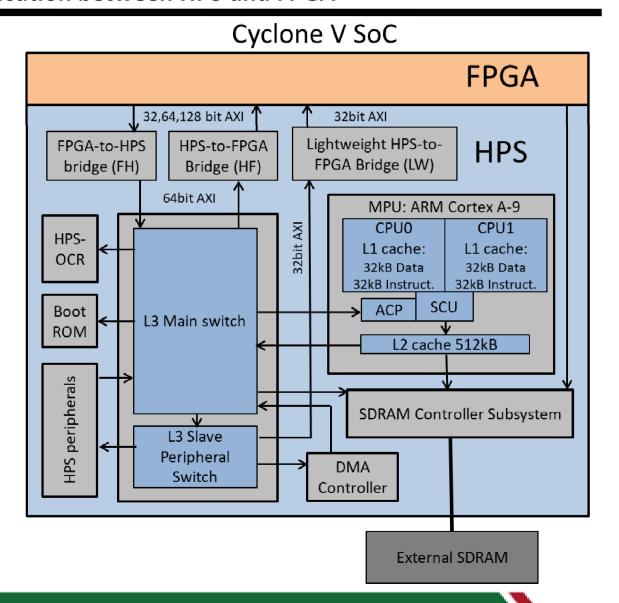
The HPS and FPGA portions of the device have separate external power supplies and are power on independently. You can power on the HPS without powering on the FPGA side of the device. However, to power on the FPGA portion, the HPS must already be on or powered on at the same time as the FPGA portion.

HPS Power	FPGA Power
On	On
On	Off
Off	Off

Therefore, it is possible to use the Cyclone V SoC in 3 different configurations:

- > FPGA-only,
- > HPS-only,
- > HPS & FPGA.

Cyclone V SoC Communication between HPS and FPGA


Generally communication between HPS and FPGA in Cyclone V SoC devices can be accomplished in the following ways:

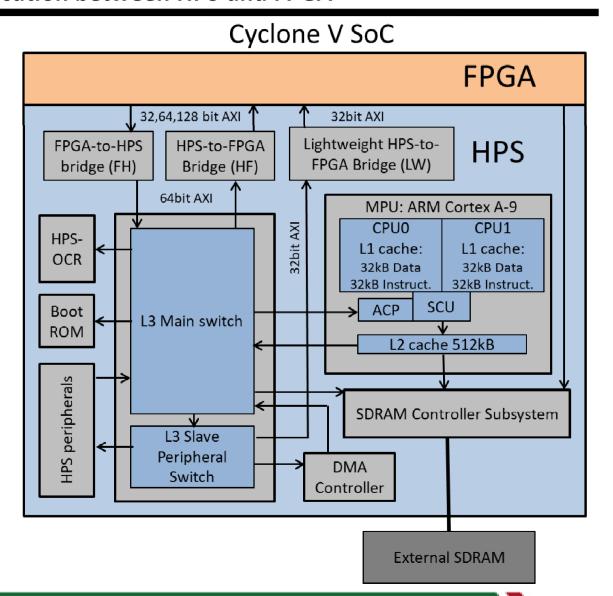
1) HPS-to-FPGA bridge

A high performance interface from HPS to FPGA. Transactions are usually conducted by the processor or Direct Memory Access (DMA) controllers present in HPS. Bridge is used for accessing FPGA logic, peripherals and memory.

2) HPS-to-FPGA Lightweight bridge

A low performance interface to the FPGA fabric. Usually used by the processor to access control and status registers of the components implemented into FPGA.

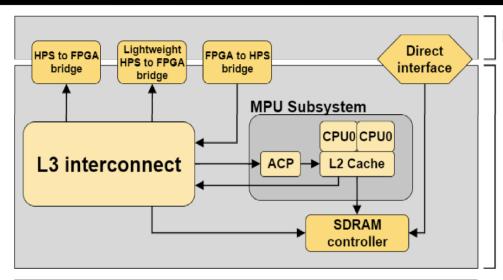
Cyclone V SoC Communication between HPS and FPGA


Generally communication between HPS and FPGA in Cyclone V SoC devices can be accomplished in the following ways:

3) FPGA-to-HPS bridge

A high performance interface from FPGA to HPS peripherals and memory. Cached memory transactions are supported by adopting ARMs Accelerator Coherency Port (ACP).

4) FPGA-to-HPS SDRAM interface


A high performance interface from FPGA to HPS SDRAM controller. FPGA master has access to the processor's RAM. Data residing in processor's cache will result in errors, this issue must be addressed by the software.

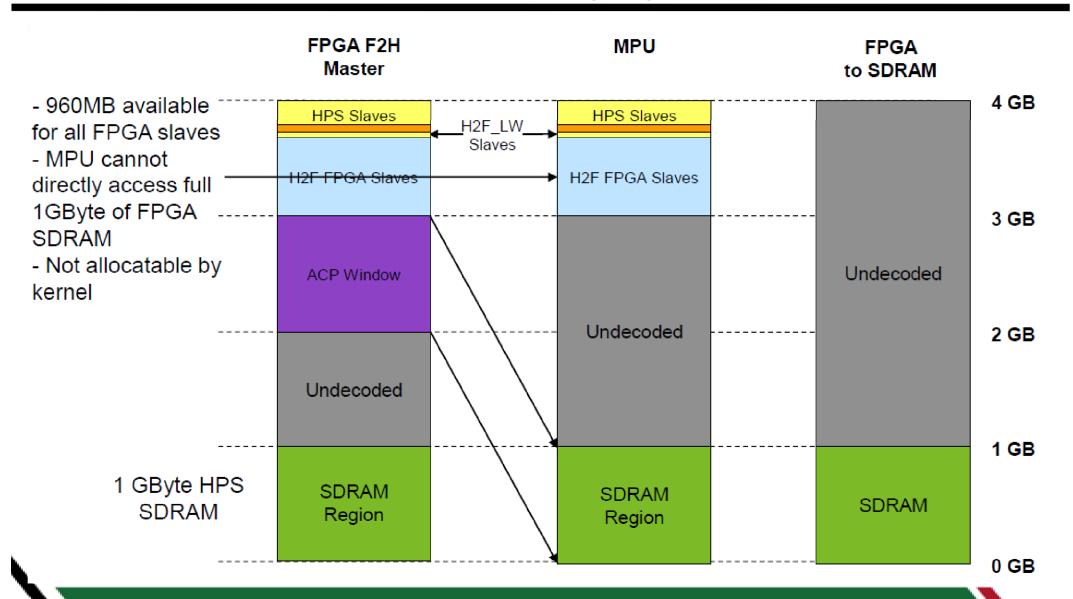
Cyclone V SoC FPGA to SDRAM data transfer

HPS

Data path	Bus width	Maximum	Saturation	
тата раш	Dus widin	throughput	frequency	
	32 bits	5.05 Gbps	120 MHz	
FPGA-L3-SDRAM	64 bits	10.10 Gbps	120 MHz	
	128 bits	10.52 Gbps	65 MHz	
FPGA-L3-ACP-SDRAM	32 bits	6.90 Gbps	-	
	64 bits	8.64 Gbps	120 MHz	
	128 bits	11.26 Gbps	90 MHz	
	32 bits	7.52 Gbps	-	
FPGA-SDRAM	64 bits	14.64 Gbps	-	
TT GA-SDRAW	128 bits	17.68 Gbps	80 MHz	
	256 bits	20.08 Gbps	45 MHz	

FPGA to SDRAM data transfer:

> FPGA-SDRAM - FPGA Master directly interacts with SDRAM controller.


➤ **FPGA-L3-SDRAM** — FPGA Master interacts with SDRAM controller via L3 interconnect.

➤ FPGA-L3-ACP-SDRAM — FPGA Master interacts with SDRAM controller via L3 interconnect and ACP.

www.agh.edu.pl

Cyclone V SoC Memory Map

Cyclone V SoC SD Card Image

Partition 3
Type=A2 (raw)

Partition 2
Type=83 (EXT Linux)

Partition 1
Type=B (FAT32 Windows)

U-boot Environment Settings

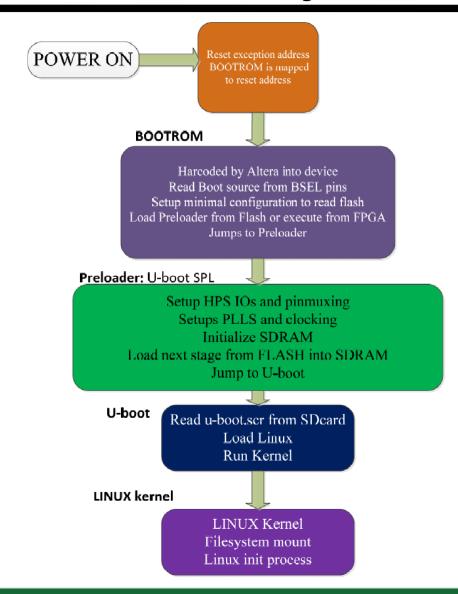
Master Boot Record
(MBR)

Location	File Name	Desciption	
Partition 1 (FAT32)	socfpga.dtb	Device Tree Blob	
	soc_system.rbf	FPGA configuration file	
	u-boot.scr	U-Boot script: configures FPGA and loads kernel	
	zlmage	Compressed Linux kernel image file	
Partition 2 (EXT3)	Various	Linux root file system	
Partition 3	n/a	Preloader image(s)	
(A2 raw)	n/a	U-Boot image	

Cyclone V SoC HSP Peripherals

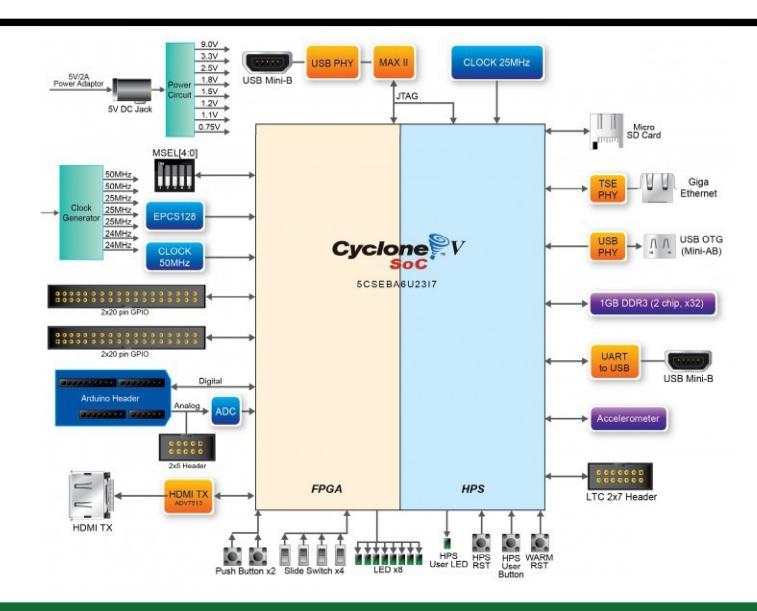
Possibilities of using HPS peripheral systems:

- HSP Peripherals (e.g.: UART, SPI) + dedicated HPS pins;
- HPS Peripherals + any FPGA pins;
- HPS pins as GPIO;
- FPGA pins controlled by HPS (LOANIO).

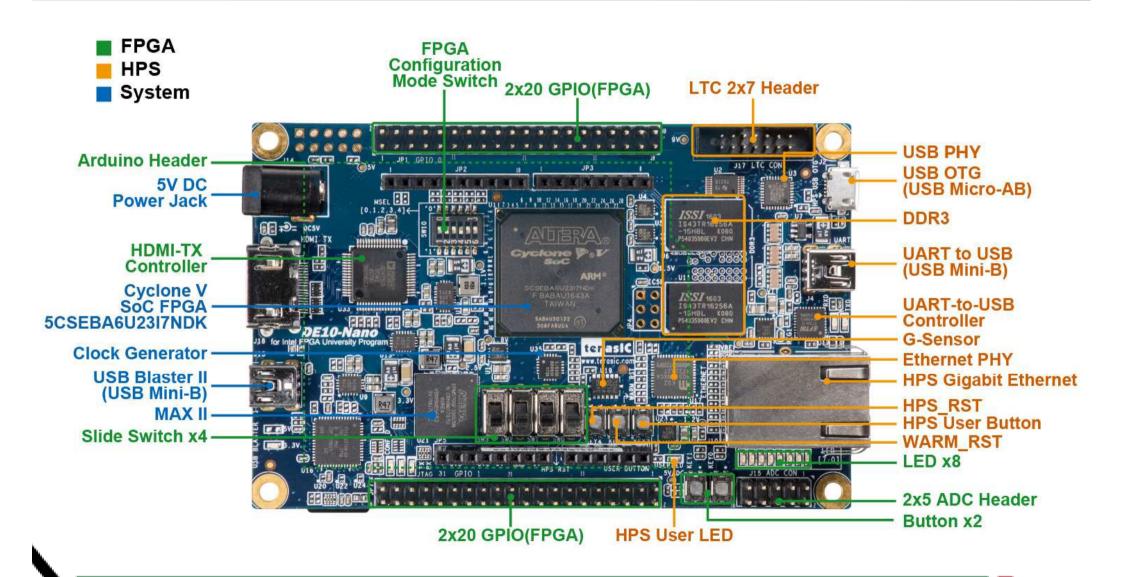


Cyclone V SoC HSP Peripherals Mux Table

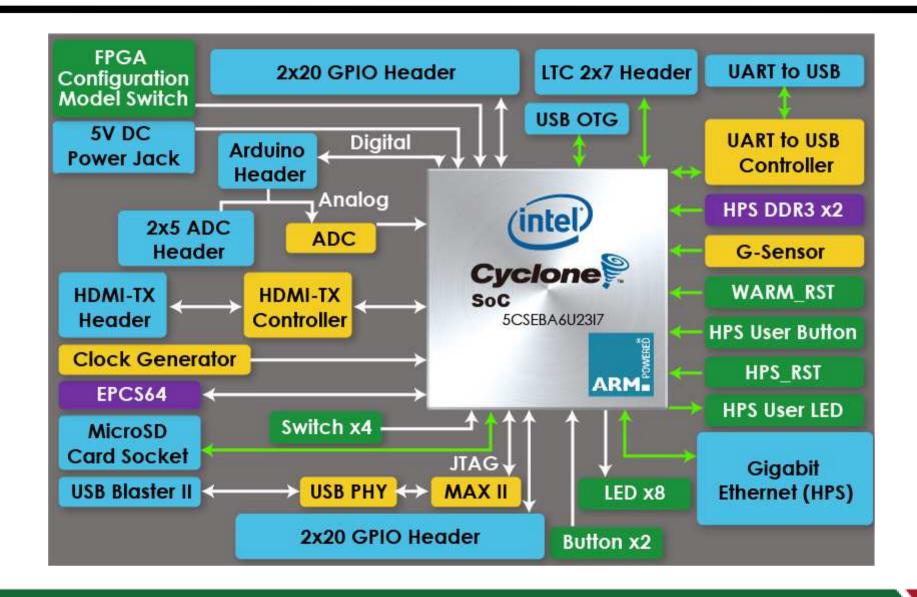
RGMII0_TX_CLK			EMACO.TX_CLK (Set0)	GPIO00	LOANIO00
RGMIIO TXDO		USB1.D0 (Set0)	EMAC0.TXD0 (Set0)	GPIO01	LOANIO01
GMII0_TXD1		USB1.D1 (Set0)	EMAC0.TXD1 (Set0)	GPIO02	LOANIO02
RGMII0_TXD2		USB1.D2 (Set0)	EMAC0.TXD2 (Set0)	GPIO03	LOANIO03
RGMIIO_TXD3		USB1.D3 (Set0)	EMAC0.TXD3 (Set0)	GPIO04	LOANIO04
RGMIIO_RXD0		USB1.D4 (Set0)	EMACO RXD0 (Set0)	GPI005	LOANIO05
RGMIIO_MDIO	(2C2.SDA (Set0)	USB1.D5 (Set0)	EMAC0.MDIO (Set0)	GPIO08	LOANIO08
RGMIIO_MDC	(2C2.SCL (Set0)	USB1.D6 (Set0)	EMAC0.MDC (Set0)	GP1007	LOANIO07
RGMIIO_RX_CTL		USB1.D7 (Set0)	EMACO.RX_CTL (Set0)	GPIO08	LOANIO08
GMIIO_TX_CTL			EMAC0.TX_CTL (Set0)	GP1009	LOANIO09
GMII0_RX_CLK		USB1.CLK (Set0)	EMACO.RX_CLK (Set0)	GPIO10	LOANIO10
GMII0_RXD1		USB1.STP (Set0)	EMAC0.RXD1 (Set0)	GPIO11	LOANIO11
RGMII0_RXD2		USB1.DIR (Set0)	EMAC0.RXD2 (Set0)	GPIO12	LOANIO12
GMII0_RXD3		USB1.NXT (Set0)	EMAC0.RXD3 (Set0)	GPIO13	LOANIO13
IAND_ALE	QSPI.SS3 (Set1) (Set0)	EMAC1.TX_CLK (Set0)	NAND.ALE (Set0)	GPIO14	LOANIO14
AND_CE	USB1.D0 (Set1)	EMAC1.TXD0 (Set0)	NAND.CE (Set0)	GPI015	LOANIO15
AND_CLE	USB1.D1 (Set1)	EMAC1.TXD1 (Set0)	NAND.CLE (Set0)	GPIO16	LOANIO16
AND_RE	USB1 D2 (Set1)	EMAC1.TXD2 (Set0)	NAND.RE (Set0)	GP(017	LOANIO17
AND_RB	USB1 D3 (Set1)	EMAC1.TXD3 (Set0)	NAND.RB (Set0)	GPI018	LOANIO18
AND_DQ0		EMAC1.RXD0 (Set0)	NAND.DQ0 (Set0)	GPI019	LOANIO19
AND_DQ1	(2C3.SDA (Set0)	EMAC1.MDIO (Set0)	NAND.DQ1 (Set0)	GP1020	LOANIO20
AND_DQ2	(2C3 SCL (Set0)	EMAC1.MDC (Set0)	NAND.DQ2 (Set0)	GPIO21	LOANIO21
AND_DQ3	USB1.D4 (Set1)	EMAC1.RX_CTL (Set0)	NAND.DQ3 (Set0)	GPIO22	LOANIO22
AND_DQ4	USB1.D5 (Set1)	EMAC1.TX_CTL (Set0)	NAND.DQ4 (Set0)	GPIO23	LOANIO23
AND_DQ5	USB1.D6 (Set1)	EMAC1.RX_CLK (Set0)	NAND.DQ5 (Set0)	GPIO24	LOANIO24
IAND_DQ6	USB1.D7 (Set1)	EMAC1.RXD1 (Set0)	NAND.DQ6 (Set0)	GP1025	LOANIO25
AND_DQ7		EMAC1.RXD2 (Set0)	NAND.DQ7 (Set0)	GPIO28	LOANIO26
AND_WP	QSPI.SS2 (Set1) (Set0)	EMAC1.RXD3 (Set0)	NAND.WP (Set0)	GP1027	LOANIO27
IAND_WE		QSPI.SS1 (Set0)	NAND.WE (Set0)	GPIO28	LOANIO28
SPI_IO0	USB1.CLK (Set1)		QSPI.IO0 (Set1) (Set0)	GP1029	LOANIO29
SPI_IO1	USB1.STP (Set1)		QSPI.IO1 (Set1) (Set0)	GPIO30	LOANIO30
SPI_IO2	US61.DIR (Set1)		QSPI.IO2 (Set1) (Set0)	GPI031	LOANIO31
SPI_103	USB1 NXT (Set1)		QSPI.IO3 (Set1) (Set0)	GPI032	LOANIO32
SPI_SS0			QSPLSS0 (Set1) (Set0)	GPI033	LOANIO33
QSPI_CLK			QSPI.CLK (Set1) (Set0)	GPI034	LOANIO34
QSPI_SS1			QSPLSS1 (Set1)	GPIO35	LOANIO35



Cyclone V SoC HPS Booting Process

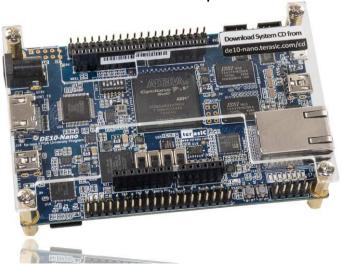


DE10 -Nano



DE10 -Nano

DE10 - Nano


DE10 - Nano

FPGA Device

- ➤ Intel Cyclone® V SE 5CSEBA6U23I7 device (110K LEs)
- ➤ Serial configuration device EPCS64 (revision B2 or later)
- ➤ USB-Blaster II onboard for programming; JTAG Mode
- > HDMI TX, compatible with DVI 1.0 and HDCP v1.4
- ➤ 2 push-buttons
- > 4 slide switches
- > 8 green user LEDs
- ➤ Three 50MHz clock sources from the clock generator
- > Two 40-pin expansion headers
- ➤ One Arduino expansion header (Uno R3 compatibility), can be connected with Arduino shields
- ➤ One 10-pin Analog input expansion header (shared with Arduino Analog input)
- ➤ A/D converter, 4-pin SPI interface with FPGA

HPS (Hard Processor System)

- ➤ 800MHz Dual-core ARM Cortex-A9 processor
- > 1GB DDR3 SDRAM (32-bit data bus)
- ➤ 1 Gigabit Ethernet PHY with RJ45 connector
- > USB OTG Port, USB Micro-AB connector
- ➤ Micro SD card socket
- ➤ Accelerometer (I2C interface + interrupt)
- ➤ UART to USB, USB Mini-B connector
- > Warm reset button and cold reset button
- > One user button and one user LED
- > LTC 2x7 expansion header

BIBLIOGRAPHY

[1] dr hab. inż. Maciej Petko, prof. AGH - Wykład