CHEMIA DEFEKTÓW PUNKTOWYCH, CZ. I – NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO

KRYSZTAŁY RZECZYWISTE - NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO

- źródła defektów w ciałach stałych i ich klasyfikacja,
- trwałość termodynamiczna kryształów zdefektowanych,
- defekty termodynamicznie odwracalne (atomowe, elektronowe)

w kryształach jonowych: zasady opisu struktury defektów punktowych i elektronowych (symbolika Krögera-Vinka, reguły zapisu i bilansowania reakcji defektowych), termodynamika defektów punktowych (równowagi defektowe w związkach stechiometrycznych i niestechiometrycznych, wpływ domieszek i parametrów termodynamicznych na strukturę zdefektowania punktowego).

KRYSZTAŁY RZECZYWISTE - NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO

→ Kryształy idealne o periodycznym uporządkowaniu elementów strukturalnych bliskiego i dalekiego zasięgu nie istnieją.

→ Kryształy rzeczywiste zawierają zawsze defekty – zaburzenie periodyczności struktury:

– **defekty homogeniczne** (swym zasięgiem obejmują wszystkie atomy ciała stałego), niestrukturalne (fonony),

 defekty niehomogeniczne (swym zasięgiem nie obejmują wszystkich atomów ciała stałego), strukturalne (trwałe zaburzenie periodyczności).

KRYSZTAŁY RZECZYWISTE – PODZIAŁ DEFEKTÓW

→ Ze względu na rozmiary defekty dzieli się na:

makroskopowe (powyżej 10⁻⁵ m)
 mikroskopowe (od 10⁻⁷ do 10⁻⁵ m)
 submikroskopowe (poniżej 10⁻⁷ m)
 subatomowe (defekty elektronowe)

 \rightarrow ze względów geometrycznych defekty dzieli się na:

 O-D (punktowe)
 } defekty termodynamicznie odwracalne

 1-D (liniowe)
 }

 2-D (płaskie)
 } defekty termodynamicznie nieodwracalne

 3-D (przestrzenne)
 }

KRYSZTAŁY RZECZYWISTE – RODZAJE DEFEKTÓW PUNKTOWYCH

→ Podstawowe rodzaje defektów 0-D w kryształach monoatomowych

atom w pozycji węzłowej

brak atomu w pozycji węzłowej - wakancja (kontrakcja sieci)

heteroatom międzywęzłowy – interstycjalny (ekspansja sieci)

PODZIAŁ CIAŁ STAŁYCH ZE WZGLĘDU NA ZDEFEKTOWANIE

CHEMIA DEFEKTÓW – SYMBOLIKA KRÖGERA-VINKA

→ obecnie do opisu struktury defektów stosuje się symbolikę Krögera-Vinka:

CHEMIA DEFEKTÓW – SYMBOLIKA KRÖGERA-VINKA, c.d.

Symbolika Krögera-Vinka defektów punktowych w sieci krystalicznej związków typu M²⁺X²⁻

- $\rightarrow \mathbf{M}_{\mathbf{M}}^{\mathbf{x}}$ kation w pozycji kationu w sieci (nie jest to defekt)
- $\rightarrow X_X^x$ anion w pozycji anionu w sieci (nie jest to defekt)
- \rightarrow M^x_X kation w pozycji anionu w sieci
- $\rightarrow X_{M}^{x}$ anion w pozycji kationu w sieci
- $\rightarrow V_{M}^{x}$ wakancja kationowa w sieci

 \rightarrow

 \rightarrow

 \rightarrow

 F_X^X

e

h•

- V_X^x wakancja anionowa w sieci
 - F_{M}^{x} atom domieszki w pozycji kationu w sieci
 - atom domieszki w pozycji anionu w sieci
 - quasi-swobodny elektron w sieci (w paśmie przewodnictwa)
 - dziura elektronowa w sieci (w paśmie podstawowym)

CHEMIA DEFEKTÓW – SYMBOLIKA KRÖGERA-VINKA, c.d.

Rodzaj defektu	Symbol
Dwuwartościowy kation w węźle w podsieci kationowej	M c M .
Dwuwartościowy anion w węźle w podsieci anionowej	XI
Niezjonizowana wakancja kationowa	V X .
Pojedyńczo zjonizowana wakancja kationowa	V _{Ń e}
Podwójnie zjonizowana wakancja kationowa	V 🕺 e
Niezjonizowana wakancja anionowa	V X
Pojedyńczo zjonizowana wakancja anionowa	х <mark>т</mark>
Podwójnie zjonizowana wakancja anionowa	х <mark>т</mark> .
Atom metalu w położeniu międzywęzłowym	M e ₁ ^A
Pojedyńczo zjonizowany kation w położeniu międzywęzłowym	M e _i
Podwójnie zjonizowany kation w położeniu międzywęzłowym	M e _i **
Atom utleniacza w położeniu międzywęzłowym	X i
Pojedyńczo zjonizowany anion w położeniu międzywęzłowym	X į
Podwójnie zjonizowany anion w położeniu międzywęzłowym	X "
Kwasi-swobodny elektron	e '
Dziura elektronowa	ł'
Trójwartościowy kation domieszki w węźle podsieci kationowej	$F^{\bullet}_{X,\tau}$
Jednowartościowy kation domieszki w węźle podsieci kationowej	₽ _{₩ e}
Trójwartościowy anion domieszki w węźle podsieci anionowej	Ρĭ
Jednowartościowy anion domieszki w węźle podsieci anionowej	F_{1}^{I}

CHEMIA DEFEKTÓW

– ładunek defektów w kryształach jonowych

→ ładunek efektywny defektów punktowych oznacza się względem kryształu idealnego (niezdefektowanego)

 \rightarrow atomy metalu (M) i niemetalu (X), zajmujące położenie normalne w sieci, mają zerowy ładunek efektywny: (M_M^x i X_X^x)

→ efektywny ładunek wakancji względem anionu X wynosi +2, zaś względem kationu M równa się –2: ($V_X^{\bullet\bullet}$ i $V_M^"$)

→ efektywny ładunek kationów i anionów międzywęzłowych wynosi odpowiednio +2 i –2: ($\mathbf{M}_{i}^{\bullet\bullet}$ i $\mathbf{X}_{i}^{"}$)

Ładunek efektywny danego elementu sieci =

ładunek elektryczny tego elementu – ładunek elektryczny fragmentu sieci w krysztale niezdefektowanym zajmowanego aktualnie przez dany element

$$\begin{array}{c} X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} & X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} & X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} & X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} & X^{2} & X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} & X^{2} & X^{2} & X^{2} & X^{2} \\ X^{2} &$$

CHEMIA DEFEKTÓW – SYMBOLIKA KRÖGERA-VINKA, c.d.

→ Przykłady użycia symboliki Krögera-Vinka (K-V) w związku jonowym **PbS**:

Obiekt	Ładunek	Prawidłowy ładunek węzła	Ładunek względny	Symbol K-V
Pb ²⁺	+2	+2	0	Pb ^x _{Pb}
Na ⁺	+1	+2	-1	Na' _{Pb}
Cr^{3+}	+3	+2	+1	$\operatorname{Cr}_{\operatorname{Pb}}^{\bullet}$
O ²⁻	-2	-2	0	O _S
Br⁻	-1	-2	+1	Br _S
Pb^{2+}	+2	0	+2	PD _i
S ²⁻	-2	0	-2	\mathbf{S}_{i}

CHEMIA DEFEKTÓW – reguły zapisu reakcji defektowych

 \rightarrow Tworzenie się rozmaitych rodzajów defektów punktowych można przedstawić schematycznie przy pomocy równań reakcji quasi-chemicznych.

 \rightarrow Przy zapisywaniu reakcji defektowych w danym związku obowiązują następujące reguły:

•Stosunek węzłów kationowych do anionowych musi być taki, jaki jest w związku o składzie stechiometrycznym (np. liczba węzłów sieciowych typu M w związku MX równa się liczbie węzłów typu X, a w przypadku związku MX_2 liczba węzłów M jest o połowę niższa, zaś w M_2X - dwa razy wyższa).

•Symbole V_M i V_X oznaczają utworzenie nowego węzła danego rodzaju. Pojawienie się takiego symbolu po prawej stronie równania wskazuje, że liczba węzłów danego rodzaju wzrosła o jeden. Dla spełnienia reguły 1, należy odpowiednio zwiększyć o jeden liczbę węzłów drugiego rodzaju (dla związków typu MX).

•Każde równanie musi być zgodne z zasadą zachowania masy. Masa wakancji jest równa zeru, a masa dziury elektronowej jest równa masie elektronu.

•Każde równanie musi być zgodne z zasadą zachowania ładunku. Kryształ jako całość musi być elektrycznie obojętny.

→ Defekty Schottky'ego:

 równoważna liczba wakancji w podsieciach kationowej i anionowej – tworzy się w wyniku opuszczania przez równoważną liczbę kationów i anionów swych położeń w węzłach sieci i ich dyfuzji ku powierzchni kryształu, gdzie następuje nadbudowa nowych elementów sieci – NaCl, TiO, BeO, CaO, CsCl.

Μ	Χ	Μ	Χ	Μ
Х		X	М	X
Μ	X	M		M
Χ	Μ	Χ	Μ	Χ

 $M_{M}^{x} + X_{X}^{x} \Leftrightarrow V_{M}^{"} + V_{X}^{\bullet \bullet} + M_{M}^{x} + X_{X}^{x}$

$0 \Leftrightarrow V_{M}^{"} +$	$V_X^{\bullet\bullet}$
---------------------------------	------------------------

Przykład: CaCl₂

 $Ca_{Ca}^{x} + 2CI_{Cl}^{x} \Leftrightarrow V_{Ca}^{"} + 2V_{Cl}^{\bullet} + Ca_{Ca}^{x} + 2CI_{Cl}^{x}$

 $0 \Leftrightarrow V_{C_2}^{"} + 2V_{C_1}^{\bullet}$

→ Defekty anty-Schottky'ego:

 równoważna liczba kationów i anionów w przestrzeniach międzywęzłowych – pewna liczba kationów i anionów znajdujących się w powierzchniowej warstwie kryształu opuszcza swe położenia w węzłach sieci i wbudowuje się do przestrzeni międzywęzłowych

$$M X M X M$$

$$X M X M X M$$

$$X M X M X M$$

$$M X M X M X$$

\rightarrow Defekty Frenkla:

– kationy w przestrzeniach międzywęzłowych oraz równoważna liczba wakancji w podsieci kationowej – powstają na skutek przejścia pewnej liczby kationów z węzłów sieci krystalicznej do przestrzeni międzywęzłowych – przykłady: CaF_2 , BaF_2 , CeO_2

$$M_{M}^{x} + X_{X}^{x} \Leftrightarrow M_{i}^{\bullet\bullet} + V_{M}^{"} + X_{M}^{*\bullet}$$

$$M X M X M$$

$$M_{M}^{x} \Leftrightarrow M_{i}^{\bullet\bullet} + V_{M}^{"}$$

$$X M X M X$$

$$Przyklad: CaF_{2}$$

$$M X M X M X$$

$$Ca_{Ca}^{x} + 2F_{F}^{x} \Leftrightarrow Ca_{i}^{\bullet\bullet} + V_{Ca}^{"} + 2F_{F}^{*}$$

$$Ca_{Ca}^{x} \Leftrightarrow Ca_{i}^{\bullet\bullet} + V_{Ca}^{"}$$

 \rightarrow Defekty anty-Frenkla:

мхмхм

MXM

Μ

Χ

Μ

Χ

– aniony w przestrzeniach międzywęzłowych i równoważna liczba wakancji w podsieci anionowej – powstają na skutek przejścia pewnej liczby anionów z węzłów sieci krystalicznej do przestrzeni międzywęzłowych – przykłady: AgCl, AgBr, NaNO₃, KNO₃.

$$M_{M}^{x} + X_{X}^{x} \Leftrightarrow X_{i}^{"} + V_{X}^{\bullet \bullet} + M_{M}^{x}$$

$$X_X^x \Leftrightarrow X_i^" + V_X^{\bullet \bullet}$$

Przykład: AgBr

$$Ag_{Ag}^{x} + Br_{Br}^{x} \Leftrightarrow Br_{i}' + V_{Br}^{\bullet} + Ag_{Ag}^{x}$$

$$\operatorname{Br}_{\operatorname{Br}}^{x} \Leftrightarrow \operatorname{Br}_{i}' + \operatorname{V}_{\operatorname{Br}}^{\bullet}$$

\rightarrow Defekty anty-strukturalne

pewna liczba kationów zamienia się swymi położeniami w węzłach sieci z anionami – zamiany położeń sieciowych można oczekiwać w kryształach złożonych ze składników mało różniących się elektroujemnością i o podobnych promieniach atomowych – przykłady: AuZn, ZnSb, CdSb, GaS.

→ Przed przystąpieniem do opisu równowag defektowych w kryształach jonowych należy sprecyzować pojęcie prawa działania mas.

→ Rozpatrzmy zmianę potencjału termodynamicznego dowolnej odwracalnej reakcji chemicznej, danej równaniem:

 $aA+bB \Leftrightarrow cC+dD$

$$\Delta_{\rm r}G = c \cdot \mu_{\rm C} + d \cdot \mu_{\rm D} - a \cdot \mu_{\rm A} - b \cdot \mu_{\rm B}$$

 $\mu_i = \mu_i^o + R \cdot T \cdot \ln a_i$

gdzie: μ_i^{o} - standardowy potencjał chemiczny składnika i, $a_i^{}$ - aktywność składnika i:

$$a_i = \gamma_i \cdot N_i$$

 γ_i - współczynnik aktywności = jeden w roztworach bardzo rozcieńczonych,

N_i - stężenie składnika i w ułamkach molowych.

 \rightarrow W układach heterogenicznych aktywność czystych składników przy ciśnieniu 10^5 Pa = jedności.

PRAWO DZIAŁANIA MAS, c.d.

$$\Delta_{r}G = c \cdot \mu_{C}^{o} + RT \ln a_{C}^{c} + d \cdot \mu_{D}^{o} + RT \ln a_{D}^{d}$$
$$- a \cdot \mu_{A}^{o} - RT \ln a_{A}^{a} - b \cdot \mu_{B}^{o} - RT \ln a_{B}^{b}$$
$$\Delta_{r}G = c \cdot \mu_{C}^{o} + d \cdot \mu_{D}^{o} - a \cdot \mu_{A}^{o} - b \cdot \mu_{B}^{o} + RT \left(\ln \frac{a_{C}^{c} \cdot a_{D}^{d}}{a_{A}^{a} \cdot a_{B}^{b}} \right)$$
$$\Delta_{r}G^{o}$$
$$\Delta_{r}G = \Delta_{r}G^{o} + RT \left(\ln \frac{a_{C}^{c} \cdot a_{D}^{d}}{a_{A}^{a} \cdot a_{B}^{b}} \right)$$
w stanie równowagi:
$$\Delta_{r}G = 0$$
$$\Delta_{r}G^{o} = -RT \left(\ln \frac{a_{C}^{c} \cdot a_{D}^{d}}{a_{A}^{a} \cdot a_{B}^{b}} \right)$$
$$\Delta_{r}G^{o} = -RT \left(\ln \frac{a_{C}^{c} \cdot a_{D}^{d}}{a_{A}^{a} \cdot a_{B}^{b}} \right)$$
Prawo działania mas

PRAWO DZIAŁANIA MAS, c.d.

$$\begin{array}{ccc} \Delta_{r}G^{\circ} = -RT \cdot \ln K_{a} \implies & K_{a} = \exp\left(\frac{-\Delta_{r}G^{\circ}}{RT}\right) \\ \Delta_{r}G^{\circ} = \Delta H^{\circ} - T \cdot \Delta S^{\circ} \\ \hline & K_{a} = \exp\left(\frac{-\Delta H^{\circ}}{RT}\right) \exp\left(\frac{\Delta S^{\circ}}{R}\right) \end{array}$$

Stała równowagi jako funkcja standardowego potencjału termodynamicznego:

 \rightarrow gdy dany roztwór stosuje się do prawa Henrye'go (zachowuje się jak roztwór doskonały – silnie rozcieńczony – warunek spełniony przez zdefektowane kryształy jonowe), wówczas aktywności reagentów a_i można zastąpić ich stężeniami.

 $M_{M}^{x} \Leftrightarrow M_{i}^{\bullet \bullet} + V_{M}^{"}$

→ stała równowagi w kryształach jonowych, w których przeważają defekty Frenkla: $K_{F} = \frac{[M_{i}^{\bullet\bullet}] \cdot [V_{M}^{"}]}{[M_{M}^{*}] \cdot [V_{M}^{"}]}$ $K_{F} = [M_{i}^{\bullet\bullet}] \cdot [V_{M}^{"}]$

$$K_{F} = exp\left(\frac{-\Delta H_{F}^{o}}{RT}\right)exp\left(\frac{\Delta S_{F}^{o}}{R}\right)$$

Defekty anty-Schottky'ego:

 $M_{M}^{x} + X_{X}^{x} \Leftrightarrow M_{i}^{\bullet \bullet} + X_{i}^{"}$

Defekty anty-Frenkla:

$$X_X^x \Leftrightarrow X_i^{"} + V_X^{\bullet \bullet}$$

 \rightarrow stałe równowagi w kryształach jonowych, w których przeważają defekty anty-Schottky'ego lub anty-Frenkla:

$$K_{a-S} = \frac{[M_{i}^{\bullet\bullet}]![X_{i}^{*}]}{[M_{M}^{*}]![X_{X}^{*}]} \qquad K_{a-F} = \frac{[X_{i}^{*}]![V_{X}^{\bullet\bullet}]}{[X_{X}^{*}]} \qquad K_{a-F} = \frac{[X_{i}^{*}]![V_{X}^{\bullet\bullet}]}{[X_{X}^{*}]} \qquad K_{a-F} = \frac{[X_{i}^{*}]![V_{X}^{\bullet\bullet}]}{[X_{X}^{*}]} \qquad K_{a-F} = \exp\left(\frac{-\Delta H_{a-F}^{\circ}}{RT}\right) \exp\left(\frac{\Delta S_{a-F}^{\circ}}{R}\right) \qquad K_{a-F} = \exp\left(\frac{-\Delta H_{a-F}^{\circ}}{RT}\right) \exp\left(\frac{\Delta S_{a-F}^{\circ}}{R}\right)$$

Defekt typu Schottky'ego:

KC1

$$K_{K}^{x} + C_{Cl}^{x} \Leftrightarrow K_{K}^{x} + C_{Cl}^{x} + V_{Cl}^{*} + V_{Cl}^{\bullet} \Longrightarrow zero \Leftrightarrow V_{K}^{'} + V_{Cl}^{\bullet}$$
$$K_{S} = [V_{K}^{'}] \cdot [V_{Cl}^{\bullet}] \Longrightarrow [V_{K}^{\bullet}] = [V_{Cl}^{\bullet}]$$

BaT

BaTiO₃
Ba^x_{Ba}+Ti^x_{Ti}+3Q^x_o
$$\Leftrightarrow$$
 Ba^x_{Ba}+Ti^x_{Ti}+3Q^x_o+V["]_{Ba}+V^{""}_{Ti}+3V[•]_o
zero \Leftrightarrow V["]_{Ba}+V^{""}_{Ti}+3V[•]_o
 $K_{s} = [V^{"}_{Ba}] \cdot [V^{""}_{Ti}] \cdot [V^{\bullet}_{O}]^{3} \implies 2[V^{"}_{Ba}] + 4[V^{""}_{Ti}] = 2[V^{\bullet}_{O}]$
TiO₂
Ti^x_{Ti}+2Q^x_o \Leftrightarrow Ti^x_{Ti}+2Q^x_o+V^{""}_{Ti}+2V[•]_o \implies zero \Leftrightarrow V^{""}_{Ti}+2V[•]_o
 $K_{s} = [V^{""}_{Ti}] \cdot [V^{\bullet}_{O}]^{2} \implies 4[V^{""}_{Ti}] = 2[V^{\bullet}_{O}]$

Defekt typu anty-Schottky'ego:

Fe₂S₃

$$MgO \qquad Mg^{x}_{Mg} + O^{x}_{O} \Leftrightarrow Mg^{\bullet\bullet}_{i} + O^{"}_{i}$$

$$K_{a-S} = [Mg^{\bullet\bullet}_{i}] \cdot [O^{"}_{i}] \implies 2[Mg^{\bullet\bullet}_{i}] = 2[O^{"}_{i}]$$

$$La^{x}_{La} + 3Cl^{x}_{Cl} \Leftrightarrow La^{\bullet\bullet\bullet}_{i} + 3Cl^{'}_{i}$$

$$K_{a-S} = [La^{\bullet\bullet\bullet}_{i}] \cdot [Cl^{'}_{i}]^{3} \implies 3[La^{\bullet\bullet\bullet}_{i}] = [Cl^{'}_{i}]$$

$$2Fe_{Fe}^{x} + 3S_{S}^{x} \Leftrightarrow 2Fe_{i}^{\bullet\bullet\bullet} + 3S_{i}^{"}$$
$$K_{a-S} = [Fe_{i}^{\bullet\bullet\bullet}]^{2} \cdot [S_{i}^{"}]^{3} \implies 3[Fe_{i}^{\bullet\bullet\bullet}] = 2[S_{i}^{"}]$$

Defekt typu Frenkla:

NaCl
$$\operatorname{Na}_{\operatorname{Na}}^{x} + \operatorname{Cl}_{\operatorname{Cl}}^{x} \Leftrightarrow \operatorname{Na}_{i}^{\bullet} + \operatorname{V}_{\operatorname{Na}}^{'} + \operatorname{Cl}_{\operatorname{Cl}}^{x} \rightleftharpoons \operatorname{Na}_{\operatorname{Na}}^{x} \Leftrightarrow \operatorname{Na}_{i}^{\bullet} + \operatorname{V}_{\operatorname{Na}}^{'}$$

 $\operatorname{K}_{\operatorname{F}} = [\operatorname{Na}_{i}^{\bullet}] \cdot [\operatorname{V}_{\operatorname{Na}}^{'}] \rightleftharpoons [\operatorname{Na}_{i}^{\bullet}] = [\operatorname{V}_{\operatorname{Na}}^{'}]$

$$\begin{array}{ccc} PbO & Pb_{Pb}^{x} + Q_{O}^{x} \Leftrightarrow Pb_{i}^{\bullet\bullet} + V_{Pb}^{"} + Q_{O}^{x} & \Longrightarrow & Pb_{Pb}^{x} \Leftrightarrow Pb_{i}^{\bullet\bullet} + V_{Pb}^{"} \\ & & \\ K_{F} = \left[Pb_{i}^{\bullet\bullet} \right] \cdot \left[V_{Pb}^{"} \right] & \Longrightarrow & 2 \left[Pb_{i}^{\bullet\bullet} \right] = 2 \left[V_{Pb}^{"} \right] \end{array}$$

$$\begin{array}{ccc} Al_{2}O_{3} & 2Al_{Al}^{x} + 3O_{O}^{x} \Leftrightarrow 2Al_{i}^{\bullet\bullet\bullet} + 2V_{Al}^{\bullet\bullet} + 3O_{O}^{x} & \Longrightarrow & 2Al_{Al}^{x} \Leftrightarrow 2Al_{i}^{\bullet\bullet\bullet} + 2V_{Al}^{\bullet\bullet} \\ & & & \\ & &$$

Defekt typu anty-Frenkla:

$$\begin{array}{ccc} \mathbf{SnBr}_{4} & \mathbf{Sn}_{\mathrm{Sn}}^{\mathrm{x}} + 4\mathbf{Br}_{\mathrm{Br}}^{\mathrm{x}} \Leftrightarrow 4\mathbf{Br}_{\mathrm{i}}^{\mathrm{x}} + 4\mathbf{V}_{\mathrm{Br}}^{\bullet} + \mathbf{Sn}_{\mathrm{Sn}}^{\mathrm{x}} & \Longrightarrow & \mathbf{Br}_{\mathrm{Br}}^{\mathrm{x}} \Leftrightarrow \mathbf{Br}_{\mathrm{i}}^{\mathrm{x}} + \mathbf{V}_{\mathrm{Br}}^{\bullet} \\ & & \mathbf{K}_{\mathrm{a-F}} = [\mathbf{Br}_{\mathrm{i}}^{\mathrm{x}}] \cdot [\mathbf{V}_{\mathrm{Br}}^{\bullet}] & \Longrightarrow & [\mathbf{Br}_{\mathrm{i}}^{\mathrm{x}}] = [\mathbf{V}_{\mathrm{Br}}^{\bullet}] \end{array}$$

ZnO

$$Zn_{Zn}^{x} + O_{O}^{x} \Leftrightarrow O_{i}^{"} + V_{O}^{\bullet\bullet} + Zn_{Zn}^{x} \qquad \Longrightarrow \qquad O_{O}^{x} \Leftrightarrow O_{i}^{"} + V_{O}^{\bullet\bullet}$$
$$K_{a-F} = [O_{i}^{"}] \cdot [V_{O}^{\bullet\bullet}] \qquad \Longrightarrow \qquad 2[O_{i}^{"}] = 2[V_{O}^{\bullet\bullet}]$$

$$Ba_{Ba}^{x} + 2F_{F}^{x} \Leftrightarrow 2F_{i}^{'} + 2V_{F}^{\bullet} + Ba_{Ba}^{x} \qquad \Longrightarrow \qquad F_{F}^{x} \Leftrightarrow F_{i}^{'} + V_{F}^{\bullet}$$
$$K_{a-F} = [F_{i}^{'}] \cdot [V_{F}^{\bullet}] \qquad \longleftrightarrow \qquad [F_{i}^{'}] = [V_{F}^{\bullet}]$$

 \rightarrow Tworzenie się zaburzeń typu Frenkla jest łatwiejsze w strukturach o luźnym ułożeniu jonów, np. UO₂ o strukturze fluorytu:

Kryształ	$\Delta H_{d}^{o} \left[eV \right]$	$\Delta S_d^o/k_b$
Wakancje: Cu Ag Al	1,18 1,09 0,75	1,6÷3,0 ≈1,5 2,4
Defekty Schottky'ego: KCl KBr NaCl MgO CaO	2,54 2,53 2,44 4,0÷6,5 4,0	9,0 10,3 9,8
Defekty Frenkla: AgCl AgBr ZnS	1,45÷1,55 1,13÷1,28 4 5÷6 0	5,4÷12,2

→ Entalpia i entropia tworzenia defektów punktowych:

 \rightarrow Gdy w kryształach rzeczywistych występuje obok siebie kilka rodzajów defektów, to muszą być spełnione równocześnie wszystkie równania odpowiednich stałych równowag.

 \rightarrow Energie konieczne do utworzenia różnych typów defektów w sieci krystalicznej różnią się znacznie między sobą \Rightarrow wartości stałych równowagi także różnią się \Rightarrow jeden typ zdefektowania przeważa nad pozostałymi.

Do

minujące zdefektowanie vybranych kryształów	Kryształ	Struktura	Rodzaj zdefektowania
	halogenki alkaliczne	halitu	Schottky'ego
	tlenki metali alkalicznych	halitu	Schottky'ego
	AgBr, AgCl	halitu	Frenkla
	halogenki Cs, TlCl	CsCl	Schottky'ego
	BeO	wurcytu	Schottky'ego
	fluorki ziem alkalicznych, CeO ₂ , ThO ₂	fluorytu	Anty-Frenkla

DEFEKTOWE ELEKTRONOWE W DALTONIDACH

→ Obok równowag obejmujących defekty atomowe ustalają się w krysztale równowagi defektów elektronowych, polegające na przeskokach elektronów pomiędzy dostępnymi im poziomami energetycznymi.

pasmo walencyjne – zakres energii elektronów walencyjnych związanych z jądrem atomu; pasmo przewodnictwa – zakres energii elektronów walencyjnych uwolnionych z atomu.

→ T=0 K ⇒ pasmo walencyjne – całkowicie zapełnione, pasmo przewodnictwa – puste.
 → T>0 K ⇒ pewna liczba elektronów przechodzi do pasma przewodnictwa, pozostawiając w paśmie walencyjnym odpowiednią liczbę dziur:

stan podstawowy
$$\Leftrightarrow e' + h^{\bullet} - E_{g} \qquad \longmapsto \qquad K_{e} = n \cdot p$$

KONIEC