METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH

METODYKA BADAŃ STRUKTURY DEFEKTÓW I WŁASNOŚCI TRANSPORTOWYCH CIAŁ STAŁYCH

- Określenie rodzaju podsieci krystalicznej związku tworzącego zgorzelinę, w której występuje dominujące zdefektowanie (np. metodą markerów)
- 2. Określenie odstępstwa od stechiometrii związku tworzącego zgorzelinę
- 3. Określenie rodzaju i stężenia defektów punktowych w związku tworzącym zgorzelinę (struktura defektów)
- 4. Określenie ruchliwości defektów tworzących zgorzelinę (własności transportowe)

METODY BADAŃ ODSTĘPSTW OD STECHIOMETRII ZWIĄZKÓW TWORZĄCYCH ZGORZELINY

- Bezpośrednia metoda grawimetryczna
- Metoda Rosenburga
- Metoda volumetryczna lub manometryczna
- Chemiczna analiza składu zgorzelin
- Metoda elektrochemiczna
- Metoda redoksowa
- Metoda rentgenograficzna

Schemat aparatury mikrotermograwimetrycznej do badań w atmosferze tlenu

Schemat aparatury mikrotermograwimetrycznej do badań w atmosferze He-S₂

Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, **59**, 985-997 (2000).

GŁÓWNE ZALETY APARATURY

- czułość: 0,1 µg
- możliwość dokonywania gwałtownych zmian ciśnienia par siarki
- możliwość prowadzenia długotrwałych pomiarów

Mn – zależność k_p od ciśnienia

Z. Grzesik, S. Mrowec, T. Walec and J. Dąbek, "New microthermogravimetric apparatus, kinetics of metal sulphidation and transport properties of transition metal sulphides", Journal of Thermal Analysis and Calorimetry, **59**, 985-997 (2000).

Mn – kinetyka siarkowania przy gwałtownie zmienionym ciśnieniu par siarki

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Schemat aparatury mikrotermograwimetrycznej do badań w mieszaninach H₂-H₂S

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Przykład I: MeX, dominujące zdefektowanie występuje <u>w podsieci kationowej</u>

Etapy badań:

- Zważenie próbki metalu: m_{Me} masa początkowa próbki
- Całkowite utlenienie metalicznej próbki: m_x zmiana masy próbki
- Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę:

 ^m
 _M
 _M

 M_{Me} i M_{X} – masa molowa metalu i utleniacza

Przykład II: MeX, dominujące zdefektowanie występuje <u>w podsieci anionowej</u>

Etapy badań:

- Zważenie próbki metalu: m_{Me} masa początkowa próbki
- Całkowite utlenienie metalicznej próbki: m_x zmiana masy próbki
- Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę:

Przykład III:

Me_aX_b, dominujące zdefektowanie występuje w podsieci kationowej

Etapy badań:

- Zważenie próbki metalu: m_{Me} masa początkowa próbki
- Całkowite utlenienie metalicznej próbki: m_x zmiana masy próbki
- Określenie stosunku molowego metalu do utleniacza w związku tworzącym zgorzelinę:

Przykład III: Me_aX_b, dominujące zdefektowanie występuje <u>w podsieci kationowej</u> c.d.

$$\frac{M e^{-1} M M e^{-1}}{M X} < \frac{a}{b} \Rightarrow M e_{a-y} X$$

$$\frac{a - y}{b} = \frac{M M e^{-1} M M e^{-1}}{M X}$$

$$y = a - \frac{b \cdot M M e^{-1} M M e^{-1}}{M X}$$

METODA ROSENBURGA W BADANIACH ODSTĘPSTW OD STECHIOMETRII

Metoda ta przedstawiona zostanie w części dotyczącej badań własności transportowych zgorzelin

OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ

Przykład:

Mn_{1-v}S, dominujące zdefektowanie występuje w podsieci kationowej

S. Mrowec and Z. Grzesik, "Nonstoichiometry and self-diffusion in "α -MnS", Solid State Phenomena, 72, 69-78 (2000).
S. Mrowec, Z. Grzesik, "Defect concentration and their mobility in nonstoichiometric manganous sulphide", Solid State Ionics, 143, 25-29 (2001).

OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ

Przykład:

Mn_{1-y}S, dominujące zdefektowanie występuje w podsieci kationowej, c.d.

$$y = [V_{M'n}] = 4,43 \cdot 10^{-2} p \frac{1}{8} \frac{1}{2} e x p \left(-\frac{41,0 \text{ kJ/m ol}}{\text{RT}} \right)$$

$$\frac{1}{2} S_{2} \Leftrightarrow V_{Mn} \qquad \frac{1}{2} S_{2} \Leftrightarrow V_{M'n} + h^{\bullet} \qquad \frac{1}{2} S_{2} \Leftrightarrow V_{M'n}'' + 2h^{\bullet}$$

$$= [V_{Mn}] \cdot p \frac{-1}{8} \frac{1}{2} \qquad K = [V_{M'n}] \cdot [h^{\bullet}] \cdot p \frac{-1}{8} \frac{1}{2} \qquad K = [V_{M'n}''] \cdot [h^{\bullet}]^{2} \cdot p \frac{-1}{8} \frac{1}{2} \frac{1}{2} \qquad K = [V_{M'n}''] \cdot [h^{\bullet}]^{2} \cdot p \frac{-1}{8} \frac{1}{2} \frac{1}{2} \left[V_{M'n}'' - [h^{\bullet}] \frac{1}{2} + p \frac{-1}{8} \frac{1}{2} \right]$$

$$[V_{M'n}] = K \cdot p \frac{1}{8} \frac{1}{2} \qquad [V_{M'n}''] = [h^{\bullet}] \qquad 2 \left[V_{M'n}'' - [h^{\bullet}] \frac{1}{8} + p \frac{1}{8} \frac{1}{2} \right]$$

OKREŚLENIE RODZAJU I STĘŻENIA DEFEKTÓW PUNKTOWYCH W ZWIĄZKU TWORZĄCYM ZGORZELINĘ

Przykład:

Mn_{1-y}S, dominujące zdefektowanie występuje w podsieci kationowej, c.d.

$$y = [V_{M'n}] = 4,43 \cdot 10^{-2} p \frac{1/6}{52} e x p \left(-\frac{41,0 \ k \ J \ / \ m \ o \ l}{R \ T} \right)$$

$$\frac{1}{2} S_{-2} \Leftrightarrow V_{M'n}'' + 2 \ h^{\circ}$$

$$\left[V_{M'n}'' \right] \cdot \left[h^{\circ}\right]^{2} \cdot p \frac{-1/2}{S_{2}} = K = e x p \left(-\frac{\Delta G_{-f}}{R \ T} \right) = e x p \left(\frac{\Delta S_{-f}}{R \ T} \right) \cdot e x p \left(-\frac{\Delta H_{-f}}{R \ T} \right)$$

$$2 \left[V_{M'n}'' \right] = \left[h^{\circ}\right]$$

$$\left[V_{M'n}'' \right] = \frac{1}{2} \left[h^{\circ}\right] = 0.63 \cdot p \frac{1/6}{S_{2}} \cdot e x p \left(\frac{\Delta S_{-f}}{3 \ R} \right) \cdot e x p \left(-\frac{\Delta H_{-f}}{3 \ R \ T} \right)$$

 ΔS_{f} i ΔH_{f} – entropia i entalpia formowania się defektów

WŁASNOŚCI TRANSPORTOWE ZGORZELIN

D_d – współczynnik dyfuzji defektów [cm²s⁻¹]; opisuje ruchliwość defektów w warunkach istnienia równowagi termodynamicznej w związku tworzącym zgorzelinę

Ď

D_{Me}

współczynnik dyfuzji chemicznej [cm²s⁻¹];
 opisuje ruchliwość defektów w warunkach istnienia
 gradientu stężenia defektów, a więc w warunkach
 nierównowagowych

współczynnik dyfuzji własnej [cm²s⁻¹]; opisuje ruchliwość atomów (jonów) w związku tworzącym zgorzelinę

WŁASNOŚCI TRANSPORTOWE ZGORZELIN

Zależności wiążące współczynniki dyfuzji

$$D_{d} = 2 \widetilde{D} \frac{d \ln N_{d}}{d \ln p_{X_{2}}}$$

$$\tilde{D} = (1 + |p|) D_{d}$$

- C_d stężenie defektów
- N_d ułamek molowy stężenia defektów
 - stopień jonizacji defektów

WŁASNOŚCI TRANSPORTOWE ZGORZELIN

 $D_{d} = \alpha a_{0}^{2} \omega$

$$\omega = \kappa \nu e x p \left(\frac{\Delta S_m}{R}\right) e x p \left(-\frac{\Delta H_m}{R T}\right)$$

$$u_d = \alpha a \frac{2}{0} \kappa \nu e x p \left(\frac{\Delta S_m}{R}\right) e x p \left(-\frac{\Delta H_m}{R T}\right)$$

$$v = \frac{2}{\pi a_m} \sqrt{\frac{\Delta H_m}{M}}$$

- α współczynik geometryczny
- ω częstość przeskoków
- a_o droga przebywana przez atom podczas przeskoku
- κ współczynnik przejścia
- v współczynnik częstości
- $\Delta H_m -$ entalpia aktywacji dyfuzji defektów
- M masa molowa metalu

Grawimetria w badaniach struktury defektów i własności transportowych zgorzelin

METODYKA BADAŃ WŁASNOŚCI TRANSPORTOWYCH

- metoda reekwilibracji (relaksacji)
- metoda dwuetapowego utleniania (Rosenburga)

S. Mrowec and K. Hashimoto, J. Materials Sci., **30**, 4801 (1995)

Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., **90**, 269-282 (2007).

Z. Grzesik, S. Mrowec and T. Walec, J. Phys. Chem. Solids, 61, 809 (2000).

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

A. J. Rosenburg, J. Electrochem. Soc., 107, 795 (1960).

T = const; p' = const

T = const; p" = const; p" > p'

METODA REEKWILIBRACJI

$$\frac{\Delta m_{t}}{\Delta m_{k}} = 1 - \frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^{2}} \exp\left(-\frac{(2n+1)^{2} \pi^{2} \tilde{D} t}{4a^{2}}\right)$$

 $\tilde{D} \quad t/a^2 > 0,2: \qquad 1 - \frac{\Delta m}{\Delta m} \frac{t}{k} = \frac{8}{\pi^2} e^2 x p \left(-\frac{\tilde{D} \pi^2 t}{4 a^2} \right)$ $\ln \left(1 - \frac{\Delta m}{\Delta m} \frac{t}{k} \right) = \ln \frac{8}{\pi^2} - \frac{\tilde{D} \pi^2 t}{4 a^2}$

gdzie:

- $\Delta m_t zmiana masy próbki po czasie t$
- ∆m_k całkowita zmiana masy próbki
- a połowa grubości próbki
 - współczynnik dyfuzji chemicznej.

Teoretyczny przebieg reekwilibracji

Metoda dwuetapowego utleniania (Rosenburga)

I etap siarkowania

Stan równowagi termodynamicznej T = const; p' = const

II etap siarkowania

$$C(x) = C_{0} + (C_{k} - C_{0})\frac{x}{X_{0}} + \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{C_{k}\cos(n\pi) - C_{0}}{n}\sin(\frac{n\pi x}{X_{0}})exp\left(-\frac{n^{2}\pi^{2}\tilde{D}t}{X_{0}^{2}}\right) + \frac{4C_{0}}{\pi}\sum_{m=0}^{\infty}\frac{1}{2m+1}\sin\frac{(2m+1)\pi x}{X_{0}}exp\left(-\frac{(2m+1)^{2}\pi^{2}\tilde{D}t}{X_{0}^{2}}\right)$$

Metoda Rosenburga

$$\tilde{D} = \left(\frac{1,128 k_{\parallel} X_{0}}{k_{p}} \right)^{2}$$
$$C_{d} = \frac{\left(\frac{k_{p}}{1,128} \right)^{2}}{k_{\parallel} X_{0}}$$

gdzie:

D – współczynnik dyfuzji chemicznej, C_d – stężenie defektów, X_0 – grubość zgorzeliny w I etapie utleniania, k_p (gcm⁻²s^{-0,5}) i k_1 (gcm⁻²s⁻¹) – współczynniki kierunkowe prostych wykreślonych odpowiednio w układzie parabolicznym i liniowym.

Przykłady badań struktury defektów i własności transportowych zgorzelin

Mn_{1-y}S – pomiar odstępstwa od stechiometrii

Rau, 1978 – metoda pośrednia

$$y = [V_{M'n}] = 4,77.10^{-2} p_{S_2}^{1/6} exp\left(-\frac{41,5 \text{ kJ} / \text{mol}}{\text{RT}}\right)$$

H. Rau, J. Phys. Chem. Solids, **39**, 339 (1978).

Badania własne – metoda bezpośrednia

I. Mikrotermograwimetria

$$y = 1 - \frac{m_{Mn} \cdot M_{S}}{m_{S} \cdot M_{Mn}}$$

$$y = \left[V_{M'n}^{\prime \prime \prime} \right] = 4,43 \cdot 10^{-2} p_{S_{2}}^{1/6} exp \left(-\frac{41,0 \text{ kJ / mol}}{\text{R T}} \right)$$

II. Dwuetapowe siarkowanie

$$y = [V_{M'n}] = 5,41.10^{-2} p_{S_2}^{1/6} exp(-\frac{42,0 kJ/mol}{RT})$$

Z. Grzesik and S. Mrowec, "Kinetics and thermodynamics of point defects in nonstoichiometric metal oxides and sulphides. Microthermogravimetric study", J. Therm. Anal. Cal., **90**, 269-282 (2007).

Zależność współczynnika dyfuzji własnej od temperatury

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

Mn_{1-y}S – kinetyka reekwilibracji

$$Mn_{1-y}S$$
 – zależność \tilde{D} od ciśnienia

Porównanie eksperymentalnych i obliczonych wartości k j

$$k'_p = \widetilde{D} \cdot y$$

I. Kinetyka siarkowania Mn (eksperyment)

$$k'_{p} = 3,49 \cdot 10^{-3} \cdot p_{s_{2}}^{1/6} exp\left(-\frac{127,0 kJ/mol}{RT}\right) cm^{2}s^{-1}$$

II. Reekwilibracja i odstępstwo od stechiometrii (obliczenia)

$$k'_{p} = 2,09 \cdot 10^{-3} \cdot p_{S_{2}}^{1/6} exp\left(-\frac{123,5 kJ/mol}{RT}\right) cm^{2}s^{-1}$$

III. Dwuetapowe siarkowanie (obliczenia)

$$k'_{p} = 2,62 \cdot 10^{-3} \cdot p_{S_{2}}^{1/6} exp\left(-\frac{124,4 kJ/mol}{RT}\right) cm^{2}s^{-1}$$

Zgorzelina siarczkowa na Mn (1000 °C, $p(S_2) = 10^3$ Pa, 240 h)

Z. Grzesik, "Własności transportowe zgorzelin siarczkowych powstających w procesie wysokotemperaturowej korozji metali", Ceramika, **87**, 1-124 (2005).

MnS – rzut struktury krystalograficznej w kierunku <100>

Porównanie szybkości siarkowania i utleniania metali

$Nb_{1+v}S_2$ – ciśnieniowa zależność odstępstwa od stechiometrii

Zależność D od temperatury dla wybranych siarczków i tlenków metali

$Nb_{1+y}S_2$ – zależność D od temperatury – badania własne

Z. Grzesik, S. Mrowec, "On the sulphidation mechanism of niobium and some Nb-alloys at high temperatures", Corrosion Science, **50**, 605-613 (2008).

powierzchnia

przełam

2H-NbS₂ – rzut perspektywiczny struktury krystalograficznej w kierunku <100>

 $Nb_{1+y}S_2$ – rzut perspektywiczny struktury krystalograficznej

(dla y = 1/3) w kierunku < 100>

Zależność D od temperatury dla siarczków niklu i kobaltu – badania własne

 $\mathbf{Co}_{4-v}\mathbf{S}_{3}$ – porównanie eksperymentalnych i obliczonych wartości k $_{1}$

 $\mathbf{Co}_{\mathbf{9-v}}\mathbf{S}_{\mathbf{8}}$ – porównanie eksperymentalnych i obliczonych wartości k $_{\cdot \mathfrak{g}}$

 $Ni_{1-v}S$ – porównanie eksperymentalnych i obliczonych wartości k $\frac{1}{2}$

Co₉S₈ – rzut struktury krystalograficznej w kierunku <100>

NiS – rzut struktury krystalograficznej w kierunku <100>

KONIEC