Elektrodyfuzja: sensory elektrochemiczne

Witold Kucza

Plan

Wyprowadzenie poniższych równań w oparciu o równanie Nernsta-Placka dla stanu stacjonarnego dla różnych warunków brzegowych:

•Prawo Ohma

•Równanie Nernsta

•Równanie Nikolskii'ego-Eisenmana (zapostulowane)

•Równanie Hendersona

•Wsp. dyfuzji ambipolarnej

Elektrodyfuzja

I prawo Ficka

$$J = -D\frac{\partial c}{\partial x}$$

Równanie Nernsta-Plancka (w obecności pola elektrycznego)

$$\overline{\mu_{i}} = -\frac{D_{i}}{RT}c_{i}\frac{\partial\overline{\mu_{i}}}{\partial x}$$

$$\overline{\mu_{i}} = \mu_{i}^{\circ} + RT\ln(a_{i}) + z_{i}\cdot F\cdot V = \mu_{i}^{\circ} + RT\ln(f_{i}\cdot c_{i}) + z_{i}\cdot F\cdot V$$

$$Potencjal elektrochemiczny$$

Dla rozcieńczonych elektrolitów ($f \approx 1$)

$$J_{i} = -D_{i}\frac{\partial c_{i}}{\partial x} - \frac{z_{i} \cdot F}{RT}D_{i} \cdot c_{i}\frac{\partial V}{\partial x} = -D_{i}\left(\frac{\partial c_{i}}{\partial x} - \frac{z_{i} \cdot F}{RT} \cdot c_{i} \cdot E\right)$$

 $\frac{I}{S} = F \sum_{i} z_{i} \cdot J_{i} + \frac{1}{\varepsilon} \frac{\partial E}{\partial t}$ Całkowita gęstość prądu (prądy faradajowski i przesunięcia)

gdzie: I-prąd, S-pole powierzchni, F-stała Faraday'a, E- natężenie pola elektrycznego, *ɛ-* przenikalność dielektryczna ośrodka

Prawo Ohma

$$\boxed{J_i = -D_i \left(\frac{\partial c_i}{\partial x} - \frac{z_i \cdot F}{RT} c_i \cdot E\right)} \qquad \boxed{\frac{I}{S} = F \sum_i z_i \cdot J_i + \frac{1}{\varepsilon} \frac{\partial E}{\partial t}}$$

Zakładamy stałe stężenia w układzie $c_i(x)$ =const ("flat band conditions"), stały prąd oraz stan stacjonarny

$$J_i = \frac{z_i \cdot F}{RT} D_i \cdot c_i \cdot E$$

$$\frac{I}{S} = F \sum_{i} z_{i} \cdot J_{i}$$
$$\frac{I}{S} = E \frac{F^{2}}{RT} \sum_{i} z_{i}^{2} \cdot D_{i} \cdot c_{i}$$

$$\frac{I}{S} = -\frac{\mathrm{d}V}{\mathrm{d}x} \frac{F^2}{RT} \sum_{i} z_i^2 \cdot D_i \cdot c_i = -\frac{\Delta V}{\Delta x} \sigma$$

ΔV	$-1\Delta x$	Δx	$\sigma = \frac{1}{\sigma} = \frac{F}{\sigma}$
	σS	S	ρR

 $\frac{\overline{z}^{2}}{2T}\sum_{i}z_{i}^{2}\cdot D_{i}\cdot c_{i}$ *Przewodność elektryczna, konduktywność*

Elektroda jonoselektywna

Równanie Nernsta

Elektroda jonoselektywna (EJ): elektroda czuła na dany jon Elektroda szklana: najstarszy typ EJ, czuła na jony wodorowe

$$J_{i} = -D_{i} \left(\frac{\partial c_{i}}{\partial x} - \frac{z_{i} \cdot F}{RT} c_{i} \cdot E \right) \qquad \qquad \boxed{\frac{I}{S}} = \frac{I}{S} = \frac{I}{S}$$

$$\frac{I}{S} = F \sum_{i} z_{i} \cdot J_{i} + \frac{1}{\varepsilon} \frac{\partial E}{\partial t}$$

Zakładamy warunki brzegowe Dirichleta dla jonu głównego, na która czuła jest EJ, i Neumanna dla pozostałych jonów, stan stacjonarny oraz warunki bezprądowe

6

R. Nikolskii'ego-Eisenmana (RNE)

$$\Delta V = -\frac{0.059}{z_{H^+}} \log\left(\frac{c_1}{c_0}\right) = \Delta V^0 - \frac{0.059}{z_{H^+}} \log(c_1)$$

Niestety obecność innych jonów w roztworze badanym (np. Na⁺dla elektrody szklanej) generuje błędy lub wręcz uniemożliwia wykrycie jonów dla niskich stężeń H⁺(aq).

W ogólnym przypadku korzystamy z RNE:

$$\Delta V = \Delta V^0 + S \log \left(c_I + K_{IJ} c_J^{z_I/z_J} \right)$$

gdzie: *S*- nachylenie, *K*- wsp. selektywności, *I*-jon główny, *J*- interferujący

Dla większej liczby jonów interferujacych:

$$\Delta V = \Delta V^0 + S \log \left(c_I + \sum_J K_{IJ} c_J^{z_I/z_J} \right)$$

Podstawowe równanie w potencjometrii

 $\mathrm{V}\big(\mathrm{V}_{0}, \mathbf{c}_{I}, \mathbf{c}_{J}, \mathrm{K}_{IJ}\big) := \mathrm{V}_{0} + 0.059 \cdot \log \bigl(\mathbf{c}_{I} + \mathbf{c}_{J} \cdot \mathrm{K}_{IJ}\bigr)$

El. Jonoselektywna, r. numeryczne

W stanie stacjonarnym, rozkłady stężeń (uwaga na skalę logarytmiczną) zmieniają się jedynie w pobliżu interfejsów membrana/elektrolit , podobnie jak potencjał elektryczny.

R. Hendersona

Pozwala na znalezienie napięcia ciekłego złącza (liquid junction), powstałego wskutek kontaktu elektrolitów o różnych składach i/lub stężeniach.

$$\boxed{J_i = -D_i \left(\frac{\partial c_i}{\partial x} - \frac{z_i \cdot F}{RT} c_i \cdot E\right)} \qquad \qquad \boxed{\frac{I}{S} = F \sum_i z_i \cdot J_i + \frac{1}{\varepsilon} \frac{\partial E}{\partial t}}$$

Zakładamy warunki brzegowe Dirichleta dla wszystkich jonów, stan stacjonarny oraz warunki bezprądowe

$$F\sum_{i} z_{i} \cdot J_{i} = 0$$

- $\sum_{i} z_{i} \cdot D_{i} \frac{\partial c_{i}}{\partial x} + E\sum_{i} \frac{z_{i}^{2} \cdot F}{RT} D_{i} \cdot c_{i} = 0$
- $E = \frac{dV}{dx} = -\frac{RT}{F} \frac{\sum_{i} z_{i} \cdot D_{i} \frac{dc_{i}}{dx}}{\sum_{i} z_{i}^{2} D_{i} \cdot c_{i}}$

Założenie Hendersona: liniowy rozkład (stały gradient) stężenia w ciekłym złączu

9

$$\frac{\mathrm{d}V}{\mathrm{d}x} = -\frac{RT}{F} \frac{\sum_{i} z_{i} \cdot D_{i} \cdot \Delta c_{i}}{\sum_{i} z_{i}^{2} \cdot D_{i} \cdot \Delta c_{i}} \frac{\sum_{i} z_{i}^{2} \cdot D_{i} \frac{\mathrm{d}c_{i}}{\mathrm{d}x}}{\sum_{i} z_{i}^{2} D_{i} \cdot c_{i}}$$

R. Hendersona

$$\frac{\mathrm{d}V}{\mathrm{d}x} = -\frac{RT}{F} \frac{\sum_{i} z_i \cdot D_i \cdot \Delta c_i}{\sum_{i} z_i^2 \cdot D_i \cdot \Delta c_i} \frac{\sum_{i} z_i^2 \cdot D_i \frac{\mathrm{d}c_i}{\mathrm{d}x}}{\sum_{i} z_i^2 D_i \cdot C_i}$$

$$\int_{V(0)}^{V(d)} dV = -\frac{RT}{F} \frac{\sum_{i} z_{i} \cdot D_{i} \cdot \Delta c_{i}}{\sum_{i} z_{i}^{2} \cdot D_{i} \cdot \Delta c_{i}} \int_{c_{i}(0)}^{c_{i}(d)} \frac{\sum_{i} z_{i}^{2} \cdot D_{i}}{\sum_{i} z_{i}^{2} D_{i} \cdot c_{i}} dc_{i}$$

$$\Delta V = V(d) - V(0) = -\frac{RT}{F} \frac{\sum_{i} z_{i} \cdot D_{i} \cdot (c_{i}(d) - c_{i}(0))}{\sum_{i} z_{i}^{2} \cdot D_{i} \cdot (c_{i}(d) - c_{i}(0))} \ln \frac{\sum_{i} z_{i}^{2} D_{i} \cdot c_{i}(d)}{\sum_{i} z_{i}^{2} D_{i} \cdot c_{i}(0)}$$

Dla danej soli: im mniejsza różnica we współczynnikach dyfuzji jonów- tym mniejszy potencjał dyfuzyjny. Stąd zastosowanie roztworów KCl w kluczach elektrolitycznych, mających za zadanie separację półogniw przy jednoczesnej minimalizacji potencjału dyfuzyjnego: D_K =1.98·10⁻⁹ oraz D_{Cl} =2.01·10⁻⁹ m²/s.

Potencjał dyfuzyjny

		Right bulk solution – 3.5 M KCl						
		Liquid junction potential, mV						
	Left bulk solution [M]	Henderso n method	Planck method	NPP model				
				S,L	G	F,S	К	
KCI	1	-0.242	-0.242	-0.2	-0.227	-0.220	-0.236	
	0.1	-0.687	-0.687	-0.6	-0.688	-0.626	-0.673	
	0.01	-1.132	-1.132	-0.9	-1.134	-1.032	-1.104	
	0.001	-1.576	-1.576	-0.9	-1.425	-1.431	-1.536	
NaCl	1	1.916	1.882	1.9	1.882	1.895	1.880	
	0.1	-0.274	-0.266	-0.2	-0.249	-0.205	-0.257	
	0.01	-1.094	-1.066	-0.8	-1.051	-0.966	-1.040	
	0.001	-1.600	-1.566	-1.4	-1.413	-1.422	-1.526	
CaCl ₂	0.5	3.718		3.5	3.552	3.547	3.514	
	0.05	0.112		-0.2	0.130	0.163	0.107	
	0.005	-1.021		-0.9	-0.932	-0.849	-0.921	
	0.0005	-1.578		-1.4	-1.374	-1.350	-1.446	
нсі	1	-15.119	-16.206	-16.2	-16.194	-16.176	-16.171	
	0.1	-4.204	-4.961	-4.9	-5.036	-4.913	-4.902	
	0.01	-1.590	-1.879	-1.5	-1.901	-1.783	-1.838	
	0.001	-1.472	-1.681	-1.0	-1.519	-1.536	-1.636	
		·		2,727355	2,085826	1,863185	1,763966	
				1,234284	0,079451	0,103301	0,013389	

Ciekłe złącze, r. numeryczne

W stanie stacjonarnym, nawet dla geometrii planarnej, rozkłady stężeń nie są funkcjami liniowymi, podobnie jak potencjał elektryczny. Uwaga: potencjał jest generowany w całej objętości ciekłego złącza.

Dyfuzja ambipolarna

$$\boxed{J_i = -D_i \left(\frac{\partial c_i}{\partial x} - \frac{z_i \cdot F}{RT} c_i \cdot E\right)} \qquad \boxed{\frac{I}{S} = F \sum_i z_i \cdot J_i + \frac{1}{\varepsilon} \frac{\partial E}{\partial t}}$$

Zakładamy obecność dwóch typów jonów, stan stacjonarny, warunki bezprądowe oraz korzystamy z warunku elektroobojetności

Dyfuzja ambipolarna

$$J_{+} = -\frac{D_{+}D_{-}(z_{+}-z_{-})}{z_{+}D_{+}-z_{-}D_{-}}\frac{\mathrm{d}c_{+}}{\mathrm{d}x}$$

ze względu na obecność pola elektrycznego, jony nie poruszają się niezależnie, efektywny wsp. dyfuzji nosi nazwę wsp. dyfuzji soli i wynosi:

Dla elektrolitów typu 1:1, 2:2

$$D_{+-} = \frac{3D_{+}D_{-}}{2D_{+} + D_{-}} \operatorname{lub} \frac{3D_{+}D_{-}}{D_{+} + 2D_{-}}$$

Dla elektrolitów typu 1:2

$$D_{+-} = \frac{4D_{+}D_{-}}{3D_{+} + D_{-}} lub \frac{4D_{+}D_{-}}{D_{+} + 3D_{-}}$$

Dla elektrolitów typu 1:3