
BASIC CHEMISTRY AND THERMODYNAMICS OF HIGH-TEMPERATURE MATERIALS

Zbigniew Grzesik http://home.agh.edu.pl/~grzesik

Department of Physical Chemistry and Modelling

Introductory remarks

Application of many materials at high temperatures requires their endurance with minimal change in their chemical composition and microstructure over long periods of time (hours to years). As the chemical reactions at high temperatures often occur fast, the equilibrium state, rather than endurance of metastable states, determines the suitability of a given material for a proposed application. Determination of dissociation pressure

$$Me + \frac{1}{2}X_2 \Leftrightarrow MeX$$
 (1)

where: Me – metal X_2 – oxidant MeX – product of oxidation reaction (*scale*)

$$\Delta \mathbf{G} = \mu_{\mathrm{MeX}} - \mu_{\mathrm{Me}} - \frac{1}{2}\mu_{\mathrm{X}_2}$$

where:

 ΔG – free energy change of reaction (1)

 μ_i – chemical potential of a given component

Determination of dissociation pressure

$$\mu_i = \mu_i^0 + RT \ln a_i$$

where:

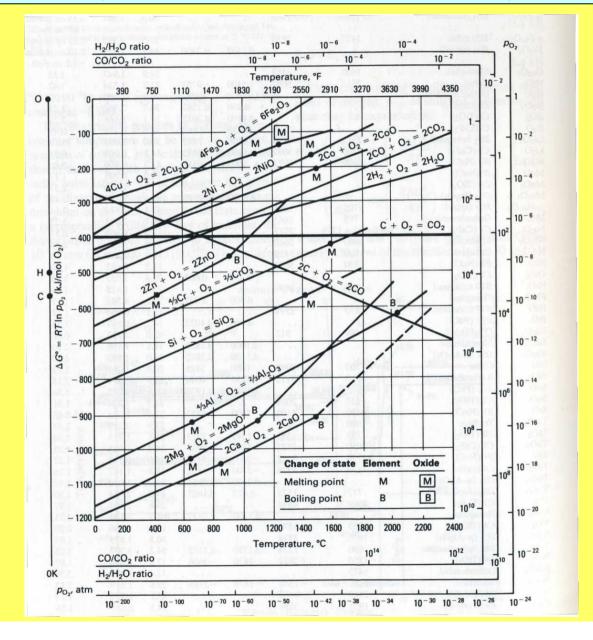
- R universal gas constant
- T temperature [K]
- a_{i_0} activity of *i* component in the system
- μ_i^0 standard chemical potential of *i* component *(i.e.* when its activity is equal to 1)

In the case of pure substances in the solid phase:

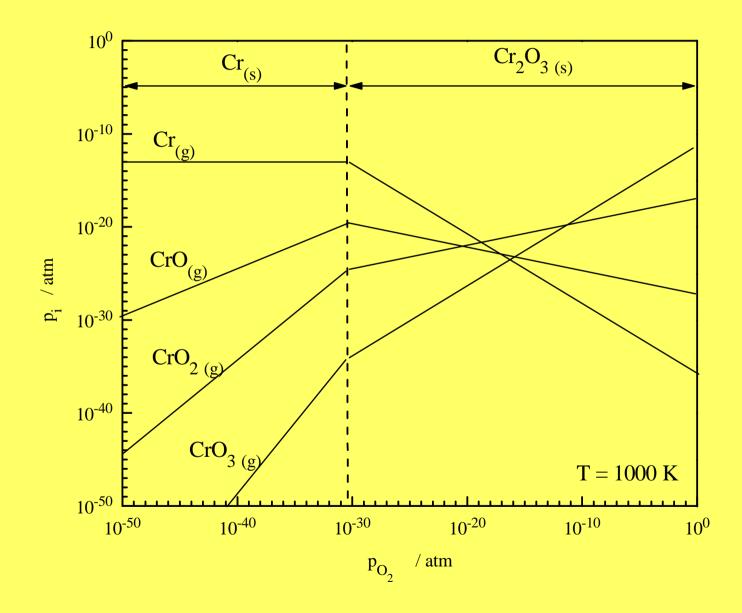
$$\mu_{Me} = \mu_{Me}^{0} \qquad \qquad \mu_{MeX} = \mu_{MeX}^{0}$$

In the case of substances in the gas phase:

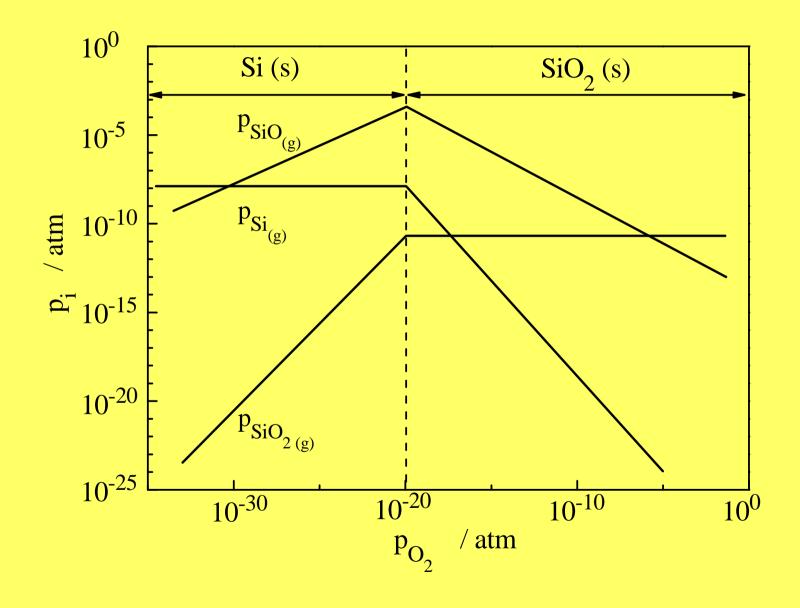
 $\mu_{X_2} = \mu_{X_2}^0 + RT \ln a_{X_2} = \mu_{X_2}^0 + RT \ln p_{X_2}$


Determination of dissociation pressure

$$\Delta G = \mu_{MeX} - \mu_{Me} - \frac{1}{2}\mu_{X_2} = \mu_{MeX}^0 - \mu_{Me}^0 - \frac{1}{2}\mu_{X_2}^0 - \frac{1}{2}RT\ln p_{X_2} = \Delta G^0 - \frac{1}{2}RT\ln p_{X_2}$$


At thermodynamic equilibrium $\Delta G = 0$, and then:

$$p_{X_2} = \exp\left(\frac{2 \cdot \Delta G^0}{RT}\right)$$


ELLINGHAM-RICHARDSON DIAGRAM (RICHARDSON-JEFFES)

PRESSURES OF VOLATILE OXIDES

PRESSURES OF VOLATILE OXIDES

Modes of materials degradation at high temperatures

- melting and softening (high melting compunds required for HT)
- vaporization (sublimation)
- diffusion and solid state reactions
- solid-solid phase transformations
- corrosion and chemical reaction with the ambient atmosphere

Selected properties of metal oxides

Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)
α -Al ₂ O ₃	$D5_1$ (corundum)	2015	2980	25.7	1.28
γ -Al ₂ O ₃	(defect spinal)	$\gamma \rightarrow \alpha$	•••	26.1	1.31
BaO	Bl (NaCl)	1923	~2000	26.8	0.69
BaO_2	Tetragonal (CaC ₂)	450	d.800	34.1	0.87
BeO	Br (ZnS)	2530	~3900	8.3	1.70
CaO	Bl (NaCl)	2580	2850	16.6	0.64
CaO_2	Cll (CaC ₂)		d.275	24.7	0.95
CdO	B1 (NaCl)	~1400	d.900	18.5	1.42
Ce_2O_3	$D5_2 (La_2O_3)$	1692		47.8	1.15
CeO ₂	$Cl (CaF_2)$	~2600		24.1	1.17
CoO	Bl (NaCl)	1935	•••	11.6	1.74
Co ₂ O ₃	Hexagonal		d.895	32.0	2.40
Co_3O_4	Hl ₁ (spinal)	\rightarrow CoO		39.7	1.98
Cr_2O_3	$D5_1 (\alpha Al_2O_3)$	2435	4000	29.2	2.02
Cs ₂ O	Hexagonal (CdCl ₂)		d.400	66.3	0.47
Cs_2O_3	Cubic (Th_3P_4)	400	650	70.1	0.50
CuO	B26 monoclinic	1326		12.3	1.72
Cu ₂ O	C3 cubic	1235	d.1800	23.8	1.67
FeO	Bl (NaCl)	!420		12.6	1.78 on α -iron
α -Fe ₂ O ₃	D5 ₁ (Haematite)	1565		30.5	2.15 on α -iron
γ-Fe ₂ O ₃	$D5_7$ cubic	1457		31.5	2.22 on α -iron
Fe ₃ O ₄	Hl ₁ (spinel)	•••	d. 1538	44.7	2.10 on α -iron
Ga_2O_3	Monoclinic	1900 <		31.9	1.35
HfO ₂	Cubic	2812	~5400	21.7	1.62

Selected properties of metal oxides

Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)
In ₂ O ₃	$D5_3(Sc_2O_3)$		d.850	38.7	1.23
IrO ₂	C4 (TiO ₂)	••• •	d.1100	19.1	2.23
La_2O_3	D53 (Sc_2O_3)		d.850	38.7	1.23
Li ₂ O	$Cl (CaF_2)$	~1700	1200	14.8	0.57
MgO	Bl (NaCl)	2800	3600	11.3	0.80
MnO	Bl (NaCl)			13.0	1.77
MnO_2	C4 (TiO ₂)	•••	d.535	17.3	2.37
Mn_2O_3	D53 (Sc_2O_3)		d.1080	35.1	2.40
Mn ₃ O ₄	Hl ₁ (spinel)	1705		47.1	2.14
MoO ₃	Orthorhombic	795	• • •	30.7	3.27
Na ₂ O	$Cl (CaF_2)$	Subl. 1275	• • •	27.3	0.57 🤇
Nb_2O_5	Monoclinic	1460		59.5	2.74
Nd_2O_3	Hexagonal	~1900		46.5	1.13
NiO	Bl (NaCl)	1990		11.2	1.70
PbO	B10 tetragonal	888		23.4	1.28
Pb ₃ O ₄	Tetragonal		d.500	75.3	1.37
PdO	B17 tetragonal	870		14.1	1.59
PtO	B17 (PdO)	• • •	d.550	14.2	1.56
Rb_2O_3	(Th_3P_4)	489		62.0	0.56
ReO ₂	Monoclinic		d.1000	19.1	2.16
Rh_2O_3	D51 (α -Al ₂ O ₃)		d.1100	31.0	1.87
SiO	Cubic	~1700	1880	20.7	1.72

Selected properties of metal oxides

Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)
SiO ₂	β cristobalite C9	1713	2230	25.9	2.15
SnO	B10 (PbO)		d.1080	20.9	1.26
SnO_2	C_4 (TiO ₂)	1127	·	20.9	1.26
SrO	Bl (NaCl)	2430	~3000	22.0	0.65
Ta_2O_5	Triclinic	1800		53.9	2.47
TeO ₂	C_4 (TiO ₂)	733	1245	28.1	1.38
ThO ₂	$Cl (CaF_2)$	3050	4400	26.8	1.35
TiO	Bl (NaCl)	1750	~3000	13.0	1.22
TiO ₂	C4 (Rutile)	1830	~2700	18.8	1.76
Ti ₂ O ₃	$D5_1 (\alpha - Al_2O_3)$		d.2130	31.3	1.47
Tl_2O_3	$D5_3 (Sc_2O_3)$	717	d.875	44.8	1.30
UO_2	Cl (CaF ₂) \bigcirc	2500		24.6	1.97
U_3O_8	Hexagonal		d.1300	101.5	2.71
VO ₂	C4 (TiO ₂)	1967		19.1	2.29
V_2O_3	$D5_1 (\alpha - Al_2O_3)$	1970		30.8	1.85
V_2O_5	D87 Orthorhombic	690	d.1750	54.2	3.25
WO_2	C4 (TiO ₂)	~1550	~1430	17.8	1.87
B-WO ₃	Orthorhombic	1473		32.4	3.39
W_2O_5	Triclinic	Sub.~850	~1530	29.8	3.12
Y_2O_3	$D5_3 (Sc_2O_3)$	2410		45.1	1.13
ZnO	B3 (wurtzite)	1975		14.5	1.58
ZrO ₂	C4 ₃ monoclinic	2715		22.0	1.57

and a second second

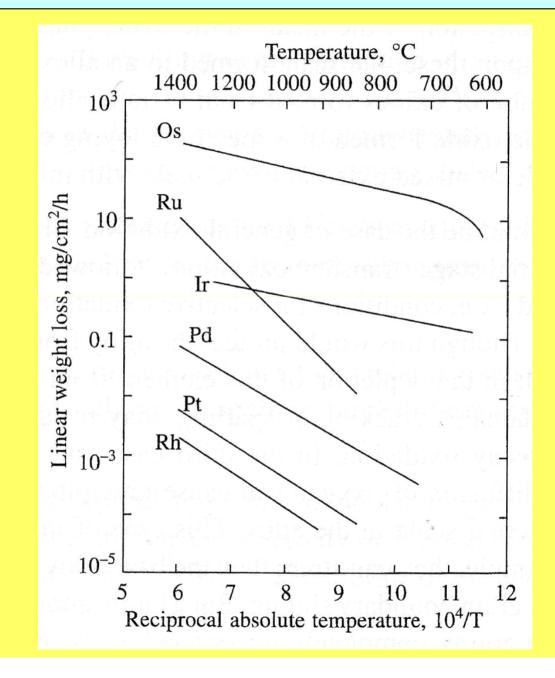
Melting and boiling points of some representative metals and oxides

Materials	Approximate Melting Point (°C)	Approximate Boiling or Decomposition Point (°C)			
Мо	2610	5560			
MoO ₃	795	1155			
W	3407	5727			
WO ₃ [#]	1470	1700			
Pt	1772	3800			
PtO		d.550			
PtO ₂		d.650			
IrO ₂		d.1124			
Rh	1966	3727			
Rh ₂ O ₃		d.1100			
Si	1414	3250			
SiO	1700	1880			
SiO ₂	1600	2230			

Significantly volatile at 800–1000°C.

Noble metals

Noble metals are used as materials for thermocouples, electrodes and crucibles at high temperatures. Noble metals, in fact, are chemically reactive under a variety of conditions, sometimes with disastrous consequences. Platinum, for example, can be seriously corroded by basic oxides, such as Na₂O and K₂O, especially when these compounds melt. The formation of an eutectic in the Pt-Si system is also a potential hazard. There are a number of binary and ternary noble metal oxides, the stability of which is generally limited to temperatures below about 1150°C. One of the greatest disadvantages of noble metals is their high price.


Binary and ternary platinum oxides

Oxide	Decomposition Temperature (°C)			
РЮ	555			
OsO4	Boils at 130			
lrO ₂	1100			
RhO ₂	1127			
RhO	1120			
Rh ₂ O ₃	880			
PtO ₂	430			
Pb ₂ PtO ₄	735			
PbPt ₂ O ₄	750			
Ca ₂ Pt ₃ O ₈	720			

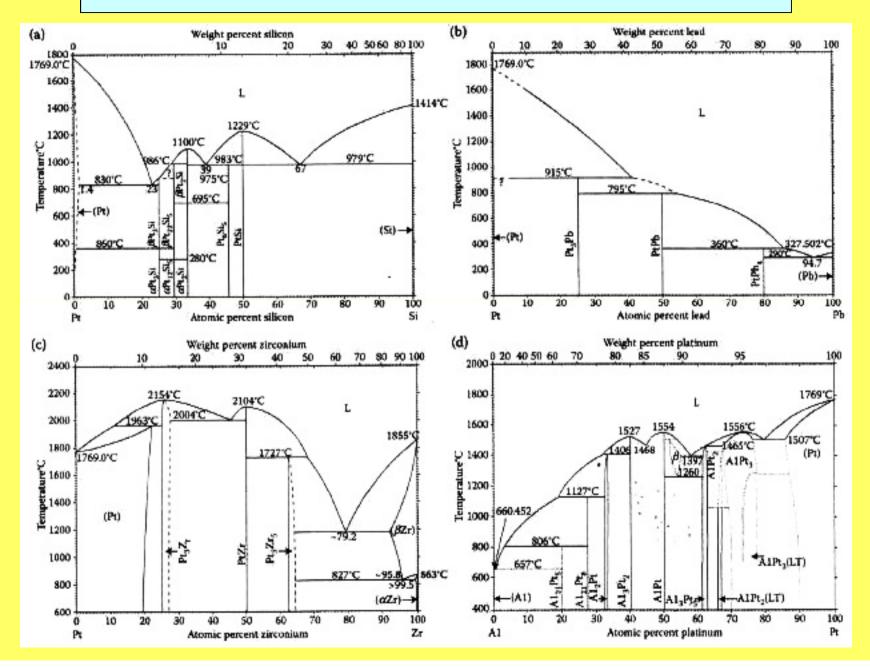
Noble metal eutectics (°C) with selected elements

Element	Pt	Rh	Ir
В	825	1131	1046
Р	588	1254	1262
Si	890	1389	1470
Sn	1070		-
Pb	327	-	-
Bi	730		
Sb	633		-
As	597		373

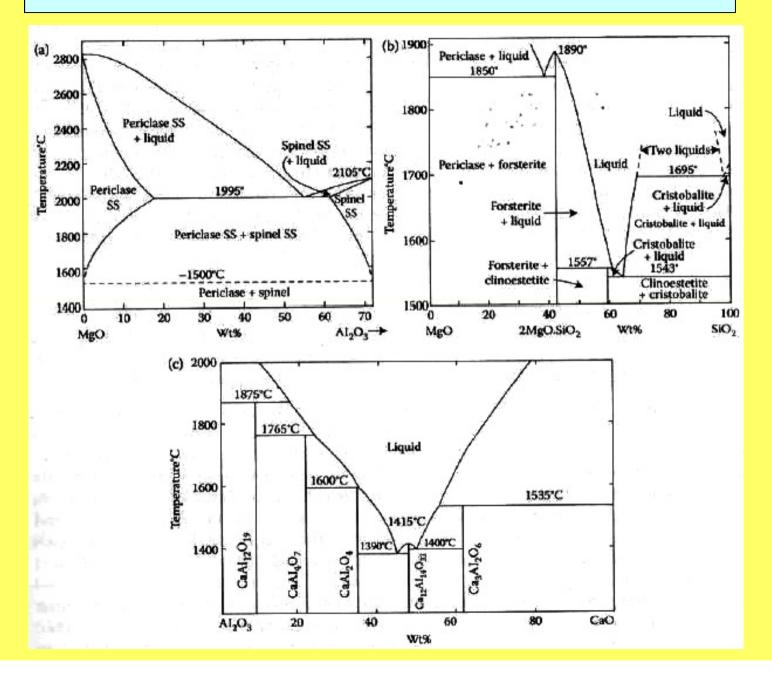
Evaporation rate of noble metals as a function of temperature

Properties of standard thermocouples

Туре	Base Composition	Melting Point (°C)	Ambient	Temperature Range (°C)	
]	Fe (+) 44Ni-55Cu(-)	1400 1210	Oxidizing or reducing	7–600*	
к	90Ni-9Cr(+) 94Ni-Al,Mn, Si, Fe, Co()	1350 1400	Oxidizing	-270-1372*	
N	84Ni-14Cr-1.4Si(+) 95Ni-4.4Si-0.15 Mg(-)	1410 1400	Oxidizing	-270-1260*	
Т	Cu(+) 44Ni-55Cu(-)			-200-370"	
Е	90Ni-9Cr(+) 44Ni-55Cu(-)	1350 1210	Oxidizing	-200-870*	
R	87Pt-13Rh(+) Pt(-)	1860 1769	Oxidizing or inert	-50-1768	
S	90Pt-10Rh(+) Pt(-)	1769 1927	Oxidizing or inert	-50-1768	
В	70Pt-30Rh(+) 94Pt-6Rh(-)	1927 1826	Oxidizing, vacuum, or inert	800-1820	
С	W-5Re (+) W-26Re (-)	3350 3120	Inert	0-2760°	


Source: Davis, J. R. ASM Specialty Handbook: Heat-Resistant Materials, ASM International. ISBN: 0871705966, 1997, pp. 1–591–51. From Springer Science+Business Media: Materials Handbook: A Concise Desktop Reference, 1st Edition, 2000, pp. 1–595, Cardarelli, F.

 Use in oxidizing atmospheres limited by easy oxidation of the metals, may be used somewhat higher in inert atmospheres, but wires become very brittle on heating.


HT materials used above 2000°C

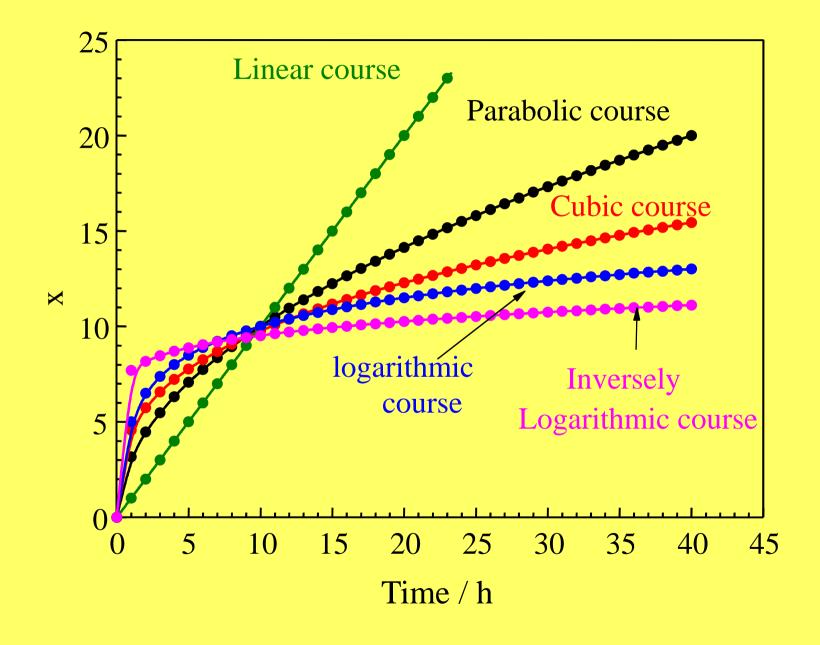
In the absence of oxygen, refractory metals and some of their compounds can be used up to temperatures of about 2000°C, encountering neither melting nor serious vaporization. They can be used in a vacuum or in an inert noble gas, but not in nitrogen because of potential nitride formation. However these metals can be easily oxidized and their oxides, in contrast, melt and boil in the 800-1000°C temperature range. Graphite can be used up to about 2200°C.

HT materials used above 2000°C

HT materials used above 2000°C

Phase transitions of some refractory oxides

Oxide	Phase Transition	Transition Temperature (°C)	Enthalpy of Transition kJ.mole ⁻¹	Entropy of Transition J mol ⁻¹ K ⁻¹
ZrO ₂	m-t	1202	5.4 ± 0.3	3.7 ± 0.3
-	t-c	2300	4.2 ± 0.5	1.6 ± 0.2
	m-c	Metastable	9.6	5.3
HfO ₂	m−t t−c m−c	1650 2700 Metastable	32.5 ± 1.7	
Y_2O_3	C-c	2200 ± 50	24 ± 5	
SiO ₂ (Stevens et al., 1997; Roy and Roy, 1964; Richet et al., 1982; Navrotsky et al., 1980)	Quartz- tridymite tridymite-cristobalite cristobalite α-β cristobalite- quartz amorphous SiO ₂ -quartz amorphous	870 1473 ± 30 525 835 1427 1726	1.32 0.96 ± 0.25 9.49 ± 0.25 10.20 ± 0.33	
	amorphous SiO ₂ -cristobalite			


Source: Navrotsky, A., Journal of Materials Chemistry, 15(19), 2005, 1883-1890.

Note: M, monoclinic; t, tetragonal; c, cubic fluorite; C, cubic C-type (ordered vacancy).

RATE LAWS OF METALS OXIDATION

- The linear law
- The parabolic law
- The cubic law
- The paralinear law
- The logarithmic law
- The inversely logarithmic law

RATE LAWS OF METALS OXIDATION

RATE LAWS OF METALS OXIDATION

The parabolic law

The slowest partial process determined by the rate of scale formation is diffusion transport of substrates through compact layer of reaction products (scale) formated on metal surface.

(1920)

$$\frac{dx}{dt} = \frac{k'_p}{x} \qquad x^2 = 2k'_p \cdot t + C \qquad \text{The Tammann Equation}$$

- x scale thickness [cm]
- t reaction time [s]

$$k'_{\rm n}$$
 – parabolic oxidation rate constant [cm²·s⁻¹]

 C^{P} – integration constant [cm²]

KINETICS LAWS OF METALS OXIDATION

The parabolic law

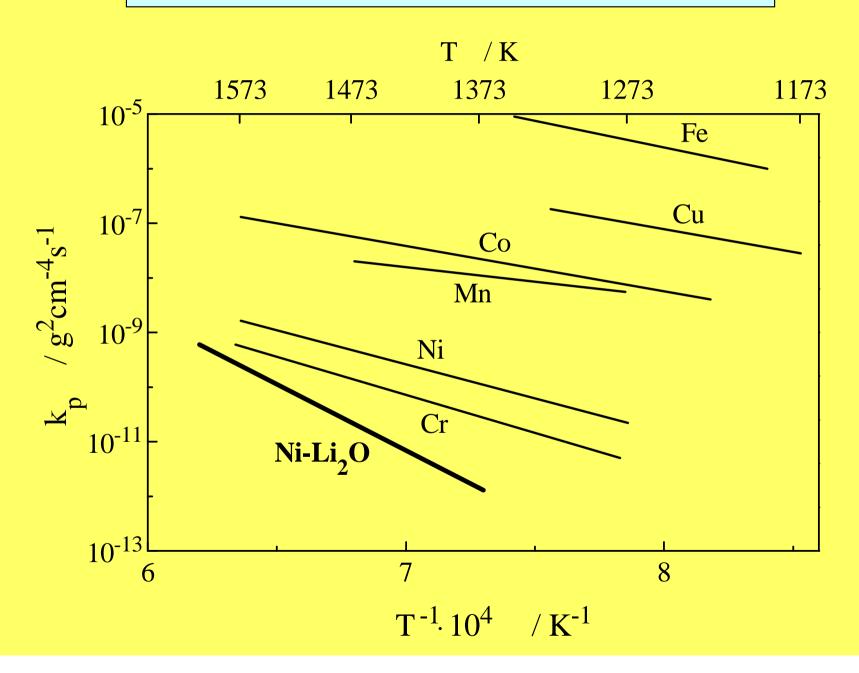
$$\frac{d\left(\frac{\Delta m}{S}\right)}{dt} = \frac{k_p}{\frac{\Delta m}{S}} \qquad \left(\frac{\Delta m}{S}\right)^2 =$$

= $k_p \cdot t + C$ Pilling-Bedworth Equation (1923)

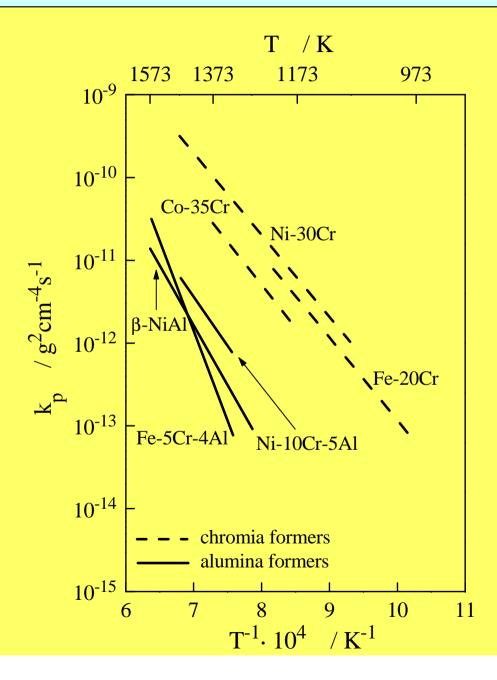
- Δm sample weight change [g]
- t reaction time [S]
- $\begin{array}{ll} k_p & & parabolic \ oxidation \ rate \ constant \ [g^2 \cdot cm^{-4} \cdot s^{-1}] \\ C & & integration \ constant \ [g^2 \cdot cm^{-4}] \end{array}$
- S sample surface [cm²]

$$\frac{\Delta m}{S} \rightarrow 0 \; \Rightarrow \; \frac{d\left(\frac{\Delta m}{S}\right)}{dt} \rightarrow \infty$$

KINETICS LAWS OF METALS OXIDATION


The relationship between k_p and k'_p

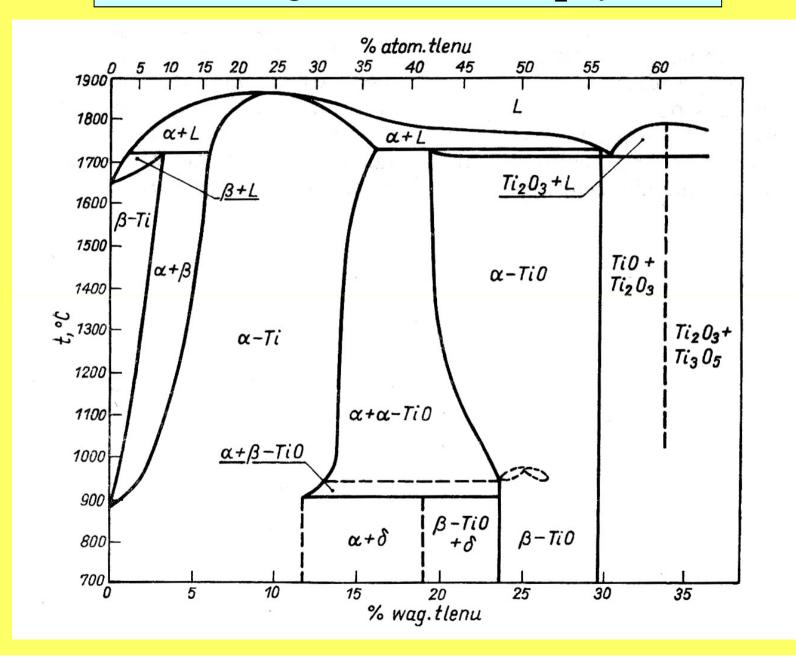
$$k_{p} = 2 \left(\frac{M_{O}}{\overline{V} \cdot Z_{O}}\right)^{2} k'_{p}$$


where:

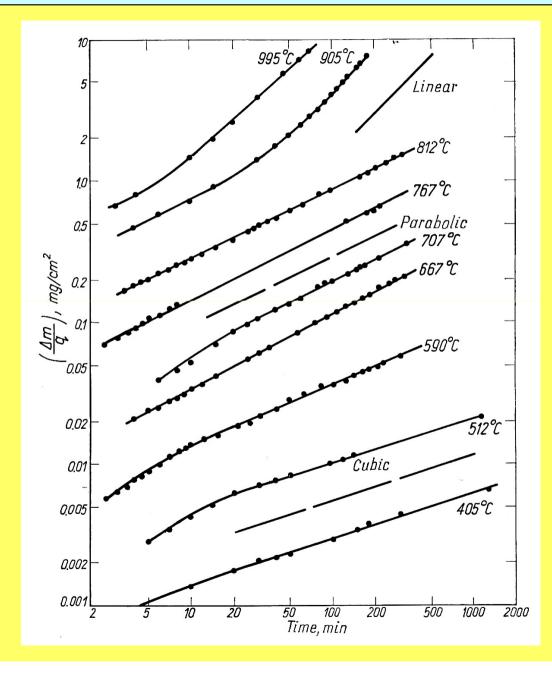
- k_p parabolic oxidation rate constant [g²cm⁻⁴s⁻¹]
- k'_{p} parabolic oxidation rate constant [cm²s⁻¹]
- \overline{V} equivalent volume of scale formated compound (e.g. oxide)
- M_0 atomic mass of oxidant (e.g. oxide)
- Z_{0} valency of oxidant anions in the scale

Oxidation rate of selected metals

Oxidation rate of selected alloys



Oxidation course of selected metals


Metal	Temperature, °C											
	1	00 2	200 30	0 4	00 50	00	600 70	30 00	300 9	00 1	000 11	00
Mg	log.		par.	par	alin.	lin.						
Ca	log.		pa	ar.	lin.	lin.						
Ce	log.	lin.	incr.									
Th			par.		lin.	lin.						
U	par.	paralin.	lin.	incr.			7					
Ti			log.	. (cu.	cu.	paralin.			paralin.		
Zn			log.	cu		cu.			cu.	cu.	lin.	
Nb			par.	par.	para	lin.	1	n.	lin.		incr.	
Та	log. in	v. log.		par.	para	alin.	1	in.	li	n.		
Mo			par.	para	alin.	paralin.	1	in.	li	n.		
W				par.		par.	pa	ralin.	para	alin.	para	ilin.
Fe	log.	log.	par.	par.	pa	ir.	p	ar.	pa	ır.		par.
Ni		log.	log.	cu.	pa	ır.			pa	ar.		par.
Cu	10	og. cu.	cu.		pa	ur.	par.	pa	ar.			
Zn		log	log.	par.								
Al	log. in	v. log.	log.	par.	l li	in.						1 - 12 - 12 - 1
Ge				pa	ar.	par	alin.					

Denotations: log. — logarithmic law; inv. log. — inversely logarithmic law; cu — cubic law; par. — parabolic law; paralin. — paralinear law; lin. — linear law; incr. — increased oxidation rate.

Phase diagram of the Ti-O₂ system

Influence of temperature on the Ti oxidation rate

THE END