
Disorder and transport properties of 

(Co,Cu,Mg,Ni,Zn)O high entropy oxide



High entropy materials – materials, the structure of 
which is stabilized by high configurational entropy. 
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High entropy alloys – alloys created by mixing at least
5 elements together in approximately identical amounts
(5-35% at.). Metal atoms are randomly located in high
entropy alloys. The configurational entropy of such a
system achieves its maximum value in the case of a
solid solution, which facilitates the formation of simple
crystalline structures.

High entropy materials

crystalline structures.

High entropy oxides – oxides that constitute a solid
solution consisting of at least 5 metal oxides. These
materials are interesting due to their transport properties
that manifest through e.g. high ionic conductivity.
Potential applications:
Lithium batteries, solid oxide fuel cells (SOFC)



High entropy oxides may have practical use due to the
point defect structure and mobility of these oxides.

Becoming familiar with the transport properties of these
materials will enable the possibility of maximizing their
hidden potential and making them a valuable group of

High entropy oxides

hidden potential and making them a valuable group of
new materials that constitute a basis for future energy-
creating technology.



The aim of this work was to obtain
information concerning the type and magnitude of
the predominant disorder, as well as chemical
diffusion, present inside a (Co,Cu,Mg,Ni,Zn)O high

Research goal

diffusion, present inside a (Co,Cu,Mg,Ni,Zn)O high
entropy oxide.



Experimental procedure

Initial materials for investigations (powders):
Co3O4, CuO, MgO, NiO, ZnO, 

purity > 99,9 % at.;  granulation 0,044 ÷ 0,250 µm

Milling:
90 min, 600 rot/s, planetary mill (Fritsch Pulverisette 7)

Pressing:
dics: Φ = 10 mm, h = 2 mm, pressure: 2 t

Sintering:
20 h, 1273 K, cooling on a cold aluminium plate

Microstructural studies:
XRD, SEM+EDS

Marker investigations:
Au, 1173 K, 

Deviation from stoichiometry studies:
1173 K, 10-105 Pa (thermogravimetric method)

Chemical diffusion investigations:
1173 K, 10-105 Pa (re-equilibration method)



Scheme of the microthermogravimetric apparatus 
for defect concentration and mobility studies



XRD analysis performed on the surface of a 
(Co,Cu,Mg,Ni,Zn)O oxide sample



EDS analysis carried out on the surface of a 
(Co,Cu,Mg,Ni,Zn)O oxide sample
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Marker method in oxide-oxidant systems
Determining the MeX2 sublattice with predominant disorder
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Oxidation of (Co,Cu,Mg,Ni,Zn)O oxide

Markers

Procedure:
• heating (Co,Cu,Mg,Ni,Zn)O 
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Modified marker method
– location of markers in CoS
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in products of the oxidation of highly disordered substrates”, High Temperature Materials and
Processes, 35, 21-28 (2016)



Modified marker method
Oxidation of (Co,Cu,Mg,Ni,Zn)O oxide

O2

(Co,Cu,Mg,Ni,Zn)O

Assumption:
Predominant disorder is present in the cation sublattice

h

Data:
Sample parameters after heating
(1173 K, pO2= 10 Pa):
mass = 0,4336 mg
diameter = 10 mm
height = 1,57 mm(Co,Cu,Mg,Ni,Zn)O height = 1,57 mm

Sample mass change after oxidation 
(1173 K, pO2= 105 Pa): 7 mg

h = 12 µm

Conclusion:
In the case of predominant disorder in the cation sublattice, markers should be
located 12 micrometers below the oxide surface.



(Co,Cu,Mg,Ni,Zn)O sample cross-section
after completing modified marker studies



Necessary conditions for obtaining positive results 
by means of the modified marker method

• Before marker deposition, the oxide sample must be heated under lower
oxygen pressure compared to the pressure used during oxidation of the
sample covered with markers.

• The change in deviation from stoichiometry of a studied oxide during a
marker experiment must be large (order of a few percent).

• Sample thickness should exceed 1 mm.

• The duration of defect concentration re-equilibration during oxygen
pressure changes should be several times longer than ~1 min (this
means that the chemical diffusion coefficient is low and/or the sample
thickness is large).

Conclusion:

A full interpretation of a modified marker experiment is possible after
completing both marker studies, as well as point defect concentration and
mobility investigations inside a given oxide.



Determining deviation from stoichiometry in 
MeX1-y-type oxides using the gravimetric method 
when the metal content in the sample is known

OMe

MeO

Mm
Mm

1y −=

where: 
mMe – mass of the metal in an oxide sample
mO – oxygen mass in an oxide sample
MMe i MO – atomic masses of metal and oxygen. 



Methods for determining deviation from 
stoichiometry in oxides with unknown metal 

content

• oxide reduction to pure metal (e.g. in hydrogen atmosphere,
electrochemical reduction, etc.)

• subjecting the oxide to a reaction with a different oxidant (e.g.
with sulphur)

• using a reference sample with a known metal mass• using a reference sample with a known metal mass
• assuming certain thermodynamic parameters (T, p), at which

oxide sample mass changes are not observed along with
parameter modifications, that allow for the oxide to exhibit a
stoichiometric composition, as long as the sample mass
changes in a different range of parameter modifications.



Scheme of the correlation between defect 
concentration and oxidant pressure in an 

oxide with a complex defect structure
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Assumption:
m = f(ln p) and y = f(ln p) curves
exhibit an inflection point for p*

Proof:
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Correlation between (Co,Cu,Mg,Ni,Zn) O 
sample mass change and oxygen pressure
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Pressure dependence of deviation from 
stoichiometry, y, in (Co,Cu,Mg,Ni,Zn) O1-y
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Maximum values of deviation from 
stoichiometry in selected metal oxides

T = 1173 K, pO2 = 105 Pa

(Co,Cu,Mg,Ni,Zn) O1-y : y = 0,07

Co O : y < 10-5Co3±yO4: y < 10-5

Cu1±yO: y < 10-5

Mg1±yO: y < 10-5

Ni1-yO: y = 10-4

Zn1+yO: y < 10-5



Determining chemical diffusion coefficients of 
defects by means of re-equilibration technique
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Reduction kinetics of (Co,Cu,Mg,Ni,Zn) O1-y
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Initial reduction stage of (Co,Cu,Mg,Ni,Zn) O1-y
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Re-equilibration kinetics of (Co,Cu,Mg,Ni,Zn) O1-y
illustrated in a parabolic system of coordinates
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Re-equilibration kinetics of (Co,Cu,Mg,Ni,Zn) O1-y

illustrated in a semi-logarithmic system
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Correlation between the chemical diffusion 
coefficient in (Co,Cu,Mg,Ni,Zn) O1-y and 

oxygen equilibrium pressure
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Temperature dependence of chemical diffusion 
coefficients in selected metal oxides and sulphides
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Conclusions

1. In the thermodynamic conditions, under which
(Co,Cu,Mg,Ni,Zn)O1-y oxide was studied, it was determined that:

• predominant disorder is present in its anion sublattice,
• the predominant defects are anion vacancies,
• deviation from stoichiometry can assume large values (y = 0,07),
• the chemical diffusion coefficient is dependent on oxygen• the chemical diffusion coefficient is dependent on oxygen

pressure (10-7 – 6·10-7 cm2s-1),

2. Large deviation from stoichiometry values and the oxygen
pressure dependence of the chemical diffusion coefficient
suggests a complex defect structure inside the studied oxide.
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