SULPHIDATION - RESISTANT HIGH TEMPERATURE COATINGS

Zbigniew Grzesik

http://home.agh.edu.pl/~grzesik

Department of Physical Chemistry and Modelling

Z. Grzesik and K. Przybylski, "Sulfidation of metallic materials" w "Developments in high temperature corrosion and protection of materials", Eds. Wei Gao and Zhengwei Li, Woodhead Publishing Limited, Cambridge England, 2008, str. 599-638.

R. Cottis, M. Graham, R. Lindsay, S. Lyon, J. Richardson, J. Scantlebury, F. Stott, "Basic Concepts, High Temperature Corrosion, tom I" w "Shreir's Corrosion", Elsevier, Amsterdam, 2010.

Properties of selected metal sulfides and oxides

Sulfide	ΔG^0_{1273K}	p_{s_2}	Oxide	$\Delta G^0_{1273\mathrm{K}}$	p ₀₂
Sunnae	[kJ/mol S]	[Pa]		[kJ/mol O]	[Pa]
Al ₂ S ₃	-191	$2.4 \cdot 10^{-11}$	Al ₂ O ₃	-424	$1.8 \cdot 10^{-30}$
CoS	-43.8	26	CoO	-145	$1.2 \cdot 10^{-7}$
Cu_2S	-95.7	$1.4 \cdot 10^{-3}$	Cu ₂ O	-77.7	$4.3 \cdot 10^{-2}$
CuS	63.6	$1.6 \cdot 10^{10}$	CuO	-11.6	$1.1 \cdot 10^4$
FeS	-78.9	$2.9 \cdot 10^{-2}$	FeO	-179	$2.3 \cdot 10^{-10}$
MnS	-196.9	$7.3 \cdot 10^{-12}$	MnO	-292	$1.2 \cdot 10^{-19}$
MoS_2	-78.3	$3.8 \cdot 10^{-2}$	MoO ₂	-182	$1.3 \cdot 10^{-10}$
NiS	-50.4	7.5	NiO	-127	$3.8 \cdot 10^{-6}$
TiS	-228	$2.1 \cdot 10^{-14}$	TiO	-420	$3.9 \cdot 10^{-30}$

Properties of selected metal sulfides and oxides

Sulfide	Melting point	Oxide	Melting point
	[K]		[K]
Al_2S_3	1373	Al_2O_3	2288
CoS	1389	CoO	2068
Co_3S_4	?	Co_3O_4	1223
Cr_2S_3	1623	Cr_2O_3	2539
Cu ₂ S	1373	Cu ₂ O	1508
CuS	376	CuO	1599
FeS	1472	FeO	1642
MnS	1598	MnO	2058
MoS_2	1458	MoO_2	2200
NiS	1083	NiO	2230
TiS	2373	TiO	2023
TiS ₂	?	TiO ₂	2123
La_2S_3	2423	La ₂ O ₃	2490
Ce_2S_3	2373	Ce ₂ O ₃	1965
ThS_2	2198	ThO ₂	3593

Sulfide	Melting point	Oxide	Melting point
	[K]		[K]
~			
US_2	1373	UO_2	3151
Y_2S_3	1873	Y_2O_3	2683
InS	965	InO	1325
In_2S_3	1323	In ₂ O ₃	2273

Properties of selected metal sulfides and oxides

Metal	Sulfides	Oxides
Со	Co ₄ S ₃	CoO
	Co_9S_8	$\mathrm{Co}_3\mathrm{O}_4$
	CoS	
	Co_3S_4	
	CoS_2	
Cr	CrS	Cr_2O_3
	Cr_7S_8	
	Cr_5S_6	
	Cr_3S_4	
	Cr_2S_3	
Ni	Ni_3S_2	NiO
	Ni ₇ S ₆	
	NiS	
	Ni_3S_4	
	NiS ₂	

Maximum deviation from stechiometry of selected metal sulfides and oxides

Sulfide	У	Oxide	У
Co _{1-y} S	0.16	Co _{1-y} O	0.009
$Cr_{2+y}S_3$	0.18	Cr _{2-y} O ₃	0.00009
Cu _{2-y} S	0.17	Cu _{2-y} O	0.004
Fe _{1-y} S	0.24	Fe _{1-y} O	0.12
$Mn_{1-y}S$	0.002	Mn _{1-y} O	0.016
Ni _{1-y} S	0.17	Ni _{1-y} O	0.0006

Deviation from stechiometry of selected metal sulfides and oxides

The chemical diffusion coefficient in a number of metal sulphides and oxides

The chemical diffusion coefficient in a number of metal sulphides and oxides

Temperature dependence of self-diffusion coefficient for selected metal sulphides and oxides

Comparison of sulphidation and oxidation rate of metals

Comparison of sulphidation and oxidation rate of alloys

The influence of chromium on the sulphidation and oxidation rate of selected metals

The influence of chromium on the sulphidation and oxidation rate of selected metals

The influence of chromium on the sulphidation and oxidation rate of iron

The influence of aluminum on the sulphidation rate of iron

The influence of chromium and aluminum on the sulphidation rate of iron

The influence of Mo and Nb on the sulphidation rate of nickel

The influence of AI and Mo on the sulphidation rate of nickel

Comparison of sulphidation rate of a number of Ni alloys with Mo and Al

The influence of AI. And Mo on the sulphidation rate of iron

Comparison of sulphidation rate of a number of Fe alloys with Mo and Al

Sulphidation rates of several Ni and Fe alloys containing Mo and Al

PROTECTIVE COATINGS APPLIED IN CORROSION OCCURRING IN SULPHIDIZING ATMOSPHERES

- Mn MnS
- $Ti TiS_2$
- $Mo MoS_2$
- $Nb NbS_2$
- $Ta TaS_2$
- Ni-Mo, Fe-Mo, Co-Mo Fe-Mo-Al

Melting and boiling points of several metals

	Melting point, K	Boiling point, K
Al	933.52	2740.15
Mo	2890.15	4885.15
Ta	3269.15	5698.15
Mn	1518.15	2235.15
Nb	2468	4927
Со	1495	2870

X-ray data of the AI-34Mo alloy

Cross-section of sulphide scale growing on the AI-46Mo alloy

Al-46Mo

Outer Scale

Inner Scale

Sputtered Film

1 μm

Sulphidizing rates of Mo-Al alloys

Szybkości siarkowania stopów molibdenu z glinem

Sulphidation kinetics for sputter-deposited AI-56 Nb alloy

The temperature dependence of the sulphidation rate of AI-56Nb alloy

Temperature dependence of the sulphidation rate of AI-Mo, AI-Nb and AI-Ta alloys on the background of analogous dependence for several high tepmperature alloys and refractory metals

Sulphidizing rates of high-temperature alloys containing aluminum

Point defect situation in pure MoS₂

$$k_{p} = const \ p_{S_{2}}^{1/4}$$

$$\frac{1}{2} S_{2} = S_{i}' + h'$$

$$K_{i} = [S_{i}'][h']p_{(S_{2})}^{-1/2}$$

$$K_{i} = [h']$$

$$[S_{i}'] = [h']$$

$$[S_{i}''] = K_{i}^{1/2}p_{(S_{2})}^{1/4}$$

$$k_{p} = const \ p_{(S_{2})}^{1/4}$$

$$10^{-12}$$

$$10^{-12}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-13}$$

Point defect situation in Al-doped MoS₂

$$\begin{array}{c} Al_{2}S_{3} + 1/2 S_{2} = 2Al'_{Mo} + 2h' + 4S_{S} \\ Al_{2}S_{3} + S'_{i} = 2Al'_{Mo} + h' + 4S_{S} \\ 10^{-10} \\ [h'] = [S'_{i}] + [Al'_{Mo}] \\ [s'_{i}] \ll [Al'_{Mo}] \\ [h'] \approx [Al'_{Mo}] \\ [s'_{i}] \approx (K_{i}/[Al'_{Mo}])p_{(S_{2})}^{1/2} \\ k_{p} \approx const \ p_{(S_{2})}^{1/2} \\ \end{array}$$

Sulfidation kinetics of Mo-1.7 AI alloy at several temperatures

The dependence of the sulphidation rate for Mo-1.7 Al alloy on the sulphur pressure at 1173 K

Temperature dependence of the sulphidation rate for Mo-Al alloys and molybdenum

X-ray diffraction pattern for Mo-6.2 AI alloy after 12 h sulphidation at 1173 K

X–ray diffraction pattern for Mo-10.7 Al alloy after 20 h sulphidation at 1173 K

Microphotographs of cross-sections of Mo-Al alloys after sulphidation

PROTECTIVE COATINGS UTILIZED IN THE CASE OF OXIDIZING-SULPHIDIZING ATMOSPHERES

Fe-Mo-Al Mo-Al Mo-Al-Si Nb-Al

Cross-section of scales formed on a superalloy in oxidizing and oxidizing-sulphidizing atmospheres

Scheme of degradation of materials in the oxidizing-sulphidizing atmospheres

Comparison of the sulphidizing and oxidizing rates of several alloys

Comparison of the oxidizing rates of several AI-Mo-Si alloys

The molybdenum content in scales growing on several AI-Si-Mo alloys

Comparison of the sulphidizing kinetics of two AI-Mo alloys with different Si contents

The result of X-ray analysis of AI-54Nb-20Si alloy

Comparison of the sulphidizing and oxidizing rates of several alloys

CONCLUSION

Protective coatings against high temperature corrosion in oxidizing-sulphidizing environments have not been elaborated.

THE END