LABORATORIUM 7 Machining parameters

Lab objectives:

- List the key elements of the technological process of a mechanical product.
- Identify technological operations from the manufacturing drawing.
- Select appropriate cutting tools for basic turning and milling operations.
- Determine basic cutting parameters: ap, f, fz, vc, n, vf, tc.
- Apply technological formulas to calculations related to conventional machining.
- Evaluate the correct selection of machine and parameters in relation to the type of operation and material.
- Perform initial optimisation of the machining process in terms of time and productivity.

Acronyms

Symbol	Explenations			
ар	Depth of cut - thickness of layer of material removed in one tool pass			
	Unit: [mm]			
f	Turning feed rate - tool displacement per workpiece revolution.			
	Unit: [mm/obr]			
fz	Cutting feed - the amount of material removed by one cutter blade during one			
	tool revolution.			
	Unit: [mm/ostrze]			
vc	Cutting speed - the linear speed between the tool and the workpiece.			
	Calculated from:			
	$vc = (\pi \times D \times n)/1000.$			
	gdzie:			
	D – diameter of workpiece or tool [mm]			
	n – revolutions [rpm]			
	Unit: [m/min]			
n	Speed - number of revolutions of the workpiece (in turning) or tool (in			
	milling) per minute. Calculated from: $n = (1000 \times vc)/(\pi \times D)$.			
	Unit: [rpm]			
vf	Working feed - the linear speed of the tool's feed motion. Calculated from:			
	$vf = fz \times z \times n.$			
	gdzie:			
	D – diameter of workpiece or tool [mm]			
	n – revolutions [rpm]			
	Unit: [mm/min]			
tc	Machining time - time taken to perform one operation. Calculated from:			

$tc = L / (f \times n).$
L – machining length [mm]
f – feed rate [mm/rev]
n – speed [rpm]
Unit: [min]

Task 1 – Reminder: Elements of the technological process

Based on your knowledge from the previous class, list the elements to be considered when developing a technological process.

List at least 5 key elements of the technological process:
1
2
3
4
5
Give an example of the application of a process to a simple workpiece:

Task 2 – Selection of tools and parameters: Turning (steel C45)

Based on the detailed drawing and the following list of procedures, plan the technological operations.

Lista zabiegów technologicznych:

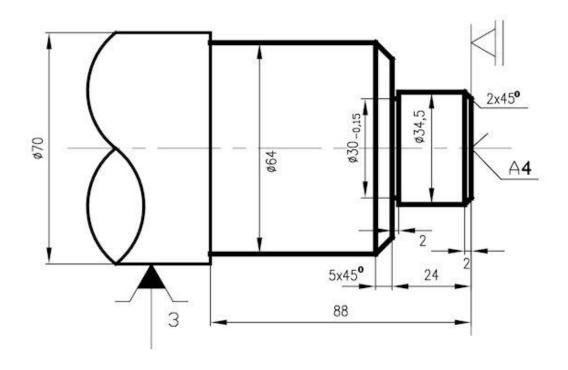
- 1. Turn the face.
- 2. Turn diameter Ø34.5 including face.
- 3. turn groove to diameter Ø30-0.15.
- 4. turn Ø64 to length 88.
- 5. make an A4 bevel.
- 6. chamfer 2×45°.
- 7. chamfer 5×45°.

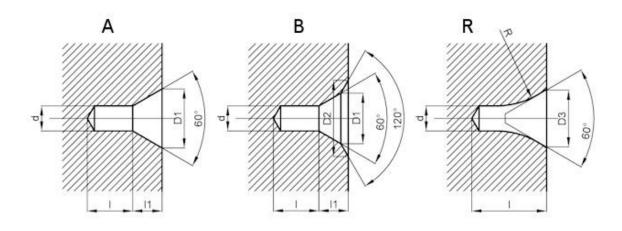
For each treatment, specify:

- type of machining (roughing/finishing),
- type of turning tool,
- cutting parameters: ap, f, vc, n, tc,

- machine (e.g. TUR 50) and whether it allows the operation to be carried out.

Table to be completed:


Procedure	Type of machining	Turning tool	ap [mm]	f [mm/rev]	vc [m/min]	Remarks (n, tc)
1	macming					tej
1						
2						
3						
4						
5						
6						
7						


Formulas:

$$n = (1000 \times vc) / (\pi \times D)$$

tc = L / (f \times n)

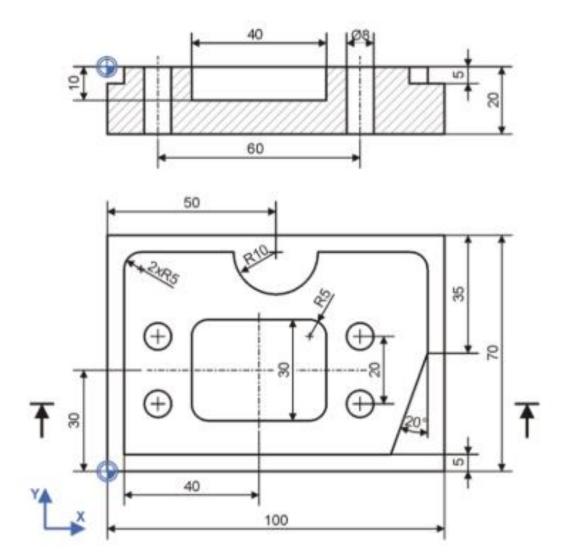
Additional links:

- Machining: http://anamesin.lecture.ub.ac.id/files/2015/09/Machining.pdf
- Turning tools: https://cutting-tools24.com/lathe-knives-with-solder-plate.html
- Sandvik knowledge base: https://www.sandvik.coromant.com/engb/knowledge/general-turning/external-turning
- Turning operations: https://msvs-dei.vlabs.ac.in/mem103/Unit5lesson4.html

Task 3 – Milling (steel C45)

Based on the detailed drawing, design a plan for milling.

Steps to follow:


- 1. describe the technological procedure (e.g. face planning, groove milling, side planes, edges).
- 2. select the cutter (type, material, number of blades).
- 3. determine the cutting parameters:
 - ap [mm]
- fz [mm/blade]
- vc [m/min]
- n [rpm].
- vf [mm/min]

Formulas:

```
n = (1000 \times vc) / (\pi \times D)
vf = fz \times z \times n
```

Additional links:

• Milling tools: https://cutting-tools24.com/end-mills.html

