
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Training Examples
for supervised training

3

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

4

http://home.agh.edu.pl/~horzyk/index-eng.php

Logistic Regression

5

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Computing Sigmoid Function

We use numpy vectorization to compute sigmoid and its derivative for any input vector z:

6

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Logistic Regression Cost Function

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Popular Loss Functions

8

The loss functions are used to evaluate the performance of the models.

The bigger our loss is, the more different our predictions (𝑦̂) are from the true values (𝑦). In deep
learning, we use optimization algorithms like Gradient Descent to train models and minimize the cost.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent

We have to minimize the cost function J for a given training data set
to achieve as correct prediction for input data as possible:

10

Here, w is 1D, but its dimension is bigger in real.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Calculus of the Gradient Descent

The main idea of the Gradient Descent algorithm is to go
in the reverse direction to the gradient (the descent slope): 11

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.onlinemathlearning.com/derivative-rules.html

Derivative Rules

The Gradient Descent algorithm
uses partial derivatives calculated
after the following rules:

12

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.onlinemathlearning.com/derivative-rules.html
https://www.onlinemathlearning.com/derivative-rules.html

Gradient Descent for Logistic Regression

We use a computational graph for the presentation of forward and backward operations
for a single neuron implementing logistic regression for the weighted sum of inputs x:

13

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

14

http://home.agh.edu.pl/~horzyk/index-eng.php

Network Training Process

Last layers of neural networks for classification or regression tasks are constructed from
dense layers which can be trained using the most popular backpropagation algorithm
which includes two main phases:

1. The input propagation phase propagates the inputs throughout all hidden layers to
the output layer neurons. In this phase, neurons calculate weighted sums of inputs
taken from the neurons in the previous layer or the input of the network (x1, …, x3).

2. The error propagation phase propagates back the errors (delta values) computed on
the outputs of the neural network. In this phase, neurons calculate weighted sums of
errors (delta values) taken from the neurons of the next layer.

15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

16

First, the inputs x1, x2, x3 stimulate neurons in the first hidden layer.
The neurons compute weighted sums S1, S2, S3, S4, and output values y1, y2, y3, y4

that become inputs for the neurons of the next hidden layer:

𝑺𝒏 = ෍
𝒌=1

3

𝐱𝒌 ∙ 𝐰𝒙𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

17

Second, the outputs y1, y2, y3 ,y4 stimulate neurons in the second hidden layer.
The neurons compute weighted sums S5, S6, S7, and output values y5, y6, y7

that become inputs for the neurons of the output layer:

𝑺𝒏 = ෍
𝒌=1

4

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

18

Finally, the outputs y5, y6, y7 stimulate neurons in the output layer.
The neurons compute weighted sums S8 and S9 , and output values y8, y9

that are the outputs of the neural network as well:

𝑺𝒏 = ෍
𝒌=5

7

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

19

Next, the outputs y8, y9 are compared with the desired outputs d8, d9 and
the errors δ8, δ9 are computed. These errors will be propagated back in order
to compute corrections of weights from the connected inputs neurons.

𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

20

The errors δ8 and δ9 are used for corrections of the weights of the inputs
connections y5, y6, y7, and propagated back along the input connections
to the neurons of the previous layer in order to compute their errors δ5, δ6, δ7:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌 𝜹𝒌 = ෍
𝒏=8

9

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

21

Next, the errors δ5, δ6, and δ7 are used for corrections of the weights of the inputs
connections y1, y2, y3, y4, and propagated back along the input connections to the
neurons of the previous layer in order to compute their errors δ1, δ2, δ3, δ4:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌 𝜹𝒌 = ෍
𝒏=5

7

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

22

Finally, the errors δ1, δ2, δ3, δ4 are used for corrections of the weights of
the inputs x1, x2, x3:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

23

http://home.agh.edu.pl/~horzyk/index-eng.php

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

24

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

25

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

26

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

27

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

28

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) computes
partial derivatives during the forward phase:

29

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) computes
partial derivatives during the forward phase:

30

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Comparison of BPTT and RTRL

Both BPTT and RTRL compute the same gradients
but in different ways.

They differ in computational complexity:

31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

32

http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent for Training Dataset

The final logistic regression gradient descent
algorithm will repeatedly go through
all training examples updating parameters
until the cost function is not small enough.

To speed up computation we should use
vectorization instead of for-loops.

33

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Efficiency of Vectorization

When dealing with big data collections and big data vectors, we definitely should
use vectorization (that performs SIMD operations) to proceed computations faster:

Conclusion:
Whenever possible, avoid explicit for-loops and use vectorization: np.dot(w.T,x), np.dot(W,x),

np.multiply(x1,x2), np.outer(x1,x2), np.log(v), np.exp(v), np.abs(v), np.zeros(v), np.sum(v), np.max(v),

np.min(v) etc. Vectorization uses parallel CPU or GPU operations
(called SIMD – single instruction multiple data) proceed on parallelly working cores. 34

Compare time efficacies of these two approaches!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of the Logistic Regression

Let’s vectorize the previous algorithm:

35

broadcasted

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

36

http://home.agh.edu.pl/~horzyk/index-eng.php

Broadcasting in Python

Broadcasting stands for a special
operation which multiplies the data in
rows and/or columns to fit the size of a
bigger structure and allow to perform
operations:

37

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Broadcasting in numpy

Broadcasting is very useful for performing mathematical operations between arrays of
different shapes. The example below show the normalization of the data.

38

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

39

http://home.agh.edu.pl/~horzyk/index-eng.php

Lists vs. Vectors and Matrices

Be careful when creating vectors
because lists have no shape and
are declared similarly.

40

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Column and Row Vectors

41

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Reshaping Image Matrices

42

When working with images in deep learning,

we typically reshape them into vector representation using np.reshape().

:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

Shape and Reshape Vectors and Matrices

We use the numpy functions np.shape() and np.reshape() in deep learning:

• X.shape is used to get the shape (dimension) of a vector or a matrix X.

• X.reshape(...) is used to reshape a vector or a matrix X into some other dimension(s). 43

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

44

http://home.agh.edu.pl/~horzyk/index-eng.php

Simple Neuron Definition

We defined the fundamental elements and operations on a single neuron as
a weighted sum of inputs plus bias and the result is used to calculate

the output using an activation function (here a sigmoid function).

The achieved output is used to calculate the loss and corrections.
45

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Simple Neural Network

46

Having defined the
fundamental elements
and operations,
we can create
a simple neural
network.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Neurons Vertically and Vectorizing

47

Stacking values and creating
vectors, and stacking vectors
and creating matrices is very
important from the efficiency
of computation point of view
because it allows to use
parallel operations of GPU!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Examples Horizontally and Vectorizing

48

Stacking vectors of training
examples horizontally
creating matrices is very
important from the
efficiency of computation
point of view!

After Vectorizing

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

49

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal
functions become a huge bottleneck in your algorithms and can result in models that
take ages to run. To make sure that your code is computationally efficient, you should
use vectorization. Compare the following codes:

50

Use more data to see the difference!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Outer Product
In deep learning, you deal with very large datasets.

Non-computationally-optimal functions become a huge bottleneck in your algorithms
and can result in models that take ages to run. To make sure that your code is

computationally efficient, you should use vectorization. Compare the following codes:

51

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Element-Wise Multiplication

In deep learning, you deal with very large datasets.
Non-computationally-optimal functions become a huge bottleneck in your algorithms

and can result in models that take ages to run. To make sure that your code is
computationally efficient, you should use vectorization. Compare the following codes:

52

Use more data to see the difference!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of General Dot Product

In deep learning, you deal with very large datasets.
Non-computationally-optimal functions become a huge bottleneck in your algorithms

and can result in models that take ages to run. To make sure that your code is
computationally efficient, you should use vectorization. Compare the following codes:

53

Use more data to see the difference!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

54

http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions of Neurons

55

We can use different activation
functions of neurons in different
layers of the network:

COMPARISON OF ACTIVATION FUNCTIONS

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Derivatives of Activation Functions

Derivatives are necessary for
the use of gradient descent:

• Sigmoid function:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= 𝒈 𝒛 ∙ 𝟏 − 𝒈 𝒛 = 𝒂 ∙ 𝟏 − 𝒂

• Tangent hyperbolic function:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= 𝟏 − 𝒈 𝒛

𝟐
= 𝟏 − 𝒂𝟐

• Rectified linear unit (ReLu):

𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎 𝒊𝒇 𝒛 ≤ 𝟎

• Smooth ReLu (SoftPlus):

𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒏 𝟏 + 𝒆𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
=

𝒆𝒛

𝟏+𝒆𝒛 =
𝟏

𝟏+𝒆−𝒛

• Leaky ReLu:

𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎

𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏 𝒊𝒇 𝒛 ≤ 𝟎

56

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Derivatives of Activation Functions

Python implementation of derivatives using numpy:

57

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Neural Network Gradients

58

How do we propagate gradients through the network layers back?

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Random Initialization of Weights

Parameters must be initialized by small random
numbers, but remember that:
• W cannot be initialized to 0:

• 𝑾[𝒍] = 𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅𝒏 𝒏[𝒍], 𝒏[𝒍−𝟏] ∗ 𝟎. 𝟎𝟏

• b can be initialized to 0:

• 𝒃[𝒍] = 𝒏𝒑. 𝒛𝒆𝒓𝒐 𝒏[𝒍], 𝟏

59

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Going to Deeper NN Architectures

60

Deep neural
network
architecture
means the use
of many hidden
layers between
input and
output layers.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Dimensions of Stacked Matrices

61

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Building Blocks of Deep Neural Networks

To design and implement the computation process using parallelism,
we define blocks representing stacked neurons in layers:

62

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Building Blocks Subsequently

63

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

64

http://home.agh.edu.pl/~horzyk/index-eng.php

Vanishing/Exploding Gradient Problems

In both BPTT and RTRL, we come across exploding and vanishing
gradient problems:

Exploding gradients are a problem where large error gradients
accumulate and result in very large updates to neural network
model weights during training. This effects in instability of the
model and difficulty to learn from training data, especially over
long input sequences of data.

In order to robustly store past information, the dynamics of
the network must exhibit attractors but, in their presence,
gradients vanish going backward in time, so no learning with
gradient descent is possible!

65

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vanishing/Exploding Gradient Problems

In both BPTT and RTRL, we come across exploding and vanishing gradient
problems:

Exploding gradients are a problem where large error gradients accumulate and
result in very large updates to neural network model weights during training.
This effects in instability of the model and difficulty to learn from training data,
especially over long input sequences of data.

In order to robustly store past information, the dynamics of
the network must exhibit attractors but, in their presence,
gradients vanish going backward in time, so no learning with
gradient descent is possible!

66

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vanishing/Exploding Gradient Problems

To reduce the vanishing/exploding gradient problems, we can:

Modify or change the architecture or the network model:

• Long Short-Term Memory (LSTM) units

• Reservoir Computing: Echo State Networks and Liquid State Machines

Modify or change the algorithm:

• Hessian Free Optimization

• Smart Initialization: pre-training techniques

• Clipping gradients (check for and limit the size of gradients during the
training of the network)

• Truncated Backpropagation through time (updating across fewer prior time
steps during training)

• Weight Regularization (apply a penalty to the networks loss function for
large weight values)

67

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

68

http://home.agh.edu.pl/~horzyk/index-eng.php

Normalization for Efficiency

We use normalization (np.linalg.norm) to achieve a better performance
because gradient descent converges faster after normalization:

69

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

70

http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

Cross-Validation strategy allows us to use all available examples for training and
validation alternately during the training process.

„K-fold” means that we divide all examples into K disjoint more or less equinumerous
subsets. Next, we train a selected model on K-1 subsets K-times and also test this model
on an aside subset K-times.

The validation subset changes in the course of the next training steps:

71

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

We use different K parameters according
to the number of training patterns:

K is usually small (3  K  10)
for numerous training patters.

It lets us validate the model better
if it is tested on a bigger number of
training patterns.

It also reduces the number of training
steps that must be performed.

K is usually big (10  K  N)
for less numerous training datasets,
where N is the total number of
all training patterns.

It allows us to use more patterns
for training and achieve
a better-fitted model.

72

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

N-folds Cross-Validation (one-leave-out strategy) is rarely used because
the N-element dataset has to be trained N times. The following disadvantage is that

we use only a single pattern in each step for validation of the whole model.
Such a result is not representative of the entire collection and the CI model.

This solution is sometimes used for tiny datasets. 73

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

The way of selection of the test patterns in each training step should be proportional
and representative from each class point of view regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:

• Randomly

• Grouped by categories (classes)

• Ordered by values of their attributes

• Grouped by classes and ordered by values of their attributes

• In an unknown way
74

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

The test patterns can also be selected randomly with or without repetition.

The choice between various options should be made on the basis of the initial order or
disorder of patterns of all classes in the dataset to achieve representative selection of
the test patterns used for the validated model.

Patterns used for validation should not be repeated in successive test groups, only that
we use a less reliable and simpler approach to random choosing of validation patterns.

75

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

76

http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

77

Deep Learning solutions are usually developed in an iterative
and empirical process that composes of three main steps:
• Idea – when we suppose that a selected model, training method, and some

hyperparameters let us to solve the problem.

• Code – when we try to code and apply the idea in a real code.

• Experiment – prove our suppositions and assumptions or not, and allow to
update or change the idea until the experiments return satisfactory results.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

