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Training Examples

How do we definea training dataset

for supervised training?
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Training Examples

for supervised training

Training examples are represented as a set of m pairs:
X,Y) = {(x(l), y(l)), (x(z),y(Z)), . (x(m), y(m))}

where

m - is the number of examples

Myrain — 1S the number of training examples

Mees; — is the number of test examples

For vectorization, we stack the training examples in the matrix X as well as outputs Y:

XD,
1 1
X = € RtxXm Y = [y(l) y(m)] € ]RIXm
D x™)
Ny My
When we use the Python command to read or set the shape, the notation is:
X.shape = (n,,m) Y.shape = (1,m) / I/
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Functions in Deep Learning

Logistic regression, loss functions and cost

functions to set.up:the goal of training.
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Logistic Regression

For the given x, we get the output prediction y = P(y = 1|x)
where y is the desired output that will be trained using parameters:

w E R
beER

computing the output in the following way:

y =o(wlx+b) =06(2) TTo (0,1)
where o is a sigmoid function:
1.0
o(z)
0.5
0.0
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Computing Sigmoid Function

i
We use numpy vectorization to compute sigmoid and its derivative for any input vector ZK
|
1.0 Z] 14e~21
(2) n . . . . 22 _ 1 !—23
7 For z € R", sigmoid(z) = sigmoid = I+ (1)
, ) |
I4¢—2n
o0 sigmoid_derivative(z) = ¢'(z) = o(2)(1 — 6(2)) (2)

-8 -6 -4 -2 0 2 4 6 8
z

import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()

def sigmoid(z):
a=1/(1+np.exp(-z)) # Compute the sigmoid of z, where z can be a scalar or numpy array of any size
return a

def sigmoid derivative(z):
a = sigmoid(z) # Compute the gradient (slope, derivative) of the sigmoid function with respect to its input z.
dla=a* (1 - a)
return dla

z = np.array([-2,-1,0,1, 2])
print ("sigmoid(z) = " + str(sigmoid(z)))
print ("sigmoid derivative(z) = " + str(sigmoid derivative(z)))

sigmoid(z) = [0.11920292 ©.26894142 0.5 9.73105858 @.88079708]

sigmoid derivative(z) = [0.18499359 8.19661193 0.25 8.19661193 0.16499359]
TN —

AN e
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Logistic Regression Cost Function \\\\

K

We need to define logistic regression cost function to compute w and b parameters: NON-CONVEX LOSS FUNCTION

For the given training data set {(x(, y(), (x2, y®), .., (x™), y(m))} we want to get V; 7O ~ y®

1
1+~

where 3@ = a(wTx® + b) and o(z") = € (0,1) (i) is the notation for i-th example lm .

On this basis, we can define a loss function, called also an error function, for a single example
that measures how good the output ¥ is when the desired (trained) label is y:

The absolute error function L, (¥, y) = |y — y| or the squared error function: L,(¥,y) = (§ — y)?
might seem like a good choice for this measure, but today we do not usually do this

in this way because the optimization problem for it becomes not convex, 2 4
so the gradient descent algorithm cannot find the global optimum of such loss functions easily!\

We need to define the loss function in such a way that the function will be convex, so we use:
L;(3,y) = —(ylogy + (1 —y)log(1 - )

Consider two bounding cases:

s}

3

Starting point

Global minumum

Ify=0thenL(y,y) = —log (1 —¥), so to minimize it, log (1 — ¥) must be large and y small (¥ — 0).

Ify=1then L(y,y) = — log y, so to minimize it, log ¥ and y must be large (y — 1). L

Finally, we define a cost function that measures the error on the entire training data set (for all examples):

m

m
1 . } 1 : . : )
J(w,b) = EZ[ L(y®,y®) = _EZ (y(') logy® + (1 —yD)log(1 - ?m))
1=

N
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Popular Loss Functions

The loss functions are used to evaluate the performance of the models.

The bigger our loss is, the more different our predictions (y) are from the true values (y). In deep

learning, we use optimization algorithms like Gradient Descent to train models and minimize the cost.
L1 loss is defined as an absolute distance between vectors y and y of the size n:

"
LGy =Dy — 3l (1)
=0
L2 loss is defined as a square distance between vectors y and y of the size n:
A
- a2
L3y = D (v — ) @
=0
L2 loss is defined between vectors y and y of the size n in the following way:
n
Ly(3.y) = — Y (log(3) + (1 — y;)(1 — log(3,))) 3)
=0

M def Li(yhat, y):
loss1l = np.sum(np.abs(y-yhat))
return lossil

def L2(yhat, y):
loss2 = np.sum(np.dot(y-yhat,y-yhat))
return loss2

def L3(yhat, y):
loss3 = - np.sum(y * np.log(yhat) + (1-y) * np.log(l-yhat))
return loss3

M yhat = np.array([.78, .89, .12, .88, .97])
y = np.array([1, 1, 0, @, 1])
print("Lossl "+ str(Li(yhat,y)))
print("Loos2 "+ str(L2(yhat,y)))
print(“Loos3 "+ str(L3(yhat,y)))

Lossl = @.5599999999999999
Loos2 = 2.8822
Loos3 = 0.6066693634888955

AN e
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Gradient Descent Algorithm

We need to derivate activation functions

to use gradient descent training algorithm.
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Gradient Descent

We have to minimize the cost function J for a given training data set
to achieve as correct prediction for input data as possible:

1 i 1 m To minimize the cost function
Jw,b) = — E LD, yD) = —— E (y(i) logy® + (1 —y®)log(1 - ?("))) we calculate partial derivatives
m m L dj(w,b) dj (w,b)
i=1 i=1 where i and b of J

with respect to parameters

w and b and repeatedly use
them to update them with

a step a - called a learning rate:

J(w, b)

dj(w,b)
wi=w-—a«
dw
dJ(w, b)
b:=b—« b

Partial derivatives 22 — J(wb)

dw ow

4wb) _ 9J(w,b)
db ~  ab
the slopes of the J function:

and represent

dj(w) dj(w) Jw)
,,,,,, v dw Tg

Here, w is 1D, but its dimension is bigger in real. \

A\ /A
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of the Gradient Descent

Basic Derivatives Rules

d
Constant Rule: —(c)=0
ax

Constant Multiple Rule %[Cf(‘()] =cf'(x)
- dj(w) J(w)
Power Rule i(r*} =nx"™" 0
ax -
Sum Rule: %[f(x)-g(_r}] =fl(x)+g'(x) dw
.‘ dw
Difference Rule: di;([f(_‘()-g(_r)] = f(x)-g'(x) O@ d] (w)
R ¥-a
Product Rule i[f(x)g(:c}] = f(x)g'(x)+ g(x) f(x) d
dx : w
Quotient Rule: i-@-|= g(x) f'(x) - f(x)g'(x)
dx| g(x) | [g(x)]"
GLOBAL MINIMUM
w

The main idea of the Gradient Descent algorithm is to go
in the reverse direction to the gradient (the descent slope):
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The Gradient Descent algorithm
uses partial derivatives calculated
after the following rules:

Basic Derivatives Rules

Constant Rule i(c) =0
dx

: d
Constant Multiple Rule E[cf(x)] =cf '(x)
Power Rule: %{x") =nx"?
Sum Rule: %[f(x)- g(I)] =fi(x)+g'(x)
Difference Rule: di[f(:r) -g(x)] = f(x)-g'(x)

X

Product Rule: %[f(x)g{x)] = f(x)g'(x)+ g(x) f(x)

Quotient Rule: i[f (:f)}= 80 £1(x) -~ F(0)g'®)
dx | g(x) [g(x))*

! \\\ Chain Rule: %f{gfx)) = f(g(x))g(x)

Derivative Rules

Derivative Rules

Exponential Functions

d X X
Ee )=€

:T a"):a‘lna
d

E( E(X))= ef g (x)
:_x(ag(x))= ln(a)as(x) g '(x)

Logarithmic Functions

;T(ln x) = _1?,)( >0

d _g'(x)
Eln(g(x))— 2 (%)

d 1
E(logax)— oot 0
d __g'
E(logng(x))— g(x)lna

Trigonometric Functions

d , .

—(sinx) = cos x

- ¢ )

d .
—(cosx)=—-sinx
a‘x( )

d s
—(tan x) = sec” x
a,x( )

d
—(csex)=—csexcotx
dx

d
—(secx)=secxtanx
dx

%(cotx) = —csc’ x

Inverse Trigonometric Functions

%(;m‘&): — = £l
%(cos'lx)= l:lx: x= £l
R
L
%(sec_lx)z xh,n £1,0
%(csc'l x)= X\/;l_-l,” £1,0

Hyperbolic Functions
d

sinh x)=cosh x
d
X

i cosh x)=sinh x

d

x

i tanh x) = sech? x

d

X

d

d—(csch x)= —csch xcoth x
x

d

d—(sech x)=—sech x tanh x
X

i coth x)=—csch x
d
X

Inverse Hyperbolic Functions

d ;. 1
—(sinh 7' x)=

d—’f( ) A+ X2
i(cosh'%{): 1 ,x>1
dx x-1

d

—(tauh'lx)= ﬁ,|x|<l

c:';’

E(csch"x]: |x|\/_11_7,x=0
%(SECh_JX)szII——J.T:()(x{l
%(coth"x): l—lr: Jx|=1
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a}" " Gradient Descent for Logistic Regression \ =
N
We use a computational graph for the presentation of forward and backward operations

for a single neuron implementing logistic regression for the weighted sum of inputs x:
Use a computational graph to present operations of computation of the logistic regression and its derivatives:
z=wlx+b
1
1+e?

L(a,y) = —(y loga+(1—-y)log(1— a))

y=a= o(z)

X1
W1§ \
zZ=wyx;+ - +wyx, +b [ Ma= o2 ™ L(a,y)
_dL_dl da _ ( ¥y 1Y\ 1 _a)=a— _dllay) _ _y 1~y
xnx? dLZ_dz_da dz_( a+1—a) a (1 a)_a y dla = da a+1—a
) AL _dida dz _ o
an/ de]-—dW]_—da = dwj—sz xj=(a—y):x;

dL dlL da dz
b QLb—E—E'E'E—dLZ—a—y J

Finally, we get the update-rules for the logistic regression using the gradient descent algorithm:

wi=w;—a-dlw;=w;—a-(a—y) x;

b.=b—a-dLb=b—a-(a—1y) 13
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Backpropagation Algorithm

How artificial neural networks are trained?
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" 3' /// Network Training Process \\\\@

Last layers of neural networks for classification or regression tasks are constructed from
dense layers which can be trained using the most popular backpropagation algorithm
which includes two main phases:

1. The input propagation phase propagates the inputs throughout all hidden layers to
the output layer neurons. In this phase, neurons calculate weighted sums of inputs
taken from the neurons in the previous layer or the input of the network (x,, ..., X;).

2. The error propagation phase propagates back the errors (delta values) computed on
the outputs of the neural network. In this phase, neurons calculate weighted sums of
errors (delta values) taken from the neurons of the next layer.

errors
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First, the inputs x,, X,, X3 stimulate neurons in the first hidden layer.
The neurons compute weighted sums S, S,, S;, S,, and output values y,, y,, 3, ¥4
that become inputs for the neurons of the next hidden layer:

3
Sn = zk_lxk "Wy, n Yn = f(Sy)
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Second, the outputs y,, y,, ¥3,¥, stimulate neurons in the second hidden layer.

The neurons compute weighted sums S, S, S,, and output values ys, y,, ¥,
‘ that become inputs for the neurons of the output layer: |
N : 4

Sp = Yk * Wkn Yn = f(sn)
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Finally, the outputs y, y,, y; stimulate neurons in the output layer.

The neurons compute weighted sums Sg and Sq, and output values yg, y,
. that are the outputs of the neural network as well: 7_
N\ Y

7
Sp = Zk—SYk *Wgkn Yn = f(Sn)

A\ e
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errors

Next, the outputs yg, y, are compared with the desired outputs dg, dyand
the errors 64, 84 are computed. These errors will be propagated back in order
to compute corrections of weights from the connected inputs neurons.

R\ On =dn — Yn /ﬁ/
" ////19
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errors

The errors 65and &, are used for corrections of the weights of the inputs

connections ys, y,, V7, and propagated back along the input connections
\ to the neurons of the previous layer in order to compute their errors &, &, 8 _
A\ M

9

Win=—1"8n (1 =¥n) " Yn' Vi & = Zn_86n°wk,n (1 =y,) ')’%///20
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errors

Next, the errors &g, §,, and 6, are used for corrections of the weights of the inputs
connections y,, ¥,, Vs, Y4 and propagated back along the input connections to the
neurons of the previous layer in order to compute their errors 6,, 6,, 6, 0,: ,_
\!'Q\ /7’/

7

Awk,nz -1 - 6n . (1 - yn) * V' Yk 6k — Zn_san . wk,n . (1 - )’n) . y;////21
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Finally, the errors §,, 6,, 85, 8, are used for corrections of the weights of
the inputs x,, X,, X5t

R\ AWgpn= 16, (1 —¥p) * Yn' Vi //

" ////22
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Back-Propagation Through Time

How to use backpropagation

iIn Recurrent Neural Networks?
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N\

\

Back-Propagation Through Time (BPTT)

The backpropagation algorithm can be adapted to RNNs:

Oof 5 . 00¢_1 ()of
OW OW OWO
W

&\ OE N 8Et_2 80t_2 . 8Et_1 80t_1 8Et aOt /ﬁ/
A\ OW, o2 OW, | dor_1 OW, | Do, OW, Jjjfau
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A\

Back-Propagation Through Time (BPTT) @ '
The backpropagation algorithm can be adapted to RNNs: k

. Joy
g ()hf

f

801 - Z ()O/ ()ll/ é)h,r ()11/ H ()11/

— where —
A OWy, oh; Oh,, OW},’ dh,
A\ ' '

t'=1 Jj=t'+1
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3 Back-Propagation Through Time (BPTT) A\ '
J The backpropagation algorithm can be adapted to RNNs:

> o 0

; . 0Ot _9o ; . Jdot_1 _- 801%
a aht_g : ahf 1 th
Ohy_1
Oh;_o Ohy 4

\ (9E o 8Et_2 (90,;_2 8Et_1 80,5_1 8Et (90,5 /
/4/ 26

= ...+ + +
\\\\ 3Wh (90t_2 8Wh 3015_1 3Wh 30,5 3Wh //
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Back-Propagation Through Time (BPTT) A\ |
The backpropagation algorithm can be adapted to RNNs: K

Jo;  ~— Do, dh; dhy |
OW — oh; Ohy OW /7/ 4
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';‘{ /4 Back-Propagation Through Time (BPTT) A\ '
7" The backpropagation algorithm can be adapted to RNNs:

> o 0

s 00t_2 s 0ot E Jo,
.' th 2 .' ahf 1 th
Oh:
ahf_g aht—l

\ OE (’9Et_2 aOt_Q 8Et_1 80t_1 (9Et aOt /
/7 28

— e e _|_ _|_
\\Q\ 8Wx 80t_2 8Wa; aot_l (9W 8015 8W //



http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Real-Time Recurrent Learning (RTRL) N '

=)

Real-Time Recurrent Learning (RTRL) computes
partial derivatives during the forward phase:

 JH ZH

Oof 1 - aOf
_" Ohf 1 _" Bhf
Oht 1 . Ohf N
Ohy_o \\ ohy_q \\
............. | e rmEEEmEEEEE
h; h; h; 1
oh; 4 Oh;
W, W,
W W W

\ 3E\t B 8Et_]_ 8015_]_ X 3Et 80,5 B 8E‘f 1 3Et 8075 /
/4/ 29

W\ IW, T 0, oW, T 90, 0W. — oW, | 9o, oW, 4
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Real-Time Recurrent Learning (RTRL) N '

Real-Time Recurrent Learning (RTRL) computes
partial derivatives during the forward phase:

. 0. 0

« JOot_2 « Jop_q _' JO¢
.' dh;_» .' dh;_1 Oh;
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Comparison of BPTT and RTRL A\ @

K

Both BPTT and RTRL compute the same gradients
but in different ways.

They differ in computational complexity:

Space Time
BPTT O(NT) O(N?T)
RTRL O(N?) O(N%)

T: time steps

N N: number of units A
W s
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Vectorization

What can we do to speed up computations and

use parallel operations and GPU?
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\ &
@

Gradient Descent for Training Dataset

For training dataset consisting of m training examples, we minimize the cost function J:

m repeat
1 N _
Jw,b) =—> 1(a®,y®) /=1
Tni:1 forj=1ton,

j}(l) = a(l) — O'(Z([)) o O'(WTx(i) _|_ b)

dLb =10
d](W, b) 1 m dL(a(i),y(i)) 1 m . ' @ Jfori=1tom
—_ T = —Z — —Z(a(l) — y(l)) C X 20 = wlx® 4 b
dw; m dw; m: J
i=1 i=1 a® = g(z0)
m j j m = (v® 1og a® + (1— v)loa(1— a®
dj(w,b) _ 12 dL(a®,y®) _ 12@@ ) J+=—(¥? log a® + (1~ y®)log(1 — a®))
db m db m djz® = a® -y
i=1 i=1
forj=1ton,
The final logistic regression gradient descent I djwy+=x" - djz®
algorithm will repeatedly go through v djb+=djz®
all training examples updating parameters J/=m
until the cost function is not small enough. forj=1ton,
To speed up computation we should use I /= m
vectorization instead of for-loops. Wi A /ﬁ
dJb/=m 4

b—=a-djb J '
untilJ < € %33
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-l N

Efficiency of Vectorization

\\ -
When dealing with big data collections and big data vectors, we definitely should\\&
use vectorization (that performs SIMD operations) to proceed computations faster:

import numpy as np
import time

a
b

np.random.rand(1020008)
np.random.rand(10000008)

tic = time.time()

dot vec = np.dot(a,b)

toc = time.time()

print ("dot_vec = " + str(dot vec))

print("Vectorized dot product computation time: " + str(1eee * (toc-tic)) + "ms")

dot for = @
tic = time.time()
for i in range(le00000):
dot for += a[i]*b[i]
toc = time.time()
print ("dot for = " + str(dot_for))

print("For-looped dot product computation time: " + str(i1eee * (toc-tic)) + "ms")

dot_vec = 2508265.14164263124
Vectorized dot product computation time:| ©.9922981262207031ms

dot_for = 250265.1416426372 Compare time efficacies of these two approaches!
For-looped dot product computation time:| 352.65374183654785ms

Conclusion:

K\ Whenever possible, avoid explicit for-loops and use vectorization: np.dot(w.T,x), np.dot(W,x), /
\ np.multiply(x1,x2), np.outer(x1,x2), np.log(v), np.exp(v), np.abs(v), np.zeros(v), np.sum(v), np.max(v), /

np.min(v) etc. Vectorization uses parallel CPU or GPU operations

N\ (called SIMD - single instruction multiple data) proceed on parallelly working cores. 14///34
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v A\

Vectorization of the Logistic Regression

repeat Let’s vectorize the previous algorithm:
J=1
forj=1ton,
I djw; =0 < dJw = np.zeros((n,, 1)) broadcasted

_ “
arb =0 Z=wl'X+b=np.dot(w.T,X) +@
A fori=1tom
20 — wWTx® 4 p / We use matrices
X =[xW,x@, . xm)]

ool _
A=o0(2Z) = [z,2P, ..., 2]

J+=— (y(i) log a® + (1 - y(i))log(l - a(i))) _ ’a(l) a(Z) a(m)]

djz® = q® — y < dlZ =A—-Y .
J = [y®,y®, .., y]

forj=1ton,

I ) djw+= x® - djz®
LD 120 1
d]w]-l; x;'-djz d]W — _x. d]ZT
v djb+=djz® m

J/= m<  djb = % -np.sum(djZ)

forj=1ton,

I djw;/=m < d]W/: m
wi—=a-djw; < w—=a-djw
djb/=m
b—=a-djb < b—= a-dJb

L Ve
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Broadcasting

How can we multiply data to use different

shapes of structures which do not fit.
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Broadcasting in Python \\\\ -

BROADCASTING SAMPLES: \\&

Broadcasting stands for a special 1 11
. . - . 2|+10 = |12
operation which multiplies the data in 3 13

rows and/or columns to fit the size of a
bigger structure and allow to perform
operations:

where 10 was broadcasted (1,1) =2 (4,1)

BROADCASTING PRINCIPLE:
(m,n) + (1,1n) > (m, n)

|
—
E

-
—

1 2 3 11 22 33
+[10 20 30]=
(mn) - (Lm>mn = mn *° d o2 3
where [10 20 30| was broadcasted (1,3) =2 (2,3)
(m,n) * (1,n) > (m, n) = (m,n)
[1 2 3+[10 20 307 _ (11 22 33
(m,n) / (1,n) > (m, n) = (mn) 4 5 6l l10 20 30/ l14 25 36
(m,n) + (m, 1) > (m, n) = (m,n)
[1 2 3]+[10 1 12 13
(m, n) - (m, 1) 2 (m, n) = (mn) 4 5 6" 20/ 7 l24 25 26
(m,n) * (m, 1) 2 (m, n) = (m,n) where [10] was broadcasted (2,1) 2 (2,3)
(m,n) / (m, 1) 2 (m, n) = (m,n) 12 3 [10 10 107 _ 11 12 13 /”/
4 5 6/ 120 20 20/ 124 25 26 |

s
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Broadcasting in numpy

Broadcasting is very useful for performing mathematical operations between arrays of
different shapes. The example below show the normalization of the data.

A softmax function is a normalizing function often used in the output layers of neural networks when you need to classify two or more classes:

1 el e e
o forx € R, softmax(x) = sofrmax([xl X2 xn]) = [ Y o T o T o
J J J
» for a matrix x € R™", x;; maps to the element in the i row and ;j** column of x, thus we have:
[ &1 12 13 e“ln__ ]
el alli el e 'l .
X1 X120 X130 ... Xip e L Z¢ e so ftmax(first row of x)
ex21 e*22 eX23 e*2n f ( d f‘ )
X721 X220 X223 ...  X7p o2 ] ] ] softmax(second row or X
softmax(x) = softmax =| e 2, 2;e ;e =
Xml  Xm2  Xp3  --- Xom il eml & exmn so ftmax(last row of x)
i Ej e*mj Ej esmj Zj e mj Zj e mj ]

In [27]: def softmax(x):
# This function calculates the softmax for each row of the input x, where x is a row vector or a matrix of shape (n, m).
X_exp = np.exp(x)
X_sum = np.sum(x_exp,axis=1,keepdims=True)
s = x_exp/x_sum # It automatically uses numpy broadcasting.
return s

In [29]: | x = np.array([
[93 9} 3} B]J
[3, @, 8, 1]])
print("softmax(x) = " + str(softmax(x)))

softmax(x) = [[1.23@74356e-04 $.97281837e-01 2.47201452e-03 1.23074356e-04]
[6.68456877e-03 3.32805082e-04 9.92077968e-01 9.04658008e-04]]

AN yr 4
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Shapes of Matrices

What shapes of matrices do we use and

how can we reshape them?
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A\

Lists vs. Vectors and Matrices

o

]

i

\
lr

import numpy as np

print("List of values:")

a = np.random.randn(6) # generates List of samples from the normal distribution, while rand from unifrom (in range [©,1))
print(a)

print(a.shape) # the shape suggest that a is a list
print(a.T) # the List cannot be transposed because it is not a vector or matrix!
print(np.dot(a,a.T)) # what should it mean?!

Be careful when creating vectors
print("Vector of values:") .
b = np.random.randn(6,1) # generates matrix of samples from the normal distribution because lists have no Shape and

print(b) 2l
print(b.shape) # the shape suggest that b is a matrix (vector) are declared SImllarly'
print(b.T) # the vector can be transposed

print(np.dot(b,b.T)) # now we get a matrix as a result of multiplication of the vectors

List of values:

[ 1.63130571 1.30039595 -1.42170758 1.28012586 1.63085575 ©.64436582]
(6,)

[ 1.63138571 1.30039595 -1.42170758 1.28012586 1.63085575 ©.64436582]
11.087060838339276

Vector of values:

[[-1.2426375 ]

[-©.54254535]

[ ©.76000053]

[-0.83861851]

[ ©.66463 ]

[-1.60972555]]
(6, 1)
[[-1.2426375 -8.54254535 ©.76000053 -0.83861851 ©.66463 -1.60972555]]
[[ 1.54414796 ©.6741872 -0.94440516 1.04209881 -0.82589416 2.00030533]
[ ©.6741872 ©.29435546 -0.41233475 ©.45498857 -0.36859191 ©.87334911]
[-0.944408516 -©.41233475 ©.57768081 -©.63735851 ©.58511915 -1.22339227]
[ 1.04209881 ©.45498857 -0.63735051 ©.783281 -8.55737102 1.34994564]
[-0.82589416 -©.36859191 ©.58511915 -©.55737102 ©.44173303 -1.086987188]
[ 2.00038533 ©.87334911 -1.22339227 1.34994564 -1.86987188 2.59121633]] 40
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Column and Row Vectors

import numpy as np

C=np.random.randn(5,1)

D=np.random.randn(1,5)

print(“"We define matrices and vectors using (m, n) where m is a number of rows, and n is a number of columns")
print(C)

print("... is a column vector")
print(D)
print("... is a row vector")

We define matrices and vectors using (m, n) where m is a number of rows, and n is a number of columns
[[ ©.23665149]
[ ©.45132428]
[-©.89728231]
[ ©.72912635]
[-9.92627707]]
... is a column vector
[[ ©.99318971 -0©.84393588 1.20413677 -1.002330832 -1.55317979]]
... is a row vector

import numpy as np

a = np.random.randn(5) # the Llist can be reshaped to create a vector
print(a)

print(a.shape)

a = a.reshape((5,1))

print(a)

print(a.shape)

assert(a.shape == (5, 1)) # we can check whether the shape 1is correct

[-2.87161977 -2.17089596 ©.09644837 ©.50844574 -0©.84263376]

(5,)
[[-0.07161977]
[-2.17009596]
[ ©.89644837]
[ ©.5044574 ]
[-0.84263376]]
(5, 1) 41
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Reshaping Image Matrices N

‘ |
When working with images in deep learning, &
X n,=128x128x3= 49152 is the dimension of vector x

Images are reprezented as
a combination of three colours In the binary classification tasks,
reprezented by three matrices input vectors are assigned
that store the intensities of 128x128 to one of the two classes O or 1
these colours (Red, Green, and Blue): that is the output value y of
| the classification process.
So, we have to create
the transformation
X2y
128x128 and denote the training example

as pairs (x, y)
where
xeR™

ye{0,1}

128x128

128

\&\ we typically reshape them into vector representation using np.reshape(). /%/ 42
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/// Shape and Reshape Vectors and Matrices

We use the numpy functions np.shape() and np.reshape() in deep learning:

Images are usually represented by 3D arrays of shape (length, height, depth = 3). Nevertheless, when you read an image as the input of an algorithm you
typically convert it to a vector of shape (length = height = 3, 1), so you "unroll" (reshape) the 3D arrays into 1D vectors for further processing:

Example 1: If you would like to reshape an array v of shape (a, b, ¢) into a vector of shape (a*b,c) you would do:
v = v.reshape((v.shape[@] * v.shape[l], v.shape[2])) # where v.shape[@] = a ; v.shape[l] = b ; v.shape[2] = ¢
Example 2: If you would like to reshape an array v of shape (a, b, ¢) into a vector of shape (abc) you would do:
v = v.reshape((v.shape[@] * v.shape[l] * v.shape[2], 1)) # where v.shape[6] = a ; v.shape[l] = b ; v.shape[2] = c
= Never hard-code the dimensions of the image as a constant but use the quantities you need with image.shape[@] , etc.
In [30]: def image2vector(image):

# This function reshapes a numpy array of shape (length, height, depth) to a vector of shape (length*height*depth, 1)
v = image.reshape((image.shape[@]*image.shape[1]*image.shape[2]),1)

return v
In [33]: | # Images usually are (num_px_x, num_px_y, 3) where 3 represents the RGB values: red, green, and blue image2vector(image) = [[@.139]
# This is an exemplary 3 by 3 by 3 array: {g'g:;}
image = np.array([[[ ©.139, ©.381], inage = [[[0.139 6.381] [0.647]
[ ©.982, 0.647], [0.982 6.647] [0.251]
[ 8.251 , ©.551]], [.251 @.551]] Eggi;}
[[ @.219, @©.647], [[0.219 @.647] [0.647]
[ @.7063, ©0.845], [0.703 ©.845] [0.703]
[ 0.397, ©.313]], [0.397 8.313]] {gggﬂ
[[ ©.855, ©.165], [[0.855 ©.165] [0.313]
[ ©.313, ©0.937], [0.313 0.937] [0.855]
[0.165]
[ ©.279, ©.077]11) [0.279 ©.077]1]] [o.315]
[0.937]
| print ("image = " + str(image)) [0.279]
rint image2vector(image) = + str(image2vector(image :
i e "imag (image) T imag image) [0.0771]

Vil
* X.shape is used to get the shape (dimension) of a vector or a matrix X. /
i \\\\ » X.reshape(...) is used to reshape a vector or a matrix X into some other dimension(s). //4/ 43
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Simple Network Construction

Construction of the network using stacked

vectors and matrices'—how do we do it?
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Y

N

Simple Neuron Definition

We defined the fundamental elements and operations on a single neuron as
a weighted sum of inputs plus bias and the result is used to calculate
the output using an activation function (here a sigmoid function).

W—— z=wlx+bh —— a:G(Z) —»L(a,y)

simple neuron
= L(ay)

//
s
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N

N

Simple Neural Network

£

z=w'x+b——{a=0(z) | —|L(ay) Having defined the
b @ fundamental elements
Xi w, Db simpIAe neuron and operations,
z @ 9=V ., 1(ay) we can create
a simple neural
network.

simple neural network

Ta
2] A

a =) U, L(a?, y®)

. Z[ZJ;\W[ZJam,L bl | alfl= o (zE0) || L(a™, y©) /}
BYaLbt Lzt~ dLatt B YdLb dLzi < dLa “ackpropagation 17 /
//// 46
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Stacking Neurons Vertically and Vectorizing \

e &

5 = - L(a, y®)

- Stacking values and creating

~ vectors, and stacking vectors
and creating matrices is very
important from the efficiency
of computation point of view

Z[IJ— W[UT am].[. b[ﬂ — 51]: O Z?])

z= W gl byl — alil= o(z4) because it allows to use
24/= WiIT alol+ b — alfi= o(z}) parallel operations of GPU!
.@.- @ ..Q..Q. .@.

Zf] WQUT aé‘)] bﬁ” aé” numbers of layers [l]

zH Wi ||a 0] bél] aﬁ.” numbers of training examples (i)

zEIMwiT | a?T || bEY alll number of neuron in a layer j

" 71 W glol pl gl
R\ T - o - T /
\ 7= W glol+ pltl — qlll= g(z!1) /

yz
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-<No of neurons of (I-1)-th Iaye;- i Z[I](I)_ W[]]T a[UJ(I) + b[]]_, a[]](l) —_ G(Z[l'](f)) Stacking vectors of training
Wé’f T—o Aé‘ . 5 ) ] ; ; examples horizontally
wh=— Wg]T_ : 325 ](I):}Wé lnga[ m}"‘ibé ];_' ;aé ](;): G(Zg ](1)) creating matrices is very
= g S e R __ important from the
S L) = LT A4L01() & (1] AlLI(0) = 1
|2 2= wsalte byl agt= (23 efficiency of computation
[ W = 1ve 2 T O O O point of view!
Xgr‘) aéﬂ)](i) : Z[u(g WéI]T agom) bj[lzj aél](i) numbers of layers [I]

Xy |=|afiw ZHONWITalllOF 1B al’@f  numbers of training examples (i)

Zél](f) Wg]T aé””") b§” aéjl]m_ number of neuron in a layer |

input
examp!“e‘g._‘_

x0 | [awo]

% T @’ LA a4 Y _ training examples
x = qll® Z[IJ(IJ W[U qlll  pli qlt m N 0
R v oL L L O S
: : - : _ 1] ': : —
x@ :tralmng examplei = Z[IJ(IJE_ W qlolt) ¢ plt] — a[l][l)i_ 0(2[1](1)) ). gl glim) qg,
: 4 % . ! e %
T T - T 2
O @ ) . ]| T 00 = YW Al06) 4 BT s ol10) = (7110 4" i
§X1 X X X g z T w }a I + b _’fa . G(Z ) _ training examples
. S o= C e e U >
o ELRE o - 1 g
X T A _(_"_U' wt Q[,‘U,(,’,”l* bt — a,f?f,f% c (Z[” ")\ uc.. g g | 2
K\ g 7 O AR 1 g .7 < T §
\ X = A% atter Vectorizing Z[l] = Wﬂ] A[UJ + b[lj—b A[lj = G(Z[1]) |2

:\\\\\ hi
N
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Vectorized Operations

How does vectorization speed up computations?
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Vectorization of Dot Product

N

In deep learning, you deal with very large datasets. Non-computationally-optimal

functions become a huge bottleneck in your algorithms and can result in models that
take ages to run. To make sure that your code is computationally efficient, you should

use vectorization. Compare the following codes:

import time

x1 =[5 1, @, 3, 8, 2, 5, 6, @, 1, 2, 5, 9, @, 7] # x1 = np.random
x2 =[2, 5, 2, @, 3, 2, 2, 9, 1, @, 2, 5, 4, @, 9] # x2 = np.random
#HHE CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION #i##

tic = time.process time()

dot = @

for i in range(len(x1)):

dot+= x1[1] * x2[1i]
toc = time.process_time()
print ("for-looped dot =

" + str(dot) + "\n Computation time

VECTORIZED DOT PRODUCT OF VECTORS ###
time.process time()

i
tic

dot = np.dot(x1,x2)
toc = time.process time()
print ("vectorized dot = " + str{dot) + "\n ----- Computation time =

for-looped dot = 235

.rand (1866000 )
.rand (1866000 )

" + str(1eee*(toc - tic)) + "ms")

" + str(leee*(toc - tic)) + "ms")

""" _Computation time = ©.oms Use more data to see the difference!
vectorized dot = 235
————— Computation time = @.0ms

e
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A\

Vectorization of Outer Product

In deep learning, you deal with very large datasets.
Non-computationally-optimal functions become a huge bottleneck in your algorithms
and can result in models that take ages to run. To make sure that your code is
computationally efficient, you should use vectorization. Compare the following codes:

import time

X1
X2

5, 6,
2, 9,

np.random. rand (1066000 )
np.random. rand (1066068 )

imnn
—
L
-
=

e, 1, 2, 5,
1, o, 2, 5,

» 8, 3, 8, 2, 9, @, 7] # x1
[2, 5, 2, &, 3, 2, 4, @, 9] # x2

#H#HE CLASSIC OUTER PRODUCT IMPLEMENTATION ###
tic = time.process _time()
outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zeros
for i in range(len(x1)):
for j in range(len(x2)):
outer[i,j] = x1[1i] * x2[]]
toc = time.process_time()

print ("for-looped outer = " + str(outer) + "\n ----- Computation time = " + str(i1eee*(toc - tic)) + "ms")

### VECTORIZED OUTER PRODUCT #Hf

tic = time.process_time()

outer = np.outer(xl,x2)

toc = time.process _time()

print ("vectorized outer = " + str(outer) + "\n ----- Computation time = " + str(leee*(toc - tic)) + "ms")

outer = [[81. 18. 18. 81. ©. 81. 18. 45. ©. ©. 81. 18. 45. ©. ©.] outer = [[81 18 18 81 © 81 18 45 © © 81 18 45 © @]
[18. 4. 4. 18. ©. 18. 4. 18. ©. ©. 18. 4. 18. ©. 0.] [18 4 418 ©18 410 © ©18 410 0 0]
[45. 1@. 10. 45. @. 45. 10. 25. ©. . 45, 18. 25. @. 0.] [45 10 186 45 © 45 10 25 © © 45 10 25 © 0]
[e. ©. ©. ©. ©. ©. ©. ©. ©. ©. 6. ©. ©. 0. 0.] [0 6 06 @ 06 2 B 0 06 06 @ 0 0 @& 0]
[ @e. . ©. ©. ©. B. ©. ©. ©. B©. B. ©B. B. 8. 0.] [6 6 6 6 06 06 @ @ 6 8B @ © @0 0@ 0]
[62. 14. 14. 63. ©. 63. 14, 35. ©. ©@. 63. 14. 35. @. 0.] [63 14 14 63 © 63 14 35 ® © 63 14 35 @ @]
[45. 1@. 18. 45. ©. 45. 18. 25. ©. ©. 45. 18. 25. @. a.] [45 10 10 45 © 45 1@ 25 © © 45 19 25 @ @]
[ 8. ©. © 8. ©. 0. @ @. 8. ©. B. ©. 8. 8. a.] [ @ @ @ @ @ @ © © @ 8 © © 0 @]
[e. e. ©. ©. ©. ©. 9 e. ©. ©. B, . 8. e. a.] [ @ @ @ 06 @6 2 @ @ 8 8 © 0 0 Q]
[@. . ©. ©. ©. ©. ©, ©. ©. ©., O, ©. 9, ©. 0.] [ @ 8 8 @ @ @ © @ © B © @ @ 0]
[81. 18. 18. 81. ©. 81. 18. 45. ©. ©. 81. 18. 45. 8. @.] [81 18 18 81 © 81 18 45 ©® © 81 18 45 @ @]
[18. 4. 4. 18. ©. 18. 4., 18. @©. ©. 18, 4. 18. @. a.] [18 4 418 ©18 410 © © 18 410 @ @]
[45. 1@. 18. 45. ©. 45. 18, 25. ©. ©. 45, 1@. 25. @. a.] [45 18 18 45 © 45 10 25 © © 45 18 25 0 @]
[@. ©. B. ©. B. ©. B9 ®. 8. ©. B, ©. 0. B. 0.] [ @ 8 8 @ @ @ © @ © B © @ @ 0]
[e. e. ©. ©. ©. ©. ©. ©. 8. ©. 8. ©. 0. 0. 0.]] [ 6 @ 2 06 06 @ @8 @6 06 06 0 0 0 0]] 51
————— Computation time = @.oms ----- Computation time = @.oms
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- Vectorization of Element-Wise Multiplication \\\

In deep learning, you deal with very large datasets.

K

Non-computationally-optimal functions become a huge bottleneck in your algorithms
and can result in models that take ages to run. To make sure that your code is
computationally efficient, you should use vectorization. Compare the following codes:

import time

5.

x1 =[5 1,0, 3,8,2,5,6,0,1, 2,5, 9, @,
2=1[2,5,2,0,3,2,2,9,1,0, 2,5, 4, @,
##HE CLASSIC ELEMENTWISE IMPLEMENTATION #H##

tic = time.process time()

mul = np.zeros(len(x1))

for i in range(len(x1)):

mul[i] = x1[1] * x2[i]

toc = time.process _time()

print ("for-looped elementwise multiplication =
## VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process time()

mul = np.multiply(x1,x2)

toc = time.process time()

print ("vectorized elementwise multiplication =
for-looped elementwise multiplication = [1@.

---- Computation time = @.0ms
vectorized elementwise multiplication
---- Computation time = ©.0ms

7]
9]

# x1 = np.random.rand(1000000)
# x2 = np.random.rand(1000000)

" + str(mul) + "\n ---- Computation time

" + str(mul) + "\n ---- Computation time

@. 9. 24. 4., 1@. 54, ©. 0. 4. 25,

[16 5 & 824 41854 © © 4 2536 @ 63]

Use more data to see the difference!

36.

" + str(1eee*(toc - tic)) + "ms")

" + str(1eee*(toc - tic)) + "ms")

8. 63.]

4
e
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"Vectorization of General Dot Product !

\\ N\
In deep learning, you deal with very large datasets. K
Non-computationally-optimal functions become a huge bottleneck in your algorithms

and can result in models that take ages to run. To make sure that your code is
computationally efficient, you should use vectorization. Compare the following codes:

import time
x1 =[5 1, 8, 3, 8 2, 5, 6, 9, 1, 2, 5, 9, 8, 7] # x1 = np.random.rand(1000000)

## CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
tic = time.process time()
gdot = np.zeros(W.shape[@])
for i in range(W.shape[@]):

for j in range(len(x1)):

gdot[i] += W[1,3] * x1[]]

toc = time.process _time()
print ("for-looped gdot = " + str(gdot) + "\n ----- Computation time

" + str(1eee*(toc - tic)) + "ms")

### VECTORIZED GENERAL DOT PRODUCT ###

tic = time.process time()

gdot = np.dot(w,x1)

toc = time.process time()

print ("vectorized gdot = " + str(gdot) + "\n ----- Computation time = " + str(1eee*(toc - tic)) + "ms")

gdot = [18.62176729 22.85934666 20.590997631]

————— Computation time = @.0ms . [
gdot = [18.62176729 22.85934666 20.59097@31] Use more data to see the dlfference‘

————— Computation time = ©.0ms

AN\ e
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Stacking and Training in Parallel

How to design the training process in parallel?
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A\

Activation Functions of Neurons

import numpy as np

def sigmoid(x):
s =1/ (1 + np.exp(-x)) # use np.exp to implement sigmoid activation function that works on a vector or a matrix
return s

def tanh(x):
t = np.tanh(x} # np.tanh to implement tanh activation function that works on ag vector or g matrix
return t

def relu(x):
r = np.maximum{@, x) # use np.maximum to implement relu activation function that works on g vector or a matrix
return r

def leakyrelu(x, slope):
1 = np.maximum{x * slope, x) # use np.maximum to implement Lleaky relu activation function that works on g vector or g n
return 1

def softplus(x):
p = np.log(l + np.exp(x)) # use np.log and np.exp to implement softplus activation function that works on a wvector or c

return
. : 41 COMPARISON OF ACTIVATION FUNCTIONS »
We can use different activation 7
functions of neurons in different 2 1
layers of the network: 1
. |
N o
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Derivatives are necessary for
the use of gradient descent:

* Sigmoid function:
9(z) = 0(z) = —

1+e 2

* Tangent hyperbolic function:
g(z) = tanh(z) = e

eZ+e 2

» Rectified linear unit (RelLu):
g(z) = ReLu(z) = max(0,z)

* Smooth RelLu (SoftPlus):
g(z) = SoftPlus(z) = In(1 + e%)

* Leaky Relu:
] 0
_ g(2) = LeakyRelu(z) = {f) 01z z;; z 0
\!Q\

A\

- Derivatives of Activation Functions A\

-4 =3 =2 -1 o 1 2 3

\

9@ ="2=gz) (1-g@)=a-(1-a)

9@ =22=1-(g9(2)" =1-a?

’ _dg(z) _ 1 ifz>0
9@ == _{0 ifz<o0

,(Z) — dg(z) e’ _ 1

dz  1+e? 1+e 2

dz 0.01

, d 1 ifz>0
g(z)zg(z)_{ f

ifz<0

17/// 56
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def

def

def

def

def

Python implementation of derivatives using numpy:

sigmoid derivative(x):
s = sigmoid(x)

dLs = s * (1 - s)
return dlLs

tanh_derivative(x):
t = tanh(x)

dLt =1 -t *t
return dLt

relu derivative(x):

r = relu(x)

dlLr = np.heavisidei{x, @)
return dLr

leakyrelu derivative(x, slope):

1 = leakyrelu(x, slope)
dLl = np.ones_like(x)
dL1[x < 8] = slope
return dLl

softplus derivative(x):

p = softplus(x)

dip = 1 / (1 + np.exp(-x))
return dLp
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Neural Network Gradients

How do we propagate gradients through the network layers back?

.. simple neural network

T
121 _ A
a; =) - L(a", yfi))

,,,,,,,,,,,,,,,,,,,,,,,,,,,, - numbers of training examples (i)

A
A

E S A )
X0 =gl Z[11=\W[1]afof+ bl | alll= gli(z[1]) Z[ZJ:\W[ZJG[IJ.;. bl2] L(a?l, y@)

all= gl?l(z17])

A4

VYL dLz dLal"s_b"dLb?I dLzP dLa ~packpropagation
COLLAPSING COMPUTATION COLLAPSING COMPUTATION
dLa[” WHEIT . dLz? -l dLa[ZJ’— yWlog a- (1-y™”)-log (1-a®)=-y O/a?+ (1-y V) /(1- a[‘Z])
dLz" I —dLaly * [1]'(2[1]) dL Z[ZJ —dLal? * g?'(z¥)  * element-wise product
dLWm dLZ[l] a[a]T dLW[Z] :dLZ[ZJ.a[IJT
dLb!" =dLz™ dLb? =dLz"
TRAINING EXAMPLES COLLAPSING AND VECTORIZATION
dLZ[l] W[2]T sz[ZJ * [I]J(Z[IJJ dLZ[Z] —dLA[Z]* [2]’(2[2]) * alement-wise prOdUCt /
d LW[I] =L gz Al d LW[2] - % dL72- AT /

\Q\ dLb! =L dLz!" dLb? =1dLz® //;//58
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Parameters must be initialized by small random
numbers, but remember that:

W cannot be initialized to 0:

« W = np.random. randn ((n[l],n[l‘l])) +0.01

* b can be initialized to 0:

« bl = np.zero ((n[’], 1))

W y A
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Going to Deeper NN Architectures A\

\

chitecture with 1 hidden layer

,,,,,,,,,,,,,,,,,,,,,, | d"mwgzmm:”m) Deep neural
Ll ey network
0 V4l i .
g a’=y" architecture
5 L{a®, y©) means the use
. Agi °
g[zJr allflﬁ:%f(mji > ‘Noofneuronsof(l-‘l)-th \ayeL Of many hldden
| —_wur—7:  layers between
S T Toer plii=|— whT— input and
X g " — Wil T— £ output layers.

1 L Ad
g a=Jf

‘ L(a™, y?)
3 Afi
g alih= =
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Dimensions of Stacked Matrices

~ ZI0 = wlll . 401 + b e AW = gll(Z

uring addition

(n[l]’ m) (n["-], n[l_l]) (n[l_l]’ m) (n[l], 1 (n[l]’ m)

., o
| ] Vi ] ]
2000 Z0) . Zlim| = w2 gt . g ... giiom = g |z .z . i

o | @lFUA Gl gl+110m) +[bff]‘
a®lcw)... glota.. glorm| = [X(u x X(m}]

— wlT—

axis 1

A .
g{ [amm alli... qloim
IR

\*\ (n[l]’m) (n[l], m) (n[l],n[’—ﬂ) (n[l], 1) /ﬁ/

" ////61



http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

input layer

N

N

Building Blocks of Deep Neural Networks

To design and implement the computation process using parallelism,
we define blocks representing stacked neurons in layers:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b B dimW= ) g

Ny

. }L(a[”,y”)
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Stacking Building Blocks Subsequently

N\
&

layer 1 layer 2 layer 3 forward . layerlL
o Wyt | At W g | A W R | 4 AL gt -
=A— 711 (I 1 > Vo [ ALY
cache|Z Ayttt cache"Z[ZJ wp? cache|Z By Bl cache)| 7MW L AMy)
Wiy dL Al W g dL A2 W B dL AP dL AU i Y
dLz | dLz? | dLz® | o dLz™ Hi
: backward
dul/vf” dul/vfzf dLIJ;I/B] dul/vf”
dLb"™ AL dLb" G
W= o diw™ W¥-= o diw? W -= o dLw®’ W= o dLW™
b"-= a dLb™ b"-= a dLb® b"-= o dLb" b"-= o dLb"
1 1.0 (m)  {.y(m
S . dLA" = ( y(z) f,/(u ) e i;(m) + I_i:[m] )
dLA W dLZ ] dLZ[U :W[I+1]T_dLZ[1+1]*g[1];(Z[1])
—_ 1% _[l]’ |
; dLZﬂ] dLA” "zt - * element-wise product
diw" =L.drLz" A[’”T dLbv =L -np. Sum(dLZ“] axis=1, keepdims=True) /

dLA” W gLz

e
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Vanishing and Exploding
Gradients

What are vanishing and exploding gradients

and how can we deal with them?
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In both BPTT and RTRL, we come across exploding and vanishing
gradient problems:

Exploding gradients are a problem where large error gradients
accumulate and result in very large updates to neural network
model weights during training. This effects in instability of the
model and difficulty to learn from training data, especially over
long input sequences of data.

\
Vanishing/Exploding Gradient Problems \\\ @

In order to robustly store past information, the dynamics of
the network must exhibit attractors but, in their presence,
gradients vanish going backward in time, so no learning with
gradient descent is possible!

//l////ss
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2y 7 Vanishing/Exploding Gradient Problems \\\\ \@

In both BPTT and RTRL, we come across exploding and vanishing gradient
problems:

Exploding gradients are a problem where large error gradients accumulate and
result in very large updates to neural network model weights during training.
This effects in instability of the model and difficulty to learn from training data,
especially over long input sequences of data.

In order to robustly store past information, the dynamics of
the network must exhibit attractors but, in their presence,
gradients vanish going backward in time, so no learning with
gradient descent is possible!

1

0.8
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Vanishing/Exploding Gradient Problems \\\\ @

N

To reduce the vanishing/exploding gradient problems, we can:

Modify or change the architecture or the network model:

Long Short-Term Memory (LSTM) units
Reservoir Computing: Echo State Networks and Liquid State Machines

Modify or change the algorithm:

Hessian Free Optimization
Smart Initialization: pre-training techniques

Clipping gradients (check for and limit the size of gradients during the
training of the network)

Truncated Backpropagation through time (updating across fewer prior time
steps during training)

Weight Regularization (apply a penalty to the networks loss function for
large weight values)

#

AN\ s
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Normalization

Normalization - usually. speeds up training.
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Normalization for Efficiency \\\\

N\
We use normalization (np.linalg.norm) to achieve a better performance \&

because gradient descent converges faster after normalization:

Normalization is changing x to ﬁ (dividing each row vector of x by its norm), e.g.

s/l

If
3 2 4
x = 3
[l 8 2] ©)
then
1/ 29
l|x|| = np. linalg. norm(x, axis = 1, keepdims = True) = 4)
1/ 69
and

=]
| =]
| k=]

X
x_normalized = — =
[l

\/

[=2)
Y=}
=Y
Y=
=
=]

| 5
In [25]: def normalizeRows(x):
# This function normalizes each row of the matrix x, where x is a numpy matrix of shape (n, m)
x_norm = np.linalg.norm(x,ord=2,axis=1,keepdims=True)
print("x_norm = " + str(x_norm))
X = x/x_norm
return x

In [26]: x = np.array([
[3J 2’ 4]J
(1, 8, 2]1)
print(“"normalizeRows(x) = " + str(normalizeRows(x)))

X_norm = [[5.38516481]
[8.30662386]]

normalizeRows(x) = [[©.55708601 ©.37139068 0.74278135]
[0.12038585 0.96308682 0.24077171]]

ys /’,V

\\\& /7///59
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K-fold Cross Validation

How to validate model with the same data as

are used fortraining it?
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K-fold Cross-Validation \\\\ \@

A

»K-fold” means that we divide all examples into K disjoint more or less equinumerous
subsets. Next, we train a selected model on K-1 subsets K-times and also test this model
on an aside subset K-times.

Cross-Validation strategy allows us to use all available examples for training and
validation alternately during the training process.

The validation subset changes|in the course of the next training steps:

5-FOLD SUBSETS OF TRAINING PATTERNS \

STEPS 2 3 s [\ s
 TRAIN

) TRAIN
3 TRAIN
4 TRAIN
5 TRAIN
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K-fold Cross-Validation \\\\ |

We use different K parameters according 2100 I LVEL GO B
to the number of training patterns: STEFS 2 3 4 5

1 TRAIN TRAIN
Kis usually small (3<K<10) 2 — "
for numerous training patters. : — —
It lets us validate the model better 4 TRAIN TRAIN TRAIN
if it is tested on a bigger number of 5 TRAIN TRAIN TRAIN TRAIN
rRIRIng pacterns, 10010 SUBSETS OF TRAINING PATTERNS
It also reduces the number of training STEPS 3 | 4|5 67 /8 ]9 M
steps that must be performed. TRAIN

K is usually big (10 <K< N)

for less numerous training datasets,
where N is the total number of

all training patterns.

It allows us to use more patterns
for training and achieve
_ a better-fitted model.
\Et\

WD 0O [ =] | | | | 3

TRAIN

—
[ ]

AN i
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K-fold Cross-Validation

One-element subsets of the training patter set consisting of 20 patterns
2 3 4 3 -] 7 8 5 10 11 12 13 14 15 16 17 18 13 20
TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM | TRAIN

2 TRAIN | TRAIM | TRAIM | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN
3 TRAIN | TRAIMN TRAIN | TRAIMN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN
4 TRAIM | TRAIM | TRAIN TRAIN | TRAIMN | TRAIN | TRAIN | TRAIMN | TRAIM | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIM | TRAIM
5 TRAIM | TRAIM | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIM | TRAIMN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM
6 TRAIN | TRAIMN | TRAIN | TRAIN | TRAIM TRAIN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN
7 TRAIM | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN TRAIM | TRAIM | TRAIM | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIM | TRAIM | TRAIM
8 TRAIN | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIN TRAIN | TRAIM | TRAIN | TRAIM | TRAIMN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM
9 TRAIN | TRAIMN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIMN | TRAIN TRAIM | TRAIMN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN
10 TRAIM | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN TRAIN | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM
11 TRAIN | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIM | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIM | TRAIN | TRAIN
12 TRAIN | TRAIMN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIM | TRAIN | TRAIN | TRAIMN | TRAIM | TRAIN | TRAIN
13 TRAIM | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM TRAIN | TRAIMN | TRAIN | TRAIM | TRAIMN | TRAIN | TRAIN
14 TRAIN | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIM | TRAIM TRAIN | TRAIN | TRAIMN | TRAIM | TRAIM | TRAIM
15 TRAIN | TRAIM | TRAIN | TRAIM | TRAIM [ TRAIN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIM | TRAIMN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIM
16 TRAIM | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIM TRAIM | TRAIM | TRAIM
17 TRAIN | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIM | TRAIMN | TRAIN | TRAIMN | TRAIN TRAIN | TRAIM
18 TRAIN | TRAIMN | TRAIN | TRAIM | TRAIM | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIN | TRAIMN | TRAIN | TRAIN

19 TRAIM | TRAIMN | TRAIN | TRAIM | TRAIM | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIM | TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN

20 TRAIM | TRAIM | TRAIN | TRAIM | TRAIM | TRAIN | TRAIMN | TRAIN | TRAIN | TRAIN | TRAIMN | TRAIM | TRAIN | TRAIN | TRAIM | TRAIN | TRAIMN | TRAIN

N-folds Cross-Validation (one-leave-out strategy) is rarely used because
%\ the N-element dataset has to be trained N times. The following disadvantage is that /%
\ we use only a single pattern in each step for validation of the whole model. /
Such a result is not representative of the entire collection and the CI model. // /4
This solution is sometimes used for tiny datasets. /// 73
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K-fold Cross-Validation \\\\

SUBSETS OF TRAINING PATTERNS THAT ARE RANDOMLY ORDERED IN THE DATA SET
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 35 | 16

27 33 | 34 | 35|36 |37 |38 )39 4

TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN

14

TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN

TRAIN | TRAIN | TRAIN | TRAIN | TRAIN [ TRAIN | TRAIN | TRAIN

TRAIN

TRAIN | TRAIN | TRAIN | TRAIN [ TRAIN

TRAIN | TRAIN | TRAIM | TRAIN | TRAIN | TRAIN | TRAIM | TRAIM [ TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN ( TRAIN [ TRAIN [ TRAIN ( TRAIN | TRAIN | TRAIN | TRAIN

5-FOLD| SUBSETS OF TRAINING PATTERNS

TRAIN | TRAIN

5-FOLD| SUBSETS OF TRAINING PATTERNS
STEPS
1

w | e | e

The way of selection of the test patterns in each training step should be proportional
and representative from each class point of view regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:

* Randomly

Grouped by categories (classes)
Ordered by values of their attributes
Grouped by classes and ordered by values of their attributes

In an unknown way /// 4

7
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K-fold Cross-Validation \\\\ @

SUBSETS OF TRAINING PATTERNS
STEPS| 1 | 2 | 3 | 4 |5 |6 |7 |8 |9 10|11 |12 13|14 15|16 1718|1920 |2 B|H |5
1 |TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN
1 | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN
3 TRAIN | TRAIN | TRAIN TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN | TRAIN
4 | TR | TRAN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN TRAIN | TRAIN | TRAIN
5 | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN mm-ﬂ
5-FOLD, SUBSETS OF TRAINING PATTERNS THAT ARE RANDOMLY ORDERED IN THE DATA SET
STEPS| 1 | 2 | 3 | 4 |5 |6 |7 |8 |9 10|11 |12 13|14 15|16 1718|1920 |2 B|H |5 40
1 | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN - TRAIN
2 | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN
3 TRAIN | TRAIN | TRAIN TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN TRAIN
4 | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN
5 | TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN TRAIN TRAIN | TRAIN | TRAIN | TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN TRAIN | TRAIN | TRAIN

The test patterns can also be selected randomly with or without repetition.

The choice between various options should be made on the basis of the initial order or
disorder of patterns of all classes in the dataset to achieve representative selection of
the test patterns used for the validated model.

Patterns used for validation should not be repeated in successive test groups, only that
we use a less reliable and simpler approach to random choosing of validation patterns.

N\ #

Al /A
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Optimization Process

How do we improve deep learning models?
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N

K-fold Cross-Validation A\ @

EXPERIMENT IDEA

CODE
Deep Learning solutions are usually developed in an iterative
and empirical process that composes of three main steps:

* ldea — when we suppose that a selected model, training method, and some
hyperparameters let us to solve the problem.

* Code —when we try to code and apply the idea in a real code.

. * Experiment — prove our suppositions and assumptions or not, and allow to /
\ update or change the idea until the experiments return satisfactory results. /

_. \{\ 14/// 77
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