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Convolutional Neural Networks

Convolutional Neural Networks (CNNs) 
are very popular today thanks to special 
convolution operations based on 
adaptive filtering, which work well, 
especially with images:

.
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Benefits of using CNNs

Convolutional Neural Networks:

• Share parameters - so the same features may be recognized in any part of the image!

• Use sparse connections, so the convolutional layers are not connected in all-to-all 
manner (densely/fully-connected), which saves a lot of parameters and allows to train 
the network faster.

• Outputs depend directly only on some selected areas of the input images, 
so the neurons can specialize in recognizing, but their position 
in the convolutional layer defines the location where the features have been found.

Timeline of the development of Convolutional Neural Networks:
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Computer Vision

Computer vision (CV) is an interdisciplinary scientific field that deals with 
how computers can perform various tasks on objects in digital images/videos and 
automate tasks which the human visual system can do. CV plays a very important 
role today and can be supported by convolutional neural networks (CNN) due to 
their unique ability to recognize objects whenever they are located in the image:

Convolutional filters allow us to detect and filter out basic and secondary features 
gradually in the subsequent layers of the network using adaptive filtering (dot products) 

where weights of the adaptive filters are adjusted during the CNN training process:

The network adjusts the filters to recognize particular shapes and colors, which are 
frequent and form patterns that may be adapted many times to various images.
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Filters and Convolutions

Filters are commonly used in computer graphics, 
and allow us to find edges and convolve images:

The example result of applying the vertical-line filter:
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Adaptive Filtering

In convolutional layers, we use adaptive filters, which are composed of non-
constant values that we call weights wi which are adapted during the training 

process to represent frequent patterns of the filter size in the input images:

The output value is computed as a dot product of the input area and the filter
(an array of the adaptable weights) where the filter is adapted in the input image.

Convolutional weights are parameters of the model, so they are adjusted during 
the training process to filter out the most frequent features found in the data 

(training examples).
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Stride 1

To adapt the filter to the whole image, we must move the filter over 
the image with a given stride s that defines the number of fields (pixels) 

we move in vertical and horizontal directions (it is a hyperparameter of the model):

For stride 1, we jump over one pixel as presented in the figure above.
10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Stride 2

For stride 2, we jump over two pixels as presented in the figure below:

The chosen stride value is one of the hyperparameters of the model!
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Padding

When moving the filter (f x f) over the image (n x n) with a given stride, 
we cannot move over the edges/border of the image, so we are forced to treat 

the pixels on the borders in a different way (“Valid”) or add a 0-value border 
outside the image to adapt filters on the boarders (“Same”):

• Valid Convolution (no padding): Output size is n x n * f x f = (n – f + 1) x (n – f + 1)

• Same Convolution (padding balances the filter size p = (f – 1)/2, then the output size 
is the same as the one of the input image.

• The chosen way of convolution (“same” or “valid”) is one of the hyperparameters
of the model!
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Output Volume Size Calculation

The output array size can be computed for given hyperparameters:

• Input matrix (image) dimension n x n

• Filter size f x f

• Stride s

• Padding p

in the following way: 
𝑛+2𝑝−𝑓

𝑠
+ 1 ×

𝑛+2𝑝−𝑓

𝑠
+ 1

Example for n = 7, f = 3, s = 2, p = 1:   
7+2∙1−3

2
+ 1 ×

7+2∙1−3

2
+ 1 = 𝟒 × 𝟒

13

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Multiple Adaptive Filters on RGB Images

If the input image has 3 color channels, then the filters must also have 
the depth equal to 3, so we always convolve over the whole volume.
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Convolutions and Convolutional Layer

What happens in the convolutional layer?

Input 𝒂 𝟎 is convolved by the convolutional filters 𝑾 𝟏 and adding bias 𝒃 𝟏 and 

using activation function 𝒈 𝟏 output 𝒂 𝟏 is computed (here, two filters are used):

Number of parameters = (number of weights + bias) * number of filters = (3x3x3 + 1) * 2 = 28 * 2 = 56
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Convolutional Layer Notation

For convolutional layer 𝒍, we will use the following notations:

𝒇[𝒍] - filter size

𝒑[𝒍] - padding

𝒔 𝒍 - stride

𝒏𝑯
[𝒍]

- height (vertical dimension)

𝒏𝑾
[𝒍]

- width (horizontal dimension)

𝒏𝒄
[𝒍]

- number of channels or filters (depth of the layer)

For a given input:

𝒏𝑯
[𝒍−𝟏]

× 𝒏𝑾
[𝒍−𝟏]

× 𝒏𝒄
[𝒍−𝟏]

we get the following filter size: and weight size:

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

× 𝒏𝒄
[𝒍]

and the output:

𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]
=

𝒏𝑯
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 ×

𝒏𝑾
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 × 𝒏𝒄

[𝒍]

𝑨[𝒍] = 𝒎× 𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]

.
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Simple Convolutional Network

Let’s compute the sizes for this exemplar convolutional network:

𝒏𝑯
[𝟏]
× 𝒏𝑾

[𝟏]
× 𝒏𝒄

[𝟏]
=

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 ×

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 × 𝟏𝟔 = 𝟏𝟏 × 𝟏𝟏 × 𝟏𝟔

𝒏𝑯
[𝟐]
× 𝒏𝑾

[𝟐]
× 𝒏𝒄

[𝟐]
=

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 ×

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 × 𝟑𝟐 = 𝟔 × 𝟔 × 𝟑𝟐 = 𝟏𝟏𝟓𝟐 = 𝒏𝑯

[𝟑]
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1 x 1 Convolutions

[Paper: Network In Network, Authors: Min Lin, Qiang Chen, Shuicheng Yan. 
National University of Singapore, arXiv preprint, 2013]:

One-by-one convolutions (called also as network in network) can use various 
features represented by the various convolutional filters with different 
strengths expressed through the one-by-one-dimensional convolution filter: 

This kind of convolution
can be used to shrink
the filter volume (depth):
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Pooling Layer

To sample the image down (downsampling), we often use pooling layers:

• Max-pooling chooses the maximum value from the selected region (stride = 2):

• Avg-pooling chooses the average value from the selected region (stride = 2):

Be careful about using max-pooling because it neglects details.

Max-pooling is the most often used in the convolutional networks (CNNs).

We usually do not use padding (padding = 0) for the pooling operations. 19
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Max-Pooling

Max-pooling layer for stride = 1, filter size = 3x3:

Notice that there are no parameters that can be adapted during the training process! 

It is often used to downsample the high-dimensional images, so we use stride > 1.

Max-pooling and avg-pooling are computed separately for each channel.

In case of avg-pooling, we calculate averages instead of choosing max values. 20
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Pooling layers

Pooling layers are usually counted together with convolutional 
layers, however sometimes they are computed separately, 
so don’t get misled!

An example convolutional network with pooling layers:
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CNN Structure

When designing a convolutional model, we can use various numbers and 
combinations of layers, different numbers of neurons in layers and many more.

We usually present the structure of convolutional networks in the following way:

Let’s get inspired by the popular CNN structures developed for various tasks, 
which we can reuse using transfer learning in the future 

(because they were used and trained to many problems in the past), 
and look how we can create our structures to our problems.
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http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


LeNet-5 (1998)

[LeCun et al., 1998. Gradient-based learning applied to document recognition]:

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]
24

This net has 60K parameters.

LeNet-5 is one of the simplest architectures.

The average-pooling layer as we know it now was called 
a sub-sampling layer and it had trainable weights,
which isn’t the current practice of designing CNNs nowadays.

The modern version of LeNet-5 uses SoftMax in the output layer.
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AlexNet (2012)

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]:

It was the first to implement Rectified Linear Units (ReLUs) as activation functions.
25

This net has 60M parameters.
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VGG-16 and VGG-19 (2014)

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]:
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VGG16 This net has 138M
parameters.
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ResNets

[He at al., 2015, Deep residual networks for image recognition]:

ResNets are constructed from the stacked residual blocks that regularize the non-linear 
processing using short-cut (identity, skip connection) connections:

𝒛[𝒍+𝟏] = 𝑾[𝒍+𝟏] ∙ 𝒂[𝒍] + 𝒃[𝒍+𝟏]

𝒂[𝒍+𝟏] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟏]

𝒛[𝒍+𝟐] = 𝑾[𝒍+𝟐] ∙ 𝒂[𝒍+𝟏] + 𝒃[𝒍+𝟐]

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] + 𝒂[𝒍]

𝒂[𝒍] and 𝒛[𝒍+𝟐] must have 
the same dimensions, so in ResNets, 
we use the same convolutions:

27

Residual

Block 

short-cut

𝒂[𝒍]

𝒂 𝒍+𝟏 𝑹𝒆𝑳𝑼

𝒂[𝒍+𝟐] 𝑹𝒆𝑳𝑼

𝒛[𝒍+𝟐]

𝒛[𝒍+𝟏]

𝑾[𝒍+𝟏]

𝑾[𝒍+𝟐]

𝒃[𝒍+𝟏]

𝒃[𝒍+𝟐]

ResNet
34 layers

ResNets allow us to 

construct much 

deeper architectures 

because residual 

blocks avoid 

overfitting.

If we want to use different 

dimensions of 𝒂[𝒍] and 𝒛[𝒍+𝟐], 
we must use extra weight 

matrix Ws to transform:

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] +𝑾𝒔
𝒍+𝟐 ∙ 𝒂[𝒍]

𝒂[𝒍]
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Comparison of ResNet to PlainNet and VGG-19

[He at al., 2015, Deep residual networks for image recognition]:

ResNets are constructed from the stacked residual blocks 
that regularize the non-linear processing 

using short-cut (identity, skip connection) connections. 28
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ResNet-50 (2015)

This net has 26M parameters!

It used skip connections the first time,
designed much deeper CNNs
(up to 152 layers) without compromise
with generalization, and was among
the first to use batch normalization.

Paper: Deep Residual Learning for Image Recognition, Authors: Kaiming He, Xiangyu Zhang, Shaoqing
Ren, Jian Sun. Microsoft

Published in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
29
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Inception Module

Inception modules allow to use various convolutions (filters) at the same time:

Using 1x1 convolutions, we can reduce the number or multiplications 10 times:

(28x28x16 x 1x1x192) + (28x28x16 x 1x1x192) ≈ 12.4M operations 

[Szegedy et al. 2014. Going deeper with convolutions] 30

Computational cost of this convolution is

28x28x32 x 5x5x192 ≈ 120M operations.
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Inception Networks (2014)

Building an inception network from inception modules:

1x1x96

1x1x96

28x28x192 28x28x32

28x28x32

28x28x128

28x28x64

31
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Inception-v1 (2014)

Paper: Going Deeper with Convolutions,

Authors: Christian Szegedy, Wei Liu, Yangqing Jia,

Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.

Google, University of Michigan, University of North Carolina

Published in: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)

This net has 5M
parameters.

It has parallel towers of 
convolutions with different 
filters, uses 1x1 convolutions, 
adding nonlinearity, and two 
auxiliary classifiers to provide 
additional regularization.

32
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Inception-v3 (2015)

Paper: Rethinking the Inception Architecture for Computer Vision

Authors: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 

Jonathon Shlens, Zbigniew Wojna. Google, University College 

London, Published in: 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR)

This net has 24M
parameters.

It factorizes 

n×n convolutions 

into asymmetric 

convolutions: 

1×n and n×1

convolutions, 5×5 

convolution to two 

3×3 convolutions, 

and replaces 7×7 

to a series of 3×3 

convolutions

33
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Inception-v4 (2016)

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Authors: Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

This net has 43M
parameters.

It changed in Stem module,

added more Inception modules,

and chose Inception-v3 modules uniformly,

i.e. used the same number of filters for every module.

34
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Xception (2016)

Xception is an adaptation from Inception, where the Inception modules 
have been replaced with depth-wise separable convolutions. 

This net has 23M parameters.

Paper: Xception: Deep 

Learning with Depthwise

Separable Convolutions

Authors: François Chollet. 

Google.

Published in: 2017 IEEE 

Conference on Computer 

Vision and Pattern 

Recognition (CVPR)

Cross-channel 

correlations were 

captured by 1×1 

convolutions, and 

spatial correlations 

within each channel 

were captured via 

the regular 3×3 or 

5×5 convolutions.
35
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Inception ResNet-v2 (2016)

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,

Authors: Christian Szegedy, Sergey Loffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

36

This net has 56M
parameters.

This solution:

• converts Inception modules to Residual Inception blocks.

• adds more Inception modules.

• adds a new type of Inception module (Inception-A) after the Stem module.
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ResNeXt-50 (2017)

Paper: Aggregated Residual Transformations for Deep Neural Networks

Authors: Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He. University of 
California San Diego, Facebook Research

Published in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

It scales up the number of parallel towers (“cardinality”) within a module.

37

This net has 25M parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

https://arxiv.org/abs/1611.05431
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


GitHub sources

It is not necessary to implement all these networks from scratch, 
but you can use the original sources available on GitHub repositories:

1. Find the source at GitHub.

2. Copy the source at GitHub repository.

3. Clone it in your computer:
> git clone https://github.com/

4. Go to the repository, e.g.: cd deep-residual-networks

5. Go to the prototxt/more and look at the structure of the chosen network.

When implementing selected types of networks, we often use open-source 
implementations available on GitHub and adapt them to our tasks.

In the same way, we copy implementations with trained parameters 
when we want to use transfer learning, i.e. reusing the already trained models 
to different tasks which use similar sets of features that can be reused.

38
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Now, let’s try to create and train a simple Convolutional Neural Network (CNN)
to tackle with a handwritten digit classification problem using MNIST dataset:

Each image in the MNIST dataset is 28x28 pixels and contains a centred, 
grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten 
classes using ten output neurons of the CNN network.
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Let’s import libraries, frameworks, and setting of the parameters:
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Set hyperparameters and the method for presenting test results:

http://home.agh.edu.pl/~horzyk/index-eng.php


Look at sample MNIST training examples (handwritten digits):
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Load training data, changing the shapes of the matrices storing 
training and testing data, transform the input data from [0, 255] to 
[0.0, 1.0] range, and convert numerical class names into categories:
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Build a neural network structure (a computational model):
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Compile the model using optimizer, augment data using generator, and train it:

http://home.agh.edu.pl/~horzyk/index-eng.php


Evaluate the trained model and plot how it convergences on charts:
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Model evaluation, convergence drawing and error charts:

Here is the presentation of only 3 learning epochs!

We usually train such networks for several dozen epochs,

getting better results (accuracy) and smaller errors!

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.
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Generate summaries of the training and show a confusion matrix:
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Confusion (error) matrix in the form of a heat map for the text data:
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Count and filter out incorrectly classified test examples to show them:
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247 out of 10,000 
incorrectly classified 
test patterns:

One might wonder
why the network
had difficulty in 
classifying them?

Of course, such 
a network can 
be taught further 
to achieve 
a smaller error!

This network has 
been taught only 
for 3 epochs!

http://home.agh.edu.pl/~horzyk/index-eng.php


Now, let’s try to train the network for 50 epochs:
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Graphs of learning convergence (accuracy) and error minimization (loss):

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.
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The confusion matrix has also improved: more examples have migrated 
towards the diagonal (correct classifications) from the other regions:
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The number and the accuracy of correctly classified examples for 
all individual classes increase have risen:

However, we can see that the process of network training is not over yet 
and should be continued for several dozen epochs.
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The number of misclassified examples after 50 epochs compared to 
3 epochs has dropped from 247 to 37 out of 10,000 test examples, 
resulting in an error of 0.37%. Here are all misclassified examples:
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Classification of images 32 x 32 pixels to 10 classes (3 learning epochs):
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Compilation, optimization , data augmentation (generation) and training:
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Results of training after three training epochs:
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Confusion (error) matrix 
after three training 
epochs:

We usually train such 
networks for minimum 
a few dozens of epochs 
to get satisfying results.
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Let’s train the network longer (50 epochs, a few hours) and as you can see the 
error (val_loss) systematically decreases, and the accuracy (val_acc) increases:
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The charts of accuracy and loss show the right convergence process:

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.
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The confusion matrix has also improved: more examples have migrated 
towards the diagonal (correct classifications) from the other regions:
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The number and the accuracy of correctly classified examples 
for all individual classes have increased significantly:

However, we can see that the process of network training is not over yet 
and should be continued for several dozen epochs.
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Examples of misclassifications after 50 training epochs for a test set 
of 10,000 examples: The number of misclassifications decreased 
from 7929 after 3 epochs to 1615 after 50 epochs.

We can see that in the case of this training set, the convolution 
network should be taught much longer (16.15% of incorrect 
classifications remain) or the structure or the hyperparameters of 
the model should be changed.
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Samples of misclassified examples:
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Samples of misclassified examples:
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Let’s start with powerful computations!

✓ Questions?

✓ Remarks?

✓ Wishes?
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