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Object Classification, Localization and Detection

Tasks that can be performed on images:
• Classification
• Classification with localization
• Detection 
• Instance Segmentation
• Semantic Segmentation
Classification is to determine to which class belongs the main object (or sometimes all 
objects) in the image.

Classification with localization not only classifies the main object in the image but also 
localizes it in the image determining its bounding box (position and size or localization 
anchors).

Detection tries to find all object of the previously trained (known) classes in the image 
and localize them.

Instance Segmentation is to …

Semantic Segmentation is to distinguish between …

Classification: Car

Classification and Localization

Car Detection
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Classification with Localization

Classification using DL is to determine the class of the main object 
(that is usually in the centre of the image):

• The number of classes is usually limited and the rest is classified as 
background or nothing:

• When localizing the object the output of the network contains extra outputs 
for a defining bounding box (bx, by, bh, bw) of the object:

• bx – x-axis coordinate of the center of the object

• by – y-axis coordinate of the center of the object

• bh – height of the object (its bounding box)

• bw – width of the object (its bounding box)

car

pedestrian

…

background
bx, by, bh, bw
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Defining Target Labels for Training

𝑦 =

𝑝𝑐
𝑏𝑥
𝑏𝑦
𝑏ℎ
𝑏𝑤
𝑐1
𝑐2
⋮
𝑐𝐾

Where
𝑝𝑐 – probability of the detection of an object of the specified class 

in the image, which is equal to 1 when the object is present and 

0 otherwise during the training

𝑏𝑥 – x-coordinate of the bounding box of the object

𝑏𝑦 – y-coordinate of the bounding box of the object

𝑏ℎ – height of the bounding box of the object

𝑏𝑤 – width of the bounding box of the object

𝑐1, 𝑐2, … , 𝑐𝐾 – the possible trained classes of the input image, where 

only one 𝑐𝑘 is equal to 1 and the others are equal to 0

? – are not taken into account in the loss function because we do not 

care these values while no object is detected

Example 1: If there is 

an object of class 𝑐2:

𝑦 =

1
𝑏𝑥
𝑏𝑦
𝑏ℎ
𝑏𝑤
0
1
0
0

Example 2: If there is 

no object of any of 

the defined classes:

𝑦 =

0
?
?
?
?
?
?
?
?
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Landmark Detection

In the similar way, we can detect various landmarks in the images and 
use it to compute facial gesture, emotion expressions or model it:
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Object Detection and Cropping Out

Object detection can be made in a few ways:
• using sliding window of the same size or various sizes with different strides 

(high computational cost because of many strides) – sliding window detection

• using a grid (mesh) of fixed windows (YOLO – you only look once)

and put the cropped image on the input of the ConvNet:
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Convolutional Implementation of Sliding Windows

Many computations for sliding windows repeat as presented by the blue sliding 
window and the red one (the shared area) after the two-pixel stride.

Therefore, we implement sliding windows parallelly and share these computations 
that are the same for different sliding windows to proceed computations faster.
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Convolutional Implementation of Sliding Windows

We can see how the convolutional implementation of the sliding window works 
on the image. The drawback is the position of the bounding box designated by the 
sliding window might not be very accurate. Moreover, if we want to fit each object 
better, we have to use many such parallel convolutional networks for various sizes 
of sliding windows. Even though we cannot use appropriately adjusted sizes of 
such windows and achieve poor bounding boxes for the classified objects.
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YOLO – You Only Look Once

In YOLO, we put the grid of the fixed sizes on the image:
• Each object is classified only in a single grid cell where is the midpoint of this object 

taking into account the ground-truth frame of it defined in the training dataset:

• In all other cells, this object is not represented even if they contain fragments of 
this object or its bounding box (frame).

• For each of the grid cell, we create
an (K+5)-dimensional vector storing
bounding box and class parameters:

• The target (trained) output is a 3D matrix
of S x S x (K+5) dimensions, where 
S is the number of grid cells in each row
and column.

• This approach works as long as there is only one
object in each grid cell. In practice, the grid is
usually bigger than in this example, e.g. 19x19,
so there is a less chance to have more one middle point of the object inside each 
grid cell.
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YOLO’s bounding boxes

The YOLO’s bounding boxes are computed using the following formulas:

𝑏𝑥 , 𝑏𝑦 , 𝑏𝑤 , 𝑏ℎ

𝑏𝑥 = 𝜎 𝑡𝑥 + 𝑐𝑥

𝑏𝑦 = 𝜎 𝑡𝑦 + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤 ∙ 𝑒𝑡𝑤

𝑏ℎ = 𝑝ℎ ∙ 𝑒
𝑡ℎ

where

𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ is what the YOLO network outputs,

𝑐𝑥 and 𝑐𝑦 are the top-left coordinates of the grid cell, and

𝑝𝑤 and 𝑝ℎ are the anchors dimensions for the grid cell (box).
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Specifying the Bounding Boxes in YOLO

We specify the bounding boxes in YOLO in such a way:
• Each upper-left corner of each grid cell has (0,0) coordinates.

• Each bottom-right corner of each grid cell has (1,1) coordinates.

• We measure the midpoint of the object 
in these coordinates, here (0.4,0.3).

• The width (height) of the object is measured
as the fraction of the overall width (height) of
this grid cell box (frame).

𝑦 =

𝑝𝑐
𝑏𝑥
𝑏𝑦
𝑏ℎ
𝑏𝑤
𝑐1
𝑐2
⋮
𝑐𝐾

=

1
0.4
0.3
0.9
0.8
1
0
⋮
0

• The midpoints are always between 0 and 1, while widths and heights could be greater than 1.

• If we want to use a sigmoid function (not ReLU) in an output layer and we need to have 
all widths and heights between 0 and 1, we can divide widths by the number of grid cells 
in a row (𝑏𝑤/𝑆), and divide heights by the number of grid cells in a column (𝑏ℎ/𝑆).
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Intersection Over Union

Intersection Over Union (IOU):

• Is used to measure the quality of the estimated bounding box to the ground-
truth bounding box defined in the training dataset.

• Is treated as correct if IOU ≥ 0.5 or more dependently on the application.

• Is a measure of the overlap between two bounding boxes.

• Is computed as the ratio of the size of                                size of 
the intersection between two bounding boxes   IOU =
and the union of these bounding boxes:                           size of
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Non-Max Suppression of YOLO

Non-max suppression avoids multiple bounding boxes for 
the detected objects leaving only one with the highest IOU.

• When using bigger grids,
many grid cells might think
that they represent the 
midpoint of the detected
object.

• In result, every such cell
will produce a bounding box,
so we get multiple bounding
boxes for the same object.

• YOLO chooses the one with
the highest probability 𝑝𝑐
computed for each grid cell.
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Non-Max Suppression of YOLO

Non-Max Suppression works as follows:

1. Discard all bounding boxes estimated by the convolutional network which 
probability is 𝑝𝑐 ≤ 0.6.

2. While there are any remaining
bounding boxes:

1. Pick this one with the largest 𝑝𝑐,
and output that as a prediction of
the detected object.
(selection step)

2. Discard any remaining bounding
box with IOU ≥ 0.5 with the box
output in the previous step.
(pruning/suppression step)

For multiple object detection of
the different classes, we perform
the non-max suppression for each
of these classes independently.
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Anchor Boxes for Multiple Object Detection

When two or more objects are in almost the same place in the image 
and their midpoints of their ground-truth bounding boxes fall into 
the same grid cell, we cannot use the previous algorithm but define 
a few anchor boxes with the predefined shapes associated with 
different classes of objects that can occur in the same grid cell:

Example:

Anchor box 1 (A1):

Anchor box 2 (A2):

The YOLO algorithm with anchor boxes assigns each object in 
training image to the grid cell that contains the object’s midpoint 
and the appropriate anchor box for the grid cell with the highest IOU.
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Anchor Boxes and Target Setup

For two anchor boxes in the grid cell, we consider four cases:
1. There are no midpoints of objects in the cell.

2. There is one midpoint of the object of the anchor 1 and class c1 in the cell.

3. There is one midpoint of the object of the anchor 2 and class c2 in the cell.

4. There is two midpoints of two object of the anchor 1 and the anchor 2 and both classes 
c1 and c2 in the cell.

𝑦 =

𝑝𝑐
𝐴1

𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

𝑐1
𝐴1

𝑐2
𝐴1

⋮
𝑐𝐾
𝐴1

𝑝𝑐
𝐴2

𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

𝑐1
𝐴2

𝑐2
𝐴2

⋮
𝑐𝐾
𝐴2

(1) 𝑦 =

0
?
?
?
?
?
?
⋮
?
0
?
?
?
?
?
?
⋮
?

(2)    𝑦 =

1
𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

1
0
⋮
0
0
?
?
?
?
?
?
⋮
?

(3)    𝑦 =

0
?
?
?
?
?
?
⋮
?
1
𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

0
1
⋮
0

(4)    𝑦 =

1
𝑏𝑥
𝐴1

𝑏𝑦
𝐴1

𝑏ℎ
𝐴1

𝑏𝑤
𝐴1

1
0
⋮
0
1
𝑏𝑥
𝐴2

𝑏𝑦
𝐴2

𝑏ℎ
𝐴2

𝑏𝑤
𝐴2

0
1
⋮
0

http://home.agh.edu.pl/~horzyk/index-eng.php


YOLO Detection Model
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Classic YOLO Network Architecture

YOLO network architecture is convolutional with the output defined 
as a 3D matrix of the S x S x (A x 8) sizes:

• S – is the number or cells in each row and column

• A – is the number of anchors 

However, we can modify the original YOLO model in such a way that the number of 
cells in rows and columns differ.
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YOLOv3 Network Architecture

YOLOv3 network uses extra operations (concatenation and addition) 
as well as residual blocks, detection and upsampling layers.
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Precision and Recall

Confusion Matrix

• Specifies how many examples were correctly classified as positive 
(TP), negative (TN) and how many were misclassified as positive 
(FP) or negative (FN).

Precision

• measures how accurate is your
predictions. i.e. the percentage of
your predictions are correct.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Recall

• measures how good you find all the positives. For example, we can 
find 80% of the possible positive cases in our top K predictions.

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Mean Average Precision

Average Precision (AP):

• Is a popular metric in measuring the accuracy of object detectors 
like Faster R-CNN, SSD, YOLO, etc. Average precision computes 
the average precision value for recall value over 0 to 1.

𝐴𝑃 = න
0

1

𝑝 𝑟 𝑑𝑟

• where 𝑝 𝑟 is a precision-recall curve.

Mean Average Precision (mAP):

• Is a popular metric in measuring the accuracy of object detectors 
like Faster R-CNN, SSD, YOLO, etc. Average precision computes 
the average precision value for recall value over 0 to 1.

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
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R-CNN, Fast R-CNN, and Faster R-CNN

R-CNN stands for Regions with ConvNet detection:

• Is a segmentation algorithm.

• The algorithm is run on a big number of block to classify them

• R-CNN proposes regions at a time.

• We get an output label + bounding box

Fast R-CNN:

• A convolutional implementation
of sliding windows to classify
all the proposed regions.

Faster R-CNN:

• Uses a convolutional network to propose regions.
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Semantic Segmentation Using Deep Learning

Semantic Segmentation:
• Xxxx

• https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf

• https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-

segmentation-using-deep-learning.html

• https://medium.com/nanonets/how-to-do-image-segmentation-using-
deep-learning-c673cc5862ef

https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
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RetinaNet

RetinaNet:

• can have ~100k boxes with the resolve of class imbalance problem using focal loss.

• Many one-stage detectors do not achieve good enough performance, so there are 
build new two-stage detectors like RetinaNet:

https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
http://home.agh.edu.pl/~horzyk/index-eng.php
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RetinaNet

RetinaNet:
• In RetinaNet, an one-stage detector, by using focal loss, lower loss is contributed by “easy” 

negative samples so that the loss is focusing on “hard” samples, which improves the prediction 
accuracy. With ResNet+FPN as backbone for feature extraction, plus two task-specific subnetworks 
for classification and bounding box regression, forming the RetinaNet, which achieves state-of-
the-art performance, outperforms Faster R-CNN, the well-known two-stage detectors. It is a 2017 
ICCV Best Student Paper Award paper with more than 500 citations. (The first author, Tsung-Yi Lin, 
has become Research Scientist at Google Brain when he was presenting RetinaNet in 2017 ICCV.) 
(Sik-Ho Tsang @ Medium).

• https://www.youtube.com/watch?v=44tlnmmt3h0

https://www.youtube.com/watch?v=44tlnmmt3h0
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Let’s start with powerful computations!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?
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