N‘ e b ’L/
—_— - =
~
—i - S
e =" e g
— S)= .,i;-"--"-: R = . — 3 f:n".{l'j, b N o ’ﬂ\\
- x e c":_=’} "" . o "‘“‘::1) S—— ~ < 3

L= _"

COMPUTATIONAL INTELLIGENCE

AGDS Implementation

JI

AGH

AGH University of e
Science and Technology e
Krakow, Poland -

Adrian Horzyk
horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

\

| Implementation of AGDS |

Try to use numpy, vectors, and parallelism where possible.

Assuming that we usually work on the chosen static data, we
do not always need to work on the dynamic data structures
like lists but we can use constant-size structures like arrays.

Choose the structure for representing attribute data and
mechanism for searching for them: sorted arrays, sorted lists,
dictionaries, hash-tables, AVB+trees etc.

The graph structure can be implemented using a list of edges
(list or array), an adjacency matrix (2D array), an incidence
matrix (2D array) or an adjacency list (an array of lists, a list
of arrays, an array of arrays, or a list of lists).

o |
jupyter

(

http://home.agh.edu.pl/~horzyk/index-eng.php
https://jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb

The adjacency (neighborhood) matrix is a square (2D) matrix with a degree equal to the
number of vertices of the graph.

Each vertex of the graph is indexed by one of the consecutive numbers from 0 to N-1, where
N specifies the number of vertices of such graph. You can also use labels as presented below.

The row indexes of the adjacency matrix correspond to the indexes of the start vertices v;.
Adjacency matrix column indexes correspond to end point indexes v;.

Each cell of such a matrix represents one possible connection between the vertices v; and v;:
« 0- means no edge

« 1 - means existing edge or w - means weight of the edge

The i-th row of such matrix is a list of vertex indexes to which the edges from the vertex with
the index i lead to, when the values in the cell are nonzero. alol1]o0 1

The j-th column of such matrix is a list of vertex indexes from which edges lead to

the vertex with index j when the values in the cell are non-zero. =
The adjacency matrix for an undirected graph is symmetrical about the main diagonal, |1
because if there is an edge (v;, v;), then there is also an edge (v,). 1
NCIDENCE Vj - END VERTEX 0
MATRIX | 4 2 1 3 4|5 0
1/ o|0|1 |10 0
El2 10111 ‘
=
E[3| 0|10 . 1
<
<4 1 /0 0|01
5/1(0|0|0]|0O

http://home.agh.edu.pl/~horzyk/index-eng.php

The degree and vertex of an undirected graph can be determined by counting the number of
non-zero cells in the i-th row of the adjacency (neighborhood) matrix.

The degree and vertex of the directed graph will be determined by counting the number of
non-zero cells in the i-th row and j-th column of the adjacency matrix.

We can also separately count the number of outgoing edges (in rows) and the number of
incoming edges (in columns).

Indexes of neighbors of the vertex of the i-th can be found in the i-th row if the field value is
nonzero.

the i-th vertex is isolated if both the i-th row as well as the j-th column contain all zeros.
Vertices containing loops have non-zero values on the diagonal of the adjacency matrix.

Checking the existence of edges between vertices in the adjacency matrix is an operation of
O (1) complexity.

The disadvantage of this representation is the square memory complexity.
Many fields of such matrices contain zeros, except in the case of full graphs (clique).

INCIDENCE Vj - END VERTEX

marx | 4 | 2 | 3| 4| 5

>

E|l2]1]0]1]1]1 \
=

=

/41 0|0]0]1

http://home.agh.edu.pl/~horzyk/index-eng.php

Graph as an Incidence Matrix

The incidence matrix is a matrix with the dimension N x K, where N - means the number of
vertices of the graph and K the number of its edges. Each row maps one vertex of the graph,
and each column one its edge. The cell content of such a matrix determines the association of
the i-th vertex with the k-th edge as follows for the directed graph:

» 0 - means that the i-th vertex is neither the beginning nor the end of the k-th edge,

» 1 or w - means that the i-th vertex is the beginning of the k-th edge (weight w is optional),
» -1 - means that the i-th vertex is the end of the k-th edge.

If the graph is undirected, then the beginning and end is marked with 1.

If the graph contains loops, then the beginning and end fall at the same vertex, which we mark
in the graph with the value 2. Multiple edges can be represented without difficulty.

Due to the fact that each edge has exactly one beginning and one end, in each column of such
matrix there is exactly one 1 and one -1, and the other values are 0.

Each row of such a matrix can contain many 1 and -1, because it can be the beginning or end of
many edges.

LIST
1 1 1 -1 0 0 0 0 0 0 -1 0 -1
E 2 0 0 1 1 1 1 -1 0 0 0 0 0 h
E 3 -1 0 0 -1 0 0 1 1 1 0 0 0
z 4 0 1 0 0 1 0 0 -1 0 1 1 0
5 0 0 0 0 0 1 0 0 -1 0 1 1

http://home.agh.edu.pl/~horzyk/index-eng.php

The adjacency (neighborhood) list is implemented as a list array (in Python as a list list),
i.e. each element of the list of starting vertices contains a list of end vertices,
i.e. a list of neighbors with which it is connected by an edge.

Slightly more difficult in the directed graph we find the vertices from which the edge leads to
a given vertex, because you need to search all the lists containing the index of the final vertex
O (K), but more often we are interested in the list of neighbors, i.e. to which vertices the edge

from a given vertex leads. This problem does not occur with non-directed graphs.

This is by far the most effective (in terms of memory) and the most commonly used method of
graph implementation, as it does not contain unused memory cells (except for isolated
vertices).

To save the edge weight, use the list of object (class) lists whose key is the index (label) of
the target vertex, and the weight is saved inside the class.

Do) T oiE o
13| 4
E 13|45 ‘
E 3/2/4|5
4|15
5|1

http://home.agh.edu.pl/~horzyk/index-eng.php

Walking around a Graph

TN
\
7 The vertices of the graph cannot be traversed in a linear way, so the most widely used
' are the trees spread (spanned) on the graph and the algorithms used to search the trees.
However, there may be cycles and loops in the graphs, which could cause such an algorithm
to loop and spin around the same vertices many times.

To avoid this, we use an additional Boolean parameter, in which we mark whether the vertex
has already been visited / searched or not.

So, if we enrich the tree search algorithms with such a parameter, we will be able to use the

algorithms:
» DFS - depth first search - depth search, LTI UEEE EE
« BFS - breadth first search - width search 1134
also for searching graphs using this spanned tree on a graph. E 1/3/4|5
The graph traversal transition is done using E 3|2/ 4|5
the DFS algorithm as follows: A al1ls
1. We search the current vertex. =

We mark the current vertex as visited. S |1

2
3. We go to the first not visited yet incident vertex of the current vertex.
4

If all incidental vertices have already been visited, then we return to the vertex from which we went to
this vertex and perform point 3 in it.

5. We finish searching the graph when the vertex does not have a predecessor from which we entered.

http://home.agh.edu.pl/~horzyk/index-eng.php

We start the graph search from vertex
number 1.

We go to its first incidental and not yet
visited vertex, i.e. to vertex No. 3.

From vertex 3. we go to its first incidental,
unvisited vertex No. 2.

When searching the list of incidental

vertices of vertex No. 2, we skip vertices No.

1 and No. 3, because they were already
visited, finding vertex No. 4 as the first not
visited yet.

At the vertex no. 4 on the incidence list, we
skip the vertex no. 1 we have visited before
and we reach the yet unvisited vertex no. 5
and go to it.

On the list of incidents in vertex no. 5 there
is no unvisited vertex yet, so we retreat.
We proceed similarly in vertices No. 4, 2, 3,
1, where we also find no unvisited vertex.

We are finishing the graph search.

Vij - END VERTEX

Vi- START VERTEX

http://home.agh.edu.pl/~horzyk/index-eng.php

Graph transition with the BFS algorithm is
done as follows:

We create an empty queue of searched
vertices.

We add to the queue the vertex from which
we start the graph search and mark it as
included in the search (visited).

We take the first vertex from the queue and
search it.

In the queue of searched vertices, enter all
of its incidental vertices that have not yet
been searched (visited) and mark them as
included in the search.

We go to step 3.

We finish searching the graph when the
queue is empty.

The number of potentially added items to
the queue can be O (N), so the BFS
algorithm is burdened with linear memory
complexity. Usually fewer items are added
to the queue, but in the case of a full
graph, N-1 items (neighbors) will be added.

¥i- START VERTEX

Vi- START VERTEX

Vj - END VERTEX

http://home.agh.edu.pl/~horzyk/index-eng.php

BFS

Comparison of DFS and BFS
DFS

JADJACENC Vj- END VERTEX
3|4
3
sl2(1|3|a|s
=
s[3[2]|4a]5
“lal1]s
=
5|1
|ADJACENC! Vj - END VERTEX
3|4
=
E 1/3]|a]5]
=
- 2(als
E:
> 1|5
=
5|1
¥
JaDJACENC! Vij - END VERTEX
3|4
=
= 1[(3]4a]5]
=
E 245
=
= 15
=
1
¥
Vj - END VERTEX
3|4
1/3|a]5]
245
1 5
1

.

Vi- START VERTEX

Vj - END VERTEX
3[a
1/3/4]5]
2(als
1|5
1

JADJACENC Vij - END VERTEX
W B [E[=1<]
=
:12[1]3]a]5]
z|3|2]als5
=
“lal1]s
=
5(1
&
|ADJACENC! Vij - END VERTEX
3|4 [k:|a|2]5]|
8
E 1/3]|a]5]
5 O E
z 15
=
5(1
¥
JaDJACENC! Vij - END VERTEX
3)a [wk:| 2| 5]
3
= 1)3]|a]5]
=
& 2[as5
z 15
=
1
¥
IADJACENC Vij - END VERTEX
3)a [K:| 5 |
5
= 1/3]|4a]5]
E 2(als
i
2 15
=
1
¥
JADJACENC Vij - END VERTEX
_ 3]a [x:]
= 1/3]/4a]5]
5 2[as
s 15
=
1

http://home.agh.edu.pl/~horzyk/index-eng.php

AGDS Implementation

Implement the simplistic version of an AGDS structure for the chosen dataset.

You can but there is no need to use AVB+trees to create it.
You can use sorted lists or tables of Value Vertices, hash-tables, or dictionaries,
but the result should be similar and correct.

You don’t need to present your results or a network structure graphically,
Only text form of results is required.
Independently from your choice of implementation AGDS use the selected one to:

1. Find the most similar object(s) to
the given object or a group of objects.

2. Find the most similar object(s) to
any combination of input data given
on the input(s).

3. Using associations generate the list of
all objects sorted by the similarity to
the give object (Task 1) or
any combination of input data (Task 2).

4. Try to implement a classifier using AGDS
structure.

5. Compute min, max, average, medians
using classic algorithms and computed
the time to similar operations on AGDS
structures.

Implement knowledge-based inferences on
AGDS structures.

http://home.agh.edu.pl/~horzyk/index-eng.php

R7 [R8 [R9 [R10[R11[R12[R13

s ,, N/ 4
mknﬂﬂ%&‘d\\\&

W

WAAN ;f«

R
T o
SHIRION

JAWA Y
INVAY:

&=
©
=
)
&=
el
=
n
=
i
)
&=
e
)
(®)]
©)
=
)
2
)
©
-
—
o
w
R
7
»«»'m M :
et
e
o
)
<
"
S
w
)
£
©)
P
)
=
©
>
i
&
)
n
@
—
Qb
)
—
o
T

)

&
L o
.Wnb
a0 =
~ O >
v S .=
2<=
$3 s
= 50
o QY
>3 €
A =
VY =
€<%
£ ==
..l.aS
‘- 9
wsm
-le
p e
% 3
S5 € £
= 9 4
£ o
w 3u
w > =
S_
- R
©5 9
2w =
a > 9
mﬁd
° 5
S
} -
5S4
£ 52
)
Q3
L o =
F, 1
-~ B S
= e wn
Oﬁa
i
mOd
E ¥ S
.nw.m
p -
5>
® > &
£ = =8
S
Xy
33 3
@38

FNEEEEEREEREERR A—*V@@%%%w/
m oo ol ol /.@‘\@'4%4?/
NGB ety & -.' \\,\%/////Iﬁm
7 BEsdauzEcEny x'(‘f/,//%
pezeerrazzEy P . «\\ \’/{,&//m
s SNNALLVd SR @ ; \\0&//)
o B \\v\///%
[. \\\ \\ ¢ m
Ew m e oy e oy m_.wa \ \\ /,M/
e mm Holsieermaeolclc mm mAm\ / =
; S & [ghlollcllolily B 8 /E s
8B EuisunaoNnonay & £
28 scmsnchoozshy &\
<5 emezeesRezEEE m.ﬁ
& ESNYALLVd SIMI ™ g

http://home.agh.edu.pl/~horzyk/index-eng.php

AGDS Implementation

AGDS nodes representing neighboring (subsequent) values of each attribute q,

are connected and the weight of this connection (edge) is computed after the following formula:
| Qg ak(
Y ~Y;
rk

woa e =1- weights do not need to be stored in this structure
i "Yj
but computed on demand when necessary.

In this case, you don’t need to update weights when adding new objects to this structure, where

vi‘”", v'* - are values represented by the neighboring attribute nodes,

J
which are connected by an edge in the AGDS graph,
“ —p* - jis the current range of values of the attribute a,.

- Ymax min
The weight of the connection from the value node v“ of the attribute a, to the object node R,,
is determined after the number of occurrences Ni‘”‘ of this value (vi“") in all objects:

1 1
AGDS

W a = =
v, %Ry N % ”U_ak ”
L L

in the individual value nodes of each attribute.
This number is equal to the number or all
connections of this value node to
all object nodes
if there are no duplicated objects in the table
used to create the AGDS structure.
In the opposite direction,
the weights of connections from
il \ the object nodes to the value nodes
4 are always equal to one:

w a =1
R, v, b

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php
https://colab.research.google.com/notebooks/intro.ipynb
https://jupyter.org/

Blbllography and Literatur

. https://victorzhou.com/blog/keras-cnn-tutorial/ i
. https://github.com/keras-team/keras/tree/master/examples b

. https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html :}"f} 5y

Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, In Springer Series
on Bio- and Neurosystems, Vol 7., Springer, 2019.

lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-1-59327-741-3 or PWN
2018.

Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

Convolutional Neural Network (Stanford)

Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014
IBM: https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html horzvk@agh.edu.pl
NVIDIA: https://developer.nvidia.com/discover/convolutional-neural-network .

JUPYTER: https://jupyter.org/ Google: Horzyk

https://www.youtube.com/watch?v=XNKeayZW4dY s e s s A P

Adrian Horzyk

hitps://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8 i T

http://coursera.org/specializations/tensorflow-in-practice < IR TAR
https://udacity.com/course/intro-to-tensorflow-for-deep-learning ‘
MNIST sample: https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-

f9a1021f6ef0 . .
Heatmaps: https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn- Un_lversuy of
4478ef15d87f Science and
s Technology

in Krakow, Poland

AGH

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.youtube.com/watch?v=XNKeayZW4dY
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

