
Associative Graph Data Structures AGDS
with an Efficient Access via AVB+trees

AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

COMPUTATIONAL INTELLIGENCE 
AND KNOWLEDGE ENGINEERING

mailto:horzyk@agh.edu.pl


Brains and Neurons

How do they really work?
How we can use brain-like structures

to make computations 
more efficient and intelligent?



Brain Structures

Why the brain structures look 
so complex and irregular?

Brains consist of

complex graphs of

connected neurons

and other elements.

Neurons and their connections represent input data 

and various relations between them, defining

objects and similarities, proximities, sequence,

chronology, context, and establishing 

causal relationships between them.



Data Tables

Such relations are not enough!

In computer science, we mostly use 

tables to store, organize and manage data,

but common relations like identity, similarity,

neighborhood, minima, maxima, number of 

duplicates must be found. The more data

we have the bigger time loss we face!



Relational Databases

Is it wise to lose the majority of the 
computational time for searching

for data relations?!

Relational databases relate stored data only horizontally, not vertically, so 

we still  have to search for duplicates, neighbor or similar values and objects.

Even horizontally, data are not related perfectly and many duplicates of 

the same categories occur in various tables which are not related anyhow.

In result, we need to lose a lot of computational time to search out

necessary data relations to compute results or make conclusions.



Data Relationships

Let us use the biologically
optimized solution!

We can find a solution in 

the brain structures where 

data are stored together 

with their relations.

 Neurons can represent any subset of 

input data combinations which activate them.

 Neuronal plasticity processes automatically

connect neurons and reinforce connections

which represent related data and objects.



AGDS
Associative Graph Data Structure

Connections represent various relations between 
AGDS elements like similarity, proximity, 

neighborhood, definition etc.

Attributes

Attributes Aggregated 

and Counted 

Values

Objects

AGDS



AVB+Trees
Sorting Aggregated-Value B-Trees

Internal states of APN neurons are updated only 
at the end of internal processes (IP) that are

supervised by the Global Event Queue.

AVB+trees are typically much smaller in size and height than B-trees 

and B+trees thanks to the aggregations of duplicates and not using 

any extra internal nodes as signposts as used in B+trees.

An AVB+tree is a hybrid structure that represent sorted list of elements 

which are quickly accessed via self-balancing B-tree structure.

Elements aggregate and count up all duplicates of represented values.



Properties of AVB+trees

Efficient hybrid structure!

 Each tree node can store one or two elements.

 Elements aggregate representations of duplicates 

and store counters of aggregated duplicates of values.

 Elements are connected in a sorted order, so it is 

possible to move between neighbor values very quickly.

 AVB+trees do not use extra nodes to organize access to 

the elements stored in leaves as B+trees.

 AVB+trees use all advantages of B-trees, B+trees, 

and AVB-trees removing their inconvenience.

 They implement common operations like Insert, Remove, 

Search, GetMin, GetMax, and can be used to compute 

Sums, Counts, Averages, Medians etc. quickly.

 They supply us with sorted lists of elements which 

are quickly accessible via this tree structure and thanks 

to the aggregations of duplicates that substantially 

reduce the number of elements storing values.



Capacity of AVB+Trees

The same number of elements can be stored by
various AVB-tree structures,

e.g. 11 or 17 elements!

Capacities of elements of the smallest AVB+trees.



Insert Operation 
on AVB+Trees

AVB+trees self-balance, self-sort and self-organize
the structure during the insert operation!



Insert Operation

The Insert operation on the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to

the descendants until the leaf is not achieved after the following rules:

• if one of the elements stored in the node already represents the inserted 

key, increment the counter of this element, and finish this operation;

• else go to the left child node if the inserted key is less than the key 

represented by the leftmost element in this node;

• else go to the right child node if the inserted key is greater than 

the key represented by the rightmost element in this node;

• else go to the middle child node.

2. When the leaf is achieved:

• and if the inserted key is already represented by one of the elements in 

this leaf, increment the counter of this element, and finish this operation;

• else create a new element to represent the inserted key and initialize 

its counter to one, next insert this new element to the other elements 

stored in this leaf in the increasing order, update the neighbor 

connections, and go to step 3.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Insert Operation

3. If the number of all elements stored in this leaf is greater than two, 

divide this leaf into two leaves in the following way:

• let the divided leaf represent the leftmost element representing 

the least key in this node together with its counter;

• create a new leaf and let it represent the rightmost element representing 

the greatest key in this node together with its counter;

• and the middle element (representing the middle key together with 

its counter) and the pointer to the new leaf representing the rightmost 

element pass to the parent node if it exists, and go to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) 

and let it represent this middle element (representing the middle key 

together with its counter), and create new branches to the divided leaf 

representing the leftmost element and to the leaf pointed by the passed 

pointer to the new leaf representing the rightmost element. 

Next, finish this operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Rebalancing during
Insert Operation

Self-balancing and self-sorting mechanism of
the Insert Operation when a node is overfilled

and must be divided!

A self-balancing mechanism of an AVB+tree during the Insert operation 

when adding the value (key) „2” to the current structure which must be 

reconstructed because the node is overfilled and must be divided.



Insert Operation

4. Insert the passed element between the element(s) stored in this 

node in the key - increasing order after the following rules:

• if the element has come from the left branch, insert it on the left side 

of the existing element(s) in this node;

• if the element has come from the right branch, insert it on the right 

side of the existing element(s) in this node;

• if the element has come from the middle branch, insert it between 

the existing element(s) in this node.

5. Create a new branch to the new node (or leaf) pointed by the passed 

pointer and insert this pointer to the child list of pointers immediately 

after the pointer representing the branch to the divided node (or leaf).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Insert Operation

6. If the number of all elements stored in this node is greater than two, 

divide this node into two nodes in the following way:

• let the existing node represent the leftmost element representing 

the least key in this node together with its counter;

• create a new node and let it represent the rightmost element 

representing the greatest key in this node together with its counter;

• the middle element (representing the middle key together with its 

counter) and the pointer to the new node representing the rightmost 

element pass to the parent node if it exists; and go back to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) 

and let it represent this middle element (representing the middle key 

together with its counter), and create new branches to the divided 

node representing the leftmost element and to the node pointed by 

the passed pointer to the new node representing the rightmost element. 

Next, finish this operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

 The Remove operation allows to remove a key from 

the AVB+tree structure and next quickly rebalance and 

reorganize the structure automatically if necessary.

 If the removed key is duplicated in the current structure, 

then only the counter of the element which represents it

is decremented.

 When the removed key is represented by the element which 

counter is equal one then the element is removed from the node.

 If this node is a leaf containing only a single element, 

then the leaf is removed as well, and a rebalancing operation of 

the AVB+tree is executed.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

1. Use the search procedure to find an element containing the key intended 

for removal. If this key is not found in the tree, finish the delete operation with 

no effect;

2. Else if the counter of the element storing the removed key is greater than 

one, decrement this counter, and finish the delete operation.

3. Else if the element storing the removed key is a leaf, then remove the 

element storing this key from this leaf, switch pointers from its predecessor 

and successor to point themselves as direct neighbors. Next, if this leaf is not 

empty, finish the delete operation (Fig. A), else go to step 7 (Fig. B).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

4. Else the element storing the removed key is a non-leaf node that must be 

replaced by one of the neighbor connected elements stored in one of two 

leaves. If only one leaf from the leaves containing neighbor elements to the 

removed element contains two elements, then replace the removed element in 

the non-leaf node by this connected neighbor element from the leaf containing 

two elements, and finish the delete operation (Fig. 14C), else go to step 5.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

5. Here, both leaves containing a neighbor element to the removed one contain 

two elements or one element both. In this case, check which one of the neighbor 

child nodes contains more elements. Next, replace the removed element by the 

neighbor element stored in the leaf of the subtree which root contains more 

elements, and finish the delete operation (Fig. D) in case when no leaf left without 

any element or go to step 8 when there is left an empty node; else go to step 6.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

6. Here, both neighbor child nodes contain the same number of elements. 

In this case, check whether the key stored in the rightmost element from 

the left neighbor child or the key stored in the leftmost element from the right 

neighbor child is more distant from the key stored in the removed element. 

The distance can be calculated differently dependently on compared data types. 

We can use different metrics for the string and numerical data types:

where 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 means the i-th sign of the 𝐾𝐸𝑌1-th string 

and 𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] is equal to the number of signs (e.g. letters)

between 𝐾𝐸𝑌1 𝑖 and 𝐾𝐸𝑌2 𝑖 in a given sign set X (e.g. ASCII),

and 𝑋 determines the number of signs in the set X.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆𝑇𝑅 =  
𝑖=1

𝑚𝑎𝑥 𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌1 ,𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌2 1

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] ∙ 𝑋 𝑖−1

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑁𝑈𝑀 = 𝐾𝐸𝑌1 − 𝐾𝐸𝑌2

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐾𝐸𝑌1 𝑖 , 𝐾𝐸𝑌2 𝑖 𝑖𝑛 𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 ∧ 𝐾𝐸𝑌2 𝑖 ∈ 𝑋

𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∉ 𝑋 ∨ 𝐾𝐸𝑌2 𝑖 ∉ 𝑋



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

Next, replace the removed element by the right neighbor element when 

the distance of the key stored in this right neighbor child is greater or equal to 

the distance of the key stored in this left neighbor child (Fig. E or G), 

else replace it by the left neighbor element (Fig. F or H). 

If the leaves containing the neighbor elements contain two elements both, 

then finish the delete operation (Fig. E and F), else (Fig. G and H) go to step 7. 

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

7. After the removal of the element from the leaf or after the replacement of 

the removed element from the non-leaf node by the leaf element, there is left an 

empty leaf (Fig. B, G, or H) that must be filled by at least one element or 

removed from the tree. Next, the tree must be rebalanced to meet the AVB+tree

requirements. First, try to take an element from the nearest sibling. In these 

cases, remove the empty leaf and go to its parent, and go to step 8.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

8. If the nearest sibling of the empty leaf contains more than a single element, 

then move the closest key (2 in Fig. I) to the removed one from the empty node 

to the parent, and move the neighbor element (1 in Fig. I) (to the removed one 

from the empty node) from the parent node to the empty leaf (Fig. I). 

Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

9. Else if the nearest sibling of the empty leaf contains only a single element 

(2 in Fig. J), but its parent contains two elements, then move the closest parent 

element (1 in Fig. J) to the element removed from the empty node to this sibling 

in the right order, remove the empty node (Fig. J), and finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

10. Else both the parent and the sibling contain only a single element. 

In this case, merge them in the parent node, moving the element from this 

sibling to its parent, and this parent node becomes to be a leaf which is placed 

one level higher than the other leaves (Fig. K). Hence, the tree must be 

rebalanced to meet the AVB+tree requirements in the subsequent routines 

described in the following steps.

11. In this and following steps, there is always one reduced subtree which is 

one level up, i.e. all its leaves are one level higher than the other leaves of the 

tree. The smallest subtree can consist of the leaf containing two elements. The 

rebalancing operation is started from the root of the reduced subtree in step 12.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

12. If the parent node of the root of the reduced subtree contains 

two elements go to step 16, else go to step 13.

13. If the second child of this parent contains a single element 

go to step 14 (Fig. L), else go to step 15 (Fig. M).

14. Merge this second child (containing a single element) with that parent as shown 

in Fig. L, and because the parent subtree of the reduced subtree has also lowered 

its height and must be rebalanced, go back to step 11 and rebalance the resultant 

subtree achieved after this transformation until the root of this subtree is not the root 

of the whole tree. If the main root is reached, it means that the tree is rebalanced 

and its height was lowered by one, therefore finish the deletion operation;

else go to step 15.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation 

on the AVB+tree is 

processed as follows:

15. Merge this second 

child (containing two 

elements) with that parent 

as shown in Fig. M, and 

because the merged parent 

node is overfilled, divide it 

and create a new root of this 

subtree (Fig. M). Next, finish 

the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

16. In this case, the parent node of the root of the reduced subtree 

contains two elements. If no one of the neighbor siblings of this reduced subtree

root contains two elements, then go to step 17 (Figs. N and O), else go to step 20.

17. If this reduced subtree root is a left or right child of its parent, then go to step 18 

(Fig. N), else go to step 19 (Fig. O).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

18. Move the element (key = 5) from the middle sibling to the parent node 

together with the pointers to the children of this node, and next move these 

pointers left and right together with the left (4|..) and right (6|..) nodes to the left 

and right children of the parent node appropriately as shown in Fig. N. 

Create a new parent (with key = 3) for the reduced subtree, also connecting 

this new parent to the node containing the passed left child node of the moved 

middle sibling (with key = 5). Connect this new parent (key = 3) to the parent node 

containing moved element (key = 5) as well. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

19. Merge the left or right element of the parent node of this reduced 

subtree root together with this subtree with the left or right child (that contains 

only a single element) as shown in Fig. O. Choose the child on the basis of 

the lower distance between the left parent element and the element of the left child 

or between the right parent element and the element of the right child. 

The Fig. O shows the situation when the distance to the right child is lower than to 

the left one. The second situation is symmetrical.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

20. In this case, the parent node of the root of the reduced subtree 

contains two elements, and at least one of the siblings of this reduced subtree 

root contains two elements. If there is no direct sibling of the reduced subtree root 

that contains two elements, go to step 21 (Fig. P), else go to step 22 (Fig. Q and R).

21. Move elements between the parent node and both children in a way shown in 

Fig. P. to rebalance this subtree. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

22. If the reduced subtree is placed in the left or right subtree of its parent,

then go to step 23 (Fig. Q), else go to step 24 (Fig. R).

23. Move the closest element from the neighbor siblings containing two elements to 

the parent node and replace the closest element to the elements stored in the root 

of the reduced subtree, and this replaced element use to rebalance this subtree as 

shown in Fig. Q. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

24. In this case, the reduced subtree is the middle child of its parent. 

Therefore, move the rightmost element from the left sibling if its key is more distant to 

the key of the right parent element than the distance of the key of the leftmost element 

for the right sibling to the left parent element. In the symmetric case, move the leftmost 

element of the right sibling. The selected sibling is moved to the parent node, and the 

element from the parent node that is the closest to the elements of the reduced 

subtree is moved together with its closest child to the middle child where the reduced 

subtree is placed. Then, the new node (with the element 6 in Fig. R) is created. 

Next, finish the delete operation.
Less than logarithmic expected computational complexity 

(typically constant) for data containing duplicates!



Update Operation

 The Update operation is a simple sequence of Remove and 

Insert operations because it is not possible to simply update 

a value in an element because of the structure of AVB+trees

which represent various relations.

 Data can be easily updated (a value can be changed) 

only in those structures which do not represent relations, 

e.g. unsorted arrays, lists, or tables.

 The Update operation on an AVB+tree removes the old key 

(value) from this structure using the Remove operation and 

inserts an updated one using the Insert operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Search Operation

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

The Search operation in the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to 

the descendants until the searched key or the leaf is not achieved 

after the following rules:

• If one of the keys stored in the elements of this node equals to 

the searched key, return the pointer to this element;

• else go to the left child node if the searched key is less than 

the key represented by the leftmost element in this node;

• else go to the right child node if the searched key is greater than 

the key represented by the rightmost key in this node;

• else go to the middle child node.

2. If the leaf is achieved and one of the stored elements in this leaf contains 

the searched key, return the pointer to this element, else return the null pointer.



GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two 

different ways dependently on how often extreme elements are 

used in other computations using an AVB+tree structure:

1. The first way is used when extreme keys are not often used. 

In this case, it is necessary to start from the root node and 

always go along the left tree branches until the leaf is achieved 

and in its leftmost element (if there are two) is the minimum key 

(value) stored in this tree. 

Similarly, we go always along the right branches starting from 

the root node until the leaf is achieved and in its rightmost 

element (if there are two) is the maximum key (value) stored 

in this tree. These operations take log Ň time, where Ň is 

the number of elements stored in the tree, which is equal 

the number of unique keys (values) of the data.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two 

different ways dependently on how often extreme elements are 

used in other computations using an AVB+tree structure:

2. The second way is used when extreme keys are often used 

and should be quickly available (in constant time). 

In this case, the leftmost (minimum) and rightmost (maximum) 

elements of the leftmost and rightmost leaves appropriately are 

additionally pointed from the class implementing the AVB+tree. 

If using these extra pointers they are automatically updated 

when the minimum or maximum element is changed, and 

the minimum and maximum element can be easily recognized 

because its neighbor connection to the left or right neighbor 

element is set to null.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Comparison of Efficiencies

AVB-trees and AVB+trees outperform commonly used 
B-trees and B+trees in most cases!

The achieved results proved the concept that AVB+trees are always faster 

than B+trees commonly used in databases, and AVB-trees are usually 

faster than B-trees when data contain more than 30% of duplicates.

The efficiencies of the same operations on the same datasets from UCI ML 

Repository were compared on B-trees, B+trees, AVB-trees, and AVB+trees.



AGDS + AVB+trees
as a still more efficient solution

AVB+trees implemented to AGDS structures
make the data access faster especially for

Big Data datasets and databases.

Attributes

Attributes

Aggregated 

and Counted 

Values

Objects

AGDS combined with AVB+trees

AVB+tree

AVB+tree

AVB+trees

Neighbor 

connections 

are weighted:



Comparison of AGDS 
with AGDS + AVB+trees

When data contain many duplicates
we practically achieve the constant access

to all data stored in AGDS + AVB+trees.

AGDS + AVB+treesAGDS



Inferences on AGDS
combined with AVB+trees

We do not need to search for common relations
in many (nested) loops but we simply go

along the connections and get results.



Inferences on AGDS
combined with AVB+trees

Such structures can also be used for very fast 
recognition, clustering, classification, searching 

for the most similar objects etc.



Conclusions
 AGDS structures combined with AVB+trees provide incredibly fast access 

to any data stored and sorted for all attributes simultaneously.

 AGDS + AVB+trees stores data together with the most common vertical and 
horizontal relations, so there is no need to loop and search for these relations.

 Typical operations on AGDS + AVB+trees structures have pessimistically 
logarithmic time, but the expected complexity on typical real data is constant.



Questions or Remarks?
1. A. Horzyk, J. A. Starzyk, J. Graham, Integration of Semantic and Episodic Memories, IEEE Transactions on Neural 

Networks and Learning Systems, Vol. 28, Issue 12, Dec. 2017, pp. 3084 - 3095, 2017, DOI: 10.1109/TNNLS.2017.2728203.

2. A. Horzyk, J.A. Starzyk, Multi-Class and Multi-Label Classification Using Associative Pulsing Neural Networks, 
IEEE Xplore, In: 2018 IEEE World Congress on Computational Intelligence (WCCI IJCNN 2018), 2018, (in print).

3. A. Horzyk, J.A. Starzyk, Fast Neural Network Adaptation with Associative Pulsing Neurons, IEEE Xplore, In: 2017 IEEE 
Symposium Series on Computational Intelligence, pp. 339 -346, 2017, DOI: 10.1109/SSCI.2017.8285369.

4. A. Horzyk, K. Gołdon, Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers, 
LNCS, In: 27th International Conference on Artificial Neural Networks (ICANN 2018), 2018, (in print).

5. A. Horzyk, Deep Associative Semantic Neural Graphs for Knowledge Representation and Fast Data Exploration, 
Proc. of KEOD 2017, SCITEPRESS Digital Library, pp. 67 - 79, 2017, DOI: 10.13140/RG.2.2.30881.92005.

6. A. Horzyk, Neurons Can Sort Data Efficiently, Proc. of ICAISC 2017, Springer-Verlag, LNAI, 2017, pp. 64 - 74,
ICAISC BEST PAPER AWARD 2017 sponsored by Springer.

7. A. Horzyk, J. A. Starzyk and Basawaraj, Emergent creativity in declarative memories, IEEE Xplore, In: 2016 IEEE 
Symposium Series on Computational Intelligence, Greece, Athens: Institute of Electrical and Electronics Engineers, 
Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA, 2016, ISBN 978-1-5090-4239-5, pp. 1 - 8,
DOI: 10.1109/SSCI.2016.7850029.

8. Horzyk, A., How Does Generalization and Creativity Come into Being in Neural Associative Systems and How Does It 
Form Human-Like Knowledge?, Elsevier, Neurocomputing, Vol. 144, 2014, pp. 238 - 257, 
DOI: 10.1016/j.neucom.2014.04.046.

9. A. Horzyk, Innovative Types and Abilities of Neural Networks Based on Associative Mechanisms and a New Associative 
Model of Neurons - Invited talk at ICAISC 2015, Springer-Verlag, LNAI 9119, 2015, pp. 26 - 38,
DOI 10.1007/978-3-319-19324-3_3.

10. A. Horzyk, Human-Like Knowledge Engineering, Generalization and Creativity in Artificial Neural Associative Systems, 
Springer-Verlag, AISC 11156, ISSN 2194-5357, ISBN 978-3-319-19089-1, ISBN 978-3-319-19090-7 (eBook), Springer,
Switzerland, 2016, pp. 39 – 51, DOI 10.1007/978-3-319-19090-7.

University of Science 
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

http://ieeexplore.ieee.org/document/8008846/
doi: 10.1109/SSCI.2017.8285369
doi: 10.13140/RG.2.2.30881.92005
http://home.agh.edu.pl/~horzyk/achievements/ICAISC_2017_BPA_Horzyk.pdf
http://ieeexplore.ieee.org/document/7850029/
http://authors.elsevier.com/sd/article/S0925231214006535
http://www.springer.com/us/book/9783319193236
http://link.springer.com/chapter/10.1007/978-3-319-19324-3_3
DOI 10.1007/978-3-319-19090-7
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

