
Classic, Deep, Wide, Broad and Cascade Artificial
Neural Networks of the 1st and 2nd Generations

AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

ARTIFICIAL AND COMPUTATIONAL
INTELLIGENCE

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

Brains and Neurons
Brains and real neurons inspired scientists to develop
different models of artificial neurons and their networks.

The McCulloch-Pitts model of
neurons (1st generation)
implements only the most
fundamental mechanism of
weighted input stimuli integration
and threshold activation function
leaving aside issues of time,
plasticity and other factors.

Hebbian Learning Principle (the first one) states that „when an axon of [neuronal] cell A
is near enough to excite a [neuronal] cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency [w], as one of the cells firing B, B is increased”. [D. O. Hebb, 1949.]

This principle assumes that a connection between neuronal cells is weighted, and
the weight value [w] is a function of the number of times of presynaptic neuronal firing
that passes through this connection, which takes part in firing the postsynaptic neuron.

A B
w

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Hebb’s and Oja’s Learning Rule

Hebb’s learning rule defines the weight of the connections from neuron j to neuron i:

𝑤𝑖𝑗 = 𝑥𝑖 ∙ 𝑥𝑗
where 𝑥𝑖 and 𝑥𝑗 are the inputs equal to 0 or 1 for neurons i and j, where i≠j, updated

after each presentation of the training pattern, or after presentation of all (p) patterns:

𝑤𝑖𝑗 =
1

𝑝

𝑘=1

𝑝

𝑥𝑖
𝑘 ∙ 𝑥𝑗

𝑘

where 𝑥𝑖
𝑘 is the k-th input of the i-th neuron.

Generalized Hebb’s learning rule is defined for the postsynaptic response 𝑦𝑛:

∆𝒘 = 𝒘𝒏+𝟏 −𝒘𝒏 = 𝜂 ∙ 𝒙𝒏 ∙ 𝑦𝑛

Oja’s learning rule is a single-neuron special case of the generalized Hebbian algorithm

that is demonstrably stable, unlike Hebb’s rule.

The change in presynaptic weights w for the given output response 𝑦𝑛 of a neuron to

its input 𝑥𝑛 is:

∆𝒘 = 𝒘𝒏+𝟏 −𝒘𝒏 = 𝜂 ∙ 𝒘𝒏 𝒙𝒏 − 𝑦𝑛 ∙ 𝒘𝒏

where 𝜂 is a learning rate which can change over time, and n defines a discrete time

iteration.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

McCulloch-Pitts Model of Neurons

This model is also known as linear threshold gate using a linear step function

because it merely classifies the set of inputs into two different classes.

This model uses hard-switch (step) activation function f that makes the neuron

active when the weighted sum S of the input stimuli X achieves the threshold θ.

𝒚 = 𝒇 𝑺

=
𝟎 𝑺 < 𝜽
𝟏 𝑺 ≥ 𝜽

𝑺 =

𝒌=𝟏

𝑲

𝐱𝒌 ∙ 𝐰𝒌

𝑿 = 𝐱𝟏, … , 𝐱𝒌

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Hard-Switch Perceptron

This model originally employs a step activation function

which serves as a hard-switch between two states: {0, 1}

or {-1, 1} according to the used activation function f:

The decision boarder

determined by

the perceptron

Bias is used instead of the threshold.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Hard-Switch Perceptron Training

Supervised training of Hard-Switch Perceptron for a given training dataset
consisting of training samples {(X1, d1), …, (XN, dN)}, where dn is the desired
trained output value for the input training vector Xn, is defined as follows:
1. Randomly select small initial weights in the range of [-0.1, 0.1].
2. Stimulate the perceptron with the subsequent input training vector Xn,

where n = 1, …, N.
3. Compute a weighted sum S and an output value yn = f(S).
4. Compare the computed output value yk with the desired trained output

value dn.
5. If y n ≠ dn then Δwk += (dn – yn) · xk else do nothing for the online training

algorithm
or compute Δwk = 1/N · n=1,…,N (dn – yn) · xk for the offline training
algorithm.

6. Update the weights wk += Δwk for all k=0,…,K.
7. If the average iteration error E = 1/N · n=1,…,N |dn – yn| is bigger than a

user-specified error then start next iteration going to the step 2. The
algorithm should also stop after processing some given maximum number
of iterations.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Single and Multi-Layer Perceptrons

A group of perceptrons organized in a single layer can be used for the multi-classification
which means the classification of input vectors into a few classes simultaneously.
Such a group of perceptrons is called a single-layer perceptron network
which has a certain limitation of its adaptive capabilities.
For this reason, we usually use a multi-layer perceptron (MLP), i.e. the network that
consists of several layers containing a various number of perceptrons.
The first layer is called input layer, the last one is called output layer, and all the layers
between them are hidden as shown in the figure.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Brains and Neurons

The models of neurons using non-
linear continuous activation
functions (2nd generation) enable
us building multilayer neural
networks (e.g. MLP) and adapt such
networks to more complex (non-
linear) computational tasks.

Brains and real neurons inspired scientists to develop
different models of artificial neurons and their networks.

The use of hard-switch (step) activation functions limited the abilities of
the first neurons, so mathematicians proposed to use non-linear soft-switch
activation functions which were differentiable.

It allowed using gradient methods for adaptation (training) of such neurons.

This type of neuron models is the most frequently used one today, however,
it has serious limitations that will be discussed later.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Soft-Switch Perceptron

This model employs a continuous sigmoid activation function which serves as a
soft-switch between two states: (0, 1) or (-1, 1) according to the used function f:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Delta Rule for Training

The delta rule uses the soft-switch neurons which activation functions are
continuous to allow its differentiation. The delta is defined as the difference
between the desired dn and computed yn outputs: dn= dn – yn. This rule can be
derivate as a result of the minimization of the mean square error function:

𝑸 =
𝟏

𝟐

𝒏=𝟏

𝑵

𝒅𝒏 − 𝒚𝒏
𝟐 𝒘𝒉𝒆𝒓𝒆 𝒚𝒏 = 𝒇 𝑺 𝑺 =

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌

The correction of the weight for differentiable activation function f
is computed after:

∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝒇′ 𝑺 ∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

where 𝒇′ is a derivative of the function 𝒇.

When the activation function 𝒇 𝑺 =
𝟏

𝟏+𝒆−𝜶𝑺

is sigmoidal then we achieve the following
expression for updating weight values:

∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Introduction to Backpropagation
Algorithm for Multilayer Perceptrons

The continuous, soft-switching nature of the sigmoid function allows it to be
differentiable everywhere. This is necessary for several learning algorithms,
such as Backpropagation or Convolutional Learning.

Because of the limited adaptive capabilities of a single-layer perceptron
network, we use a multi-layer perceptron network (MLP) that consists of
a few layers containing a various number of neurons.

Multi-layer perceptron cannot use linear soft-switch activation function
because it can always be simplified to a single-layer linear perceptron network.

The MLP neural networks can be trained using Backpropagation Algorithm
(BP), which overcomes the single-layer shortcoming pointed out by Minsky and
Papert in 1969.

The BP algorithm is too slow to satisfy the machine learning needs, but it was
rehabilitated later on (in 1989) when it became the learning engine of the far
faster and the most popular Convolutional Deep Learning Neural Networks
(CNN). Therefore, this algorithm is crucial for various neuronal architectures!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
The backpropagation algorithm (BP) includes two main phases:

1. The input propagation phase propagates the inputs throughout all hidden layers to
the output layer neurons. In this phase, neurons make summation of weighted
inputs taken from the neurons in the previous layer.

2. The error propagation phase propagates back the errors (delta values) computed
on the outputs of the neural network. In this phase, neurons make summation of
weighted errors (delta values) taken from the neurons in the next layer.

The computed corrections of weights are used to update weights after:

• the computed corrections immediately after their computation during the online training,

• the average value of all computed corrections of each weight after finishing the whole training
cycle for all training samples during the offline (batch) training.

This algorithm is executed until
the mean square error 𝑸
computed for all training samples
is less than the desired value or
to a given maximum number of
cycles.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
First, the inputs x1, x2, x3 stimulate neurons in the first hidden layer.
The neurons compute weighted sums S1, S2, S3, S4, and output values y1, y2, y3, y4

that become inputs for the neurons of the next hidden layer:

𝑺𝒏 =
𝒌=1

3

𝐱𝒌 ∙ 𝐰𝒙𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
Second, the outputs y1, y2, y3 ,y4 stimulate neurons in the second hidden layer.
The neurons compute weighted sums S5, S6, S7, and output values y5, y6, y7

that become inputs for the neurons of the output layer:

𝑺𝒏 =
𝒌=1

4

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
Finally, the outputs y5, y6, y7 stimulate neurons in the output layer.
The neurons compute weighted sums S8 and S9 , and output values y8, y9

that are the outputs of the neural network as well:

𝑺𝒏 =
𝒌=5

7

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
Next, the outputs y8, y9 are compared with the desired outputs d8, d9 and
the errors δ8, δ9 are computed. These errors will be propagated back in order
to compute corrections of weights from the connected inputs neurons.

𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
The errors δ8 and δ9 are used for corrections of the weights of the inputs
connections y5, y6, y7, and propagated back along the input connections
to the neurons of the previous layer in order to compute their errors δ5, δ6, δ7:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌 𝜹𝒌 =
𝒏=8

9

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
Next, the errors δ5, δ6, and δ7 are used for corrections of the weights of the inputs
connections y1, y2, y3, y4, and propagated back along the input connections to the
neurons of the previous layer in order to compute their errors δ1, δ2, δ3, δ4:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌 𝜹𝒌 =
𝒏=5

7

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm
Finally, the errors δ1, δ2, δ3, δ4 are used for corrections of the weights of
the inputs x1, x2, x3:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Initialization and Training Parameters

The number of hidden layer neurons should be higher rather than lower to allow

the network to create the representation of various features.

However, for simple problems, one or two hidden layers may be sufficient.

The numbers of neurons in the following layers usually decreases. They can also be

fixed experimentally or using evolutional or genetic approaches that will be discussed

later during these lectures and implemented during the laboratory classes.

Initialization of weights is accomplished by setting each weight to

a low-valued random value selected from the pool of random numbers,

say in the range from -1 to +1, or even smaller from -0.1 to +0.1.

The learning rate  should be adjusted stepwise ( < 1), considering stability

requirements (we typically start from  = 0.1). However, since convergence is

usually rather fast when the error becomes very small, it is advisable to reinstate 

to its initial value before proceeding. We have many strategies and methods

how to change this crucial parameter over the training process.

In order to avoid the BP algorithm from getting stuck (learning paralysis) at a local

minimum or from oscillating the modification of learning rate should be employed.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Vanishing Gradient Problem
When using gradient-based learning strategies for many layers (e.g. MLPs)
we usually come across the problem of vanishing gradients, because derivatives
are always in range of [0, 1], so their multiple multiplications lead to very small
numbers producing very small changes of weights in the neuron layers that are
far away from the output of the MLP network.

This problem can be solved using pre-training and
fine-tuning strategy, which first trains the model layer
after layer in the unsupervised way (e.g. using deep
auto-encoder) and then we use backpropagation
algorithm to fine-tune the network.

Hinton, Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science 2006

Hence, if we like to create
a deep multilayer MLP topology,
we have to deal with the problem of
vanishing gradient problem.

To overcome this problem, we
should construct the deep structure
gradually. This will be one of the
goals of our laboratory classes.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Rectified Linear Units (ReLU)

Rectified Linear Units (ReLU) eliminates the problem of vanishing gradients
(i.e. derivatives are always in range of [0, 1], so their multiple multiplications lead to
very small numbers producing very small changes of weights in the neuron layers that
are far away from the output of the MLP network)
when we use many hidden layers (e.g. in deep neural networks).

ReLU units are defined as: 𝑓 𝑆 = max(0, S) instead of using the logistic function.

The strategy using ReLU units is based on training of robust features thanks to sparse
(less frequent) activations of these units because when the function value is equal to 0
then we do not propagate the signal to the connected neurons and we do not need to
propagate the delta back throughout such neurons as well during backpropagation.

The other outcome of using ReLU is that the training process is also typically faster.

Nair, Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. ICML 2010

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Overcome Training Difficulties of BP

In order to overcome training difficulties of backpropagation algorithm we can use:

• Bias - an extra constant input (say x0=1) that is weighted (w0,n) and
somehow resembles the threshold used in hard-switch neuron models.

• Momentum – that usually reduces the tendency to instability and avoids fast
fluctuations (𝟎 < 𝜶 < 𝟏), but it may not always work or could harm convergence:

∆𝐰𝒌,𝒏
𝒑

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝜼 ∙ 𝜹𝒏 ∙ 𝒇′

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌 = 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

• Smoothing – that is also not always advisable for the same reason:

∆𝐰𝒌,𝒏
𝒑

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝒇′

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏

+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

where p is the training period (cycle) of training samples.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Overcome Convergence Problems of BP
To overcome convergence problems of the backpropagation algorithm we can:

• Modifying the step size (learning rate ) during the adaptation process.

• Start the training process many times with various initial weights.

• Use various network architectures, e.g. change the number of layers
or the number of neurons in these layers.

• Use a genetic algorithm or an evolutional approach
to find a more appropriate architecture of a neural network.

• Switching between off-line and on-line training strategies because
the off-line strategy is faster and more stable, but the on-line strategy
better escapes local minima.

• Reduce the number of inputs to overcome the curse of dimensionality problem.

• Use sparse connections, not all-to-all between subsequent layers.

• Change the range of the sigmoid function from [0, 1] to [-1, 1].

• Freeze weights in a previously trained layer or subnetwork.

• Use cross-validation to avoid the problem of over-fitting.

• Use rectified linear units (ReLU), 𝑓 𝑆 = max(0, S).

• Use dropout regularization technique.

• Use deep learning architectures and strategies.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

Cross-Validation strategy allows us to use all available patterns for training and
validation alternately during the training process.

„K-fold” means that we divide all training patterns into K disjoint more or less
equinumerous subsets. Next, we train a selected model on K-1 subsets K-times and
also test this model on an aside subset K-times.

The validation subset changes in the course of the next training steps:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

We use different K parameters
according to the number of training
patterns:

K is usually small (3  K  10) for
numerous training patters.

It lets us validate the model better
if it is tested on a bigger number of
training patterns.

It also reduces the number of training
steps that must be performed.

K is usually big (10  K  N)
for less numerous training datasets,
where N is the total number of
all training patterns.

It allows us to use more patterns
for training and achieve
a better-fitted model.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

N-fold Cross-Validation
N-folds Cross-Validation (one-leave-out strategy) is rarely used because
the N-element dataset has to be trained N times. The following disadvantage is
that we use only a single pattern in each step for validation of the whole model.
Such a result is not representative of the entire collection and the CI model.
This solution is sometimes used for tiny datasets.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation Selection Strategies

The way of selection of the test patterns in each training step should be proportional
and representative from each class point of view regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:

• Randomly

• Grouped by categories (classes)

• Ordered by values of their attributes

• Grouped by classes and ordered by values of their attributes

• In an unknown way

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation Random Strategy

The test patterns can also be selected randomly with or without repetition:

The choice between various options should be made on the basis of the initial order or
disorder of patterns of all classes in the dataset to achieve representative selection of
the test patterns used for the validated model.
Patterns used for validation should not be repeated in successive test groups, only that
we use a less reliable and simpler approach to random choosing of validation patterns.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Deep Learning Strategies and Networks
Deep learning strategies assume the ability to:

• update only a selected part of neurons (drop-out) that respond best to the given
input data, so the other neurons and their parameters (e.g. weights, thresholds) are
not updated,

• avoid connecting all neurons between successive layers, so we do not use all-to-all
connection strategy known and commonly used in MLP and other networks, but we
try to allow neurons to specialize in recognizing subpatterns that can be extracted
from the limited subsets of inputs,

• create connections between various layers and subnetworks, not only between
successive layers

• use many subnetworks that can be connected in different ways in order to allow
neurons from these subnetworks to specialize in defining or recognizing of limited
subsets of features or subpatterns,

• let neurons specialize and not overlap represented regions and represent the same
features or subpatterns.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Wide (Broad) versus Deep Neural Networks

Wide (Broad) Neural Networks assume to:

• Add neurons in one hidden layer until the results of training will be satisfactory.

• During this kind of training we sometimes freeze the weights of the already added
neurons and adapt only the currently added neuron. This makes the training process
faster, however not necessarily better.

• Wide (broad) networks adapt usually much faster than deep networks.

• We can develop:

• Wide neural network models (adding new neurons in the same layer),

• Deep neural network models (adding new layers of neurons in the various layer),

• Wide & deep network models (combining these two approaches),

• Subnetworks that specialize in representation of a limited subset of features and next
combined these subnetworks into one big neural network.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

BMLP and FCC Neural Networks

Fully Connected Cascade (FCC) Neural Networks assume to:

• add new neurons in the next hidden layers (each hidden layer consists only from one
neuron) and connect them to all inputs and all neurons from the previous layers.

BMLP Neural Networks assume to:

• connect neurons not only to the previous layer neurons but additionally to all inputs:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Combined Deep Structures of Neural Networks
Gradually developed Deep Neural Networks assume to:

1. Train small neural network architecture (usually with one hidden layer) until this network
decreases its training error.

2. Create the next subnetwork and connect it again to all raw inputs and additionally to outputs
of the previously created and trained subnetworks which weights can be frozen or left for next
adaptation together with the newly created subnetwork.

3. Repeat step 2 until the network achieves the satisfactory low level of the error function.

Optionally, you can freeze weights in a previously trained layer or subnetwork.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Plastic Associative Strategies of
Real Neurons

Let us use the biologically optimized solution!

We can find a solution in

the brain structures where

data are stored together

with their relations.

 Neurons can represent any subset of

input data combinations which activate them.

 Neuronal plasticity processes automatically

connect neurons and reinforce connections

which represent related data and objects.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Neuron Models of
the 3rd and 4th Generations

3. The spiking models of
neurons enriched this model
with the implementation of
the approach of time which is
very important during stimuli
integration and subsequent
processes modeling. 4. The associative pulsing models (APN)

of neurons produce a series of pulses
(spikes) in time which frequency
determines the association level.
Moreover, they enrich the model with
the automatic plastic mechanism
which let neurons to conditionally
connect and configure associative
neural structures representing
data, objects, their sequences, and
relationships between them.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Bibliography and Literature
1. Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, In Springer Series on

Bio- and Neurosystems, Vol 7., Springer, 2019.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-1-59327-741-3 or PWN 2018.

3. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

4. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

5. Convolutional Neural Network (Stanford)

6. Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014

7. IBM: https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html

8. NVIDIA: https://developer.nvidia.com/discover/convolutional-neural-network

9. A. Horzyk, J. A. Starzyk, J. Graham, Integration of Semantic and Episodic Memories, IEEE Transactions on Neural
Networks and Learning Systems, Vol. 28, Issue 12, Dec. 2017, pp. 3084 - 3095, 2017, DOI: 10.1109/TNNLS.2017.2728203.

10. A. Horzyk, J.A. Starzyk, Multi-Class and Multi-Label Classification Using Associative Pulsing Neural Networks,
IEEE Xplore, In: 2018 IEEE World Congress on Computational Intelligence (WCCI IJCNN 2018), 2018, (in print).

11. A. Horzyk, J.A. Starzyk, Fast Neural Network Adaptation with Associative Pulsing Neurons, IEEE Xplore, In: 2017 IEEE
Symposium Series on Computational Intelligence, pp. 339 -346, 2017, DOI: 10.1109/SSCI.2017.8285369.

12. A. Horzyk, K. Gołdon, Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers,
LNCS, In: 27th International Conference on Artificial Neural Networks (ICANN 2018), 2018, (in print).

13. A. Horzyk, Deep Associative Semantic Neural Graphs for Knowledge Representation and Fast Data Exploration,
Proc. of KEOD 2017, SCITEPRESS Digital Library, pp. 67 - 79, 2017, DOI: 10.13140/RG.2.2.30881.92005.

14. A. Horzyk, Neurons Can Sort Data Efficiently, Proc. of ICAISC 2017, Springer-Verlag, LNAI, 2017, pp. 64 - 74,
ICAISC BEST PAPER AWARD 2017 sponsored by Springer.

15. Horzyk, A., How Does Generalization and Creativity Come into Being in Neural Associative Systems and
How Does It Form Human-Like Knowledge?, Elsevier, Neurocomputing, Vol. 144, 2014, pp. 238 - 257,
DOI: 10.1016/j.neucom.2014.04.046.

University of Science
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
http://ieeexplore.ieee.org/document/8008846/
doi: 10.1109/SSCI.2017.8285369
doi: 10.13140/RG.2.2.30881.92005
http://home.agh.edu.pl/~horzyk/achievements/ICAISC_2017_BPA_Horzyk.pdf
http://authors.elsevier.com/sd/article/S0925231214006535
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

