
AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php
https://jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://numpy.org/
https://scikit-image.org/
https://pandas.pydata.org/
https://mxnet.apache.org/
https://matplotlib.org/
https://numpy.org/
https://scikit-image.org/
https://pandas.pydata.org/
https://mxnet.apache.org/
https://matplotlib.org/
https://www.tensorflow.org/guide/effective_tf2
https://keras.io/
https://pytorch.org/
https://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
https://lasagne.readthedocs.io/en/latest/
https://deeplearning4j.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://pypi.org/project/paddlepaddle/
https://www.tensorflow.org/guide/effective_tf2
https://keras.io/
https://pytorch.org/
https://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
https://lasagne.readthedocs.io/en/latest/
https://deeplearning4j.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://pypi.org/project/paddlepaddle/

Jupyter is open, free and very popular:

https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php

Google Colab is an alternative notebook supported by Google using
a Google cloud where the computation can be executed (< 8 hours for free):

https://colab.research.google.com/notebooks/intro.ipynb
http://home.agh.edu.pl/~horzyk/index-eng.php

Keras developed by François Chollet:
• Is an official high-level and high-performing API of TensorFlow used to

specify and train different programs.

• Runs on top of TensorFlow, Theano, MXNet, or CNTK.

• Builds models by stacking layers and connecting graphs.

• Is actively developed by thousands of contributors across the world,
e.g. Microsoft, Google, Nvidia, AWS.

• Is used by hundred thousands of developers, e.g. NetFlix, Uber, Google,
Huawei, NVidia.

• Has a good amount of documentation and easy to grasp all concepts.

• Supports GPU both of Nvidia and AMD and runs seamlessly on CPU and
GPU.

• Is multi-platform (Python, R) and multi-backend.

• Allows for fast prototyping and leaves freedom to design and
architecture

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras:

• Follows best practices for reducing cognitive load

• Offers consistent and simple APIs.

• Minimizes the number of user actions required for common use
cases.

• Provides clear feedback upon user errors.

• More productive than many other frameworks.

• Integrates with lower-level Deep Learning languages like
TensorFlow or Theano.

• Implements everything which was built-in the base language,
i.e. TensorFlow.

• Produces models using GPU acceleration for various systems like
Windows, Linux, Android, iOS, Raspberry Pi.

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras is based on Computational Graphs like:

Where “a” and “b” are inputs used to compute “e” as
an output using intermediate variables “c” and “d”.

Computational Graphs allow expressing complex
expressions as a combination of simple operations.

http://home.agh.edu.pl/~horzyk/index-eng.php

We can create various sequential models which linearly stack layers and can be used
for classification networks or autoencoders (consisting of encoders and decoders) like:

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras models can:
• Use multi-input, multi-output and arbitrary static graph topologies,

• Branch into two or more submodels,

• Share layers and/or weights.

http://home.agh.edu.pl/~horzyk/index-eng.php

We can execute Keras model in two ways:

1. Deferred (symbolic)

• Using Python to build a computational graph, next
compiling and executing it.

• Symbolic tensors don’t have a value in the Python
code.

2. Eager (imperative)

• Here the Python runtime is the execution runtime,
which is similar to the execution with Numpy.

• Eager tensors have a value in the Python code.

• With the eager execution, value-dependent dynamic
topologies (tree-RNNs) can be constructed and used.

http://home.agh.edu.pl/~horzyk/index-eng.php

1. Prepare Input (e.g. text, audio, images, video) and specify
the input dimension (size).

2. Define the Model: its architecture, build the computational
graph, define the sequential or functional style of the model
and the kind of the network (MLP, CNN, RNN etc.).

3. Specify the Optimizers (Stochastic Gradient Descent (SGD),
Root Mean Square (RMSprop), Adam etc.) to configure the
learning process.

4. Define the Loss Function (e.g. Mean Square Error (MSE),
Cross Entropy, Hinge) for checking the accuracy of the
achieved prediction to adapt and improve the model.

5. Train using training data, Test using testing/validation data,
and Evaluate the Model.

http://home.agh.edu.pl/~horzyk/index-eng.php

To start working with TensorFlow and Keras in Jupyter Notebook, you have to
install them using the following commands in the Anaconda Prompt window:

conda install pip # install pip in the virtual environment

pip install --upgrade tensorflow # for python 2.7

pip3 install --upgrade tensorflow # for python 3.*

It is recommended to install tensorflow with parameter –gpu to use GPU unit

and make computations faster:

pip install tensorflow-gpu

$ pip install Keras

If successfully installed check in Jupyter Notebook the version of the

TensorFlow using:

http://home.agh.edu.pl/~horzyk/index-eng.php

We will try to create and train a simple Convolutional Neural Network (CNN) to
tackle with handwritten digit classification problem using MNIST dataset:

Each image in the MNIST dataset is 28x28 pixels and contains a centred,
grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten
classes using ten output neurons of the CNN network.

https://victorzhou.com/blog/intro-to-cnns-part-1/
http://yann.lecun.com/exdb/mnist/
http://home.agh.edu.pl/~horzyk/index-eng.php

Jupyter Notebook

The Jupyter Notebook:
• is an open-source web application that allows you to create and share

documents that contain live code, equations, visualizations, and narrative text;

• includes data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

We will use it to demonstrate various algorithms, so you are asked to install it.

Jupyter in your browser Install a Jupyter Notebook

http://home.agh.edu.pl/~horzyk/index-eng.php
https://jupyter.org/try
https://jupyter.org/install.html

Jupyter Notebook & Anaconda

Install Jupyter using Anaconda with built in Python 3.7+
• It includes many other commonly used packages for scientific computing, data

science, machine learning, and computational intelligence libraries.

• It manages libraries, dependencies, and environments with Conda.

• It allows developing and training various machine learning and deep learning
models with scikit-learn, TensorFlow, Keras, Theano etc.

• It supplies us with data analysis including scalability and performance with Dask,
NumPy, pandas, and Numba.

• It quickly visualizes results with Matplotlib, Bokeh, Datashader, and Holoviews.

And run it at the Terminal
(Mac/Linux) or Command
Prompt (Windows):

https://www.anaconda.com/distribution/
https://jupyter.readthedocs.io/en/latest/running.html#running
http://home.agh.edu.pl/~horzyk/index-eng.php

Anaconda Cloud

http://home.agh.edu.pl/~horzyk/index-eng.php
https://anaconda.org/adrianhorzyk/dashboard

Jupyter Notebook & PyCharm

It is recommended to install PyCharm for Anaconda:

https://www.jetbrains.com/pycharm/promo/anaconda/
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.jetbrains.com/pycharm/download/download-thanks.html?code=PCC&platform=windowsAnaconda

Jupyter Notebook

PyCharm is a python IDE for Professional Developers
• It includes scientific mode to interactively analyze your data.

https://www.jetbrains.com/pycharm/
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.jetbrains.com/pycharm/

Jupyter Notebook Dashboard

Running a Jupyter Notebook
in your browser:
• When the Jupyter Notebook

opens in your browser, you will see
the Jupyter Notebook Dashboard,
which will show you a list of
the notebooks, files, and
subdirectories in the directory
where the notebook server was
started by the command line
„jupyter notebook”.

• Most of the time, you will wish to
start a notebook server in the highest
level directory containing notebooks.
Often this will be your home
directory.

http://home.agh.edu.pl/~horzyk/index-eng.php

Starting a new Python notebook

Start a new Python notebook:
• Clicking New → Python 3

• And a new Python project in the Jupyter Notebook will be started:

http://home.agh.edu.pl/~horzyk/index-eng.php

Useful Packages and Libraries

In the next assignments and examples, we well use the following packages:

• numpy is the fundamental package for scientific computing with Python.

• h5py is a common package to interact with a dataset that is stored on an H5 file.

• matplotlib is a famous library to plot graphs in Python.

• PIL and scipy are used here to test your model with your own picture at the end.

They must be imported:

https://szyzjsuseqjcgnardvvexv.coursera-apps.org/notebooks/Week%202/Logistic%20Regression%20as%20a%20Neural%20Network/www.numpy.org
http://www.h5py.org/
http://matplotlib.org/
http://www.pythonware.com/products/pil/
https://www.scipy.org/
http://home.agh.edu.pl/~horzyk/index-eng.php

Import of libraries and setting of the parameters:

http://home.agh.edu.pl/~horzyk/index-eng.php

Defining of hyperparameters and the function presenting results:

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample training examples from MNIST set (handwritten digits):

http://home.agh.edu.pl/~horzyk/index-eng.php

Loading training data, changing the shapes of the matrices storing training
and test data, transformation of the input data from [0, 255] to [0.0, 1.0]
range, and conversion of numeric class names into categories:

http://home.agh.edu.pl/~horzyk/index-eng.php

Building a neural network structure (computational model):

http://home.agh.edu.pl/~horzyk/index-eng.php

Compilation, optimization, data generation, augmentation and learning:

http://home.agh.edu.pl/~horzyk/index-eng.php

Model evaluation, convergence drawing and error charts:

http://home.agh.edu.pl/~horzyk/index-eng.php

Model evaluation, convergence drawing and error charts:

Here is the presentation of only 3 learning epochs!

We usually train such networks for several dozen epochs,

getting better results (accuracy) and smaller errors!

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

Generation of summaries of the learning process

http://home.agh.edu.pl/~horzyk/index-eng.php

Generation of a confusion (error) matrix in the form of a heat map:

http://home.agh.edu.pl/~horzyk/index-eng.php

Counting and filtering incorrectly classified test data:

http://home.agh.edu.pl/~horzyk/index-eng.php

247 out of 10,000
incorrectly classified
test patterns:

One might wonder
why the network
had difficulty in
classifying them?

Of course, such
a network can be
taught further to
achieve a smaller
error!

This network was
taught only for
3 epochs!

http://home.agh.edu.pl/~horzyk/index-eng.php

Now, let’s try to train the network for 50 epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Graphs of learning convergence (accuracy) and error minimization (loss):

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more patterns migrate
towards the diagonal (correct classifications) from other regions:

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples for
all individual classes increase:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

http://home.agh.edu.pl/~horzyk/index-eng.php

The number of misclassified examples after 50 epochs compared to
3 epochs has dropped from 247 to 37 out of 10,000 test examples,
resulting in an error of 0.37%. Here are the misclassified examples:

http://home.agh.edu.pl/~horzyk/index-eng.php

Classification of images 32 x 32 pixels to 10 classes (3 learning epochs):

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

Compilation, optimization , data augmentation (generation) and training:

http://home.agh.edu.pl/~horzyk/index-eng.php

Results of training after tree training epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Confusion (error)
martrix after three
training epochs:

We usually train such
networks for min. a few
dozens of epochs to get
satisfying results ...

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s train the network longer (50 epochs, a few hours) and as you can see the
error (val_loss) systematically decreases, and the accuracy (val_acc) increases:

http://home.agh.edu.pl/~horzyk/index-eng.php

The graphs also show this convergence process:

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more examples migrate
towards the diagonal (correct classifications) from other regions:

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples
for all individual classes increase:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

http://home.agh.edu.pl/~horzyk/index-eng.php

Examples of misclassifications after 50 training epochs for a test set
of 10,000 examples: The number of misclassifications decreased
from 7929 after 3 epochs to 1615 after 50 epochs.

We can see that in the case of this training set, the convolution
network should be taught much longer (16.15% of incorrect
classifications remain) or the structure or the hyperparameters of
the model should be changed.

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample misclassified examples:

0

1

2

3

4

5

6

7

8

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample misclassified examples:

0

1

2

3

4

5

6

7

8

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s start with powerful computations!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?

http://home.agh.edu.pl/~horzyk/index-eng.php

Bibliography and Literature
1. Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, In Springer Series

on Bio- and Neurosystems, Vol 7., Springer, 2019.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-1-59327-741-3 or PWN
2018.

3. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

4. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

5. Convolutional Neural Network (Stanford)

6. Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014

7. IBM: https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html

8. NVIDIA: https://developer.nvidia.com/discover/convolutional-neural-network

9. JUPYTER: https://jupyter.org/

10. https://www.youtube.com/watch?v=XNKeayZW4dY

11. https://victorzhou.com/blog/keras-cnn-tutorial/

12. https://github.com/keras-team/keras/tree/master/examples

13. https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8

14. https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html

15. http://coursera.org/specializations/tensorflow-in-practice

16. https://udacity.com/course/intro-to-tensorflow-for-deep-learning

17. MNIST sample: https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-

f9a1021f6ef0

18. Heatmaps: https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-

4478ef15d87f

University of
Science and
Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.youtube.com/watch?v=XNKeayZW4dY
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

