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Knowledge-Based Inferences

Knowledge-based associative systems storing relationships help us 

to find appropriate (e.g. most similar) data, objects, and their 

sequences quickly and produce many valuable inferences

about the data and their relationships that 

have not to be searched exhaustively.

Knowledge is a fundamental element of smart

inferences that is produced by human intelligence.

Knowledge draws from the ability to store, use and 

generalize about relationships between remembered 

objects, their features, classes, and possible actions.

Intelligent systems (like our brains) cannot work without knowledge about 

the matter where they should act smartly, react context-sensitively and 

draw intelligent conclusions about the environment and the objects in it.

Relationships can be stored and represented by the associative systems that can 

automatically associate representations of objects, their features, and sequences,

and allow for efficient analyses and inference about data and relationships.

http://home.agh.edu.pl/~horzyk/index-eng.php


Data Tables
We mostly use tables to store, organize and manage data:

but common relationships like identity, similarity, neighborhood,
minima, maxima, or counts of duplicates must be found.

Moreover, the more data we have, the more time losses we face!

Tabular data organization does not allow us to develop brain-like 
knowledge-based intelligent systems that associate data
together using a more abundant number of relationships

which is necessary for efficient reasoning!
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Relational Databases

Is it wise to lose the majority of the 
computational time for searching

for data relations?!

Relational databases relate stored data only horizontally, not vertically, 
so we still  have to search for duplicates, neighbor, or similar values and objects.

Even horizontally, data are not related perfectly and many duplicates of 
the same categories occur in various tables which are not related anyhow.

In result, we need to lose a lot of computational time to search out
necessary data relations to compute results or make conclusions.

http://home.agh.edu.pl/~horzyk/index-eng.php


Brain Structures

Why the brain structures look 
so complex and irregular?

Brains consist of complex 
graphs of variously connected 
neurons and other elements.

Neurons and their connections represent input data 
and various relationships between them, defining
objects and similarities, proximities, sequence,
chronology, context, and establishing 
causal relationships between them.

is the main source of inspiration for developing AI!
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AGDS
Associative Graph Data Structure

Connections represent various relations between 
AGDS elements like similarity, proximity, 

neighborhood, definition etc.

Attributes

Attributes Aggregated 

and Counted 

Values

Objects

AGDS
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AGDS
Associative Graph Data Structure

Associative Graph Data Structures consist of: 

➢ Nodes representing single-value data, ranges, subsets, objects, 

clusters, classes etc.

➢ Edges representing various relations between nodes like similarity, 

definition, sequence, neighborhood etc.

We can use it to represent any tabular data without any information 

loss, i.e. the transformation of tables into AGDS structure is reversible, 

so we can always transform back data to the tabular structure.

This transformation enriches the set of directly represented 

relationships between data stored in the transformed tables.

http://home.agh.edu.pl/~horzyk/index-eng.php
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Associative Transformation

The associative transformation process of a table into an AGDS structure starts 

from the creation of an attributes node and the nodes representing labels of 

the attributes. Labels of attributes will be linked to the unique attribute values 

that will be sorted and counted during the insertion of next values.

AGDS
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Associative Transformation

To the previously created backbone structure, the first object (record, entity) 

O1 is added together with all defining features.

The features and the object are connected mutually and to the label nodes of 

the attributes.

AGDS
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Associative Transformation

The second object is added to the AGDS structure and all its defining features 

are represented by values nodes that are connected to attribute labels, this 

new object, and neighbor values nodes which were already in this structure.

AGDS
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Associative Transformation

During the addition of the next object, we can notice that not all defining 

features have created new values nodes (e.g. 1.6 of the petal width or 

Versicolor of a class label) because some values had been already represented 

in this structure, so the duplicates (in blue) have been aggregated and counted.

AGDS
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Associative Transformation

The following object creates some new values nodes and uses two of the 

existing values nodes, incrementing their counters of aggregated duplicates.

The aggregation process od duplicates is very important from the knowledge 

representation point of view because it allows to draw deeper conclusions.

AGDS
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Associative Transformation

Object O5 represents a different (new) class Virginica, so a new node 

representing this class has been added. Notice, that symbolic (non-numerical) 

values are not connected as numerical features that are always connected to 

their neighbors and the connections are weighted.

AGDS
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Associative Transformation

The more objects we add to this structure, the less number of new values 

nodes are added when the transformed table (dataset) contains duplicates. 

All object nodes connected to the mutually connected values nodes to other 

object nodes automatically create indirect  associations between such objects.

AGDS
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Associative Transformation

In this case, object O7 is added without addition of any new values nodes 

because all of them have been already added to this structure, so only new 

connections to the existing nodes are added, and their counters of represented 

duplicates are incremented. It saves memory when there are many duplicates!

AGDS
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Associative Transformation

Object O8 is also connected to the values node 5.0 which now defines five 

objects (O4, O5 and O8), so there is a visible similarity between these objects. 

The similarity between objects O5 and O8 is bigger than between O4 and O8 

because there is another shared feature (Virginica) between the first pair!

AGDS
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Associative Transformation

Object O9 has added only one new feature to this structure because the other 

feature values had been already represented.

Now, the transformation process for this small table is already finished,

and we can try to compare these structures and take advantages of this graph!

AGDS
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Comparison of Structures

Which structure of the two presented do you like more?

The tabular structure represents data and very basic relations between them.

The AGDS structure additionally represents neighborhood, order, similarity, 

minima, maxima, counts of duplicates, number of unique values, and ranges of 

all features.

We will not lose time

for searching for

such relationships!
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Alternative Construction of AGDS
We can create this structure in an alternative way when the dataset (table) is 

static and does not change in time (no records are added, removed or updated).

AGDS
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Efficiency of Data Access

Features of each attribute can be organized using: sorted tables, sorted lists, 

hash tables or AVB+trees to provide quick access to them!

Notice, that the number of unique features for each attribute is less or equal to 

the number of all features in the dataset (table).
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AVB+Trees
Sorting Aggregated-Value B-Trees

AVB+trees are typically much smaller in size and height than B-trees 

and B+trees thanks to the aggregations of duplicates and not using 

any extra internal nodes as signposts as used in B+trees.

An AVB+tree is a hybrid structure that represent sorted list of elements 

which are quickly accessed via self-balancing B-tree structure.

Elements aggregate and count up all duplicates of represented values.

http://home.agh.edu.pl/~horzyk/index-eng.php


Capacity of AVB+Trees
accelerating the speed of search in AGDS

The same number of elements can be stored by
various AVB-tree structures,

e.g. 11 or 17 elements!

Capacities of elements of the smallest AVB+trees.

http://home.agh.edu.pl/~horzyk/index-eng.php


Properties of AVB+trees

Efficient hybrid structure!

✓ Each tree node can store one or two elements.
✓ Elements aggregate representations of duplicates 

and store counters of aggregated duplicates of values.
✓ Elements are connected in a sorted order, so it is 

possible to move between neighbor values very quickly.
✓ AVB+trees do not use extra nodes to organize access to the 

elements stored in leaves as B+trees.
✓ AVB+trees use all advantages of B-trees, B+trees, 

and AVB-trees removing their inconvenience.
✓ They implement common operations like Insert, Remove, 

Search, GetMin, GetMax, and can be used to compute Sums, 
Counts, Averages, Medians etc. quickly.

✓ They supply us with sorted lists of elements which 
are quickly accessible via this tree structure and thanks 
to the aggregations of duplicates that substantially 
reduce the number of elements storing values.

http://home.agh.edu.pl/~horzyk/index-eng.php


AGDS + AVB+trees
as a still more efficient solution

AVB+trees implemented to AGDS structures
make the data access faster especially for

Big Data datasets and databases.

Attributes

Attributes

Aggregated 

and Counted 

Values

Objects

AGDS combined with AVB+trees

AVB+tree

AVB+tree

AVB+trees

Neighbor 

connections 

are weighted:

http://home.agh.edu.pl/~horzyk/index-eng.php


Comparison of AGDS 
with AGDS + AVB+trees

When data contain many duplicates
we practically achieve the constant access

to all data stored in AGDS + AVB+trees.

AGDS + AVB+treesAGDS

http://home.agh.edu.pl/~horzyk/index-eng.php


Comparisons of Efficiencies

AVB-trees and AVB+trees outperform commonly used 
B-trees and B+trees in most cases!

The achieved results proved the concept that AVB+trees are always faster 

than B+trees commonly used in databases, and AVB-trees are usually 

faster than B-trees when data contain more than 30% of duplicates.

The efficiencies of the same operations on the same datasets from UCI ML 

Repository were compared on B-trees, B+trees, AVB-trees, and AVB+trees.

http://home.agh.edu.pl/~horzyk/index-eng.php


Inferences on AGDS
combined with AVB+trees

We do not need to search for common relations
in many (nested) loops but we simply go

along the connections and get results.

http://home.agh.edu.pl/~horzyk/index-eng.php


Inferences on AGDS
combined with AVB+trees

Such structures can also be used for very fast 
recognition, clustering, classification, searching 

for the most similar objects etc.

http://home.agh.edu.pl/~horzyk/index-eng.php


AGDS and Local Data Analyses
AGDS structures allow for the search in a limited and a small region where neighbors 

(the most similar) objects can be found. In can be applied to make KNN more efficient.

K Nearest 

Neighbors
are searched locally in 

the neighborhood of 

the classified sample.

AGDS structure

created for two

selected attributes

and 100 training

samples of Iris data.
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We can save a lot of

computational time

using created 

associations

in the AGDS!
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AGDS and Local Data Analyses
Classification time for the kNN+AGDS classifier is almost constant regardless of the 

size of the used training data sets, while classic kNN classification time grows linearly.

The size of training 

data and the number of 

attributes do not 

substantially influence 

kNN+AGDS efficiency 

as it is in the classic 

kNN classifiers. 

Therefore, the use of 

associative structures 

is very beneficial.
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Example of Associative Inferences

Let’s have

a table of

data about

candidates

for employ-

ment in the

company.

We want to 

find the best 

candidate 

for the open 

position.

We have five

candidates!

Who is the 

best one?!

http://home.agh.edu.pl/~horzyk/index-eng.php


Setup of the AGDS structure

𝑥𝑛 = ෍

𝑘=1

𝑠𝑛

𝑥𝑘 ∙ 𝑤𝑘

Reciprocal edges are created between value 

nodes 𝑉𝑖
𝑎𝑘

and 𝑉𝑗
𝑎𝑘

representing similar values 

𝑣𝑖
𝑎𝑘

and 𝑣𝑗
𝑎𝑘

of the same attribute 𝑎𝑘 and 

forward stimuli in both directions with the 

same weight:

𝑤
𝑣𝑖

𝑎𝑘
,𝑣𝑗

𝑎𝑘 = 1 −
ቚ𝑣𝑖

𝑎𝑘
− ቚ𝑣𝑗

𝑎𝑘

𝑟𝑎𝑘

where

𝑟𝑎𝑘
= 𝑣𝑚𝑎𝑥

𝑎𝑘
− 𝑣𝑚𝑖𝑛

𝑎𝑘

is a variation range of values of the attribute 𝑎𝑘.

The weight of the edge for the signal passing 

from the value node 𝑉𝑖
𝑎𝑘

to 

the object node 𝑂𝑛 can be calculated after:

𝑤𝑂𝑚,𝑂𝑛
=

1

𝜃𝑛

The stimuli passing through the edge 

in the opposite direction 

𝑤
𝑂𝑛,𝑣𝑖

𝑎𝑘 = 1, 𝑤𝑂𝑛,𝑂𝑚
= 1

The charging level x of the internally stimulated node is defined as a weighted sum (as in the 2nd ANN generation): 

where the threshold 𝜽𝒏 is the number of values and objects that define the object nodes 𝑂𝑛 and activate this node.
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Example of Associative Inferences

First, we create AGDS 

structure for a given 

inference task.

The JobOffer node 

represents the input 

conditions, e.g.

the skills of the 

demanded candidate.

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Associative Inferences

We start the inference 

from the JobOffer node 

that represents 

the skills of the 

demanded candidate.

Next, we go along 

the connections to 

the values nodes and 

further to similar 

values nodes and 

objects nodes defined 

by them. 
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Example of Associative Inferences

We compute the associative 

strengths of the connected 

nodes multiplying the stimuli 

by the weights in the BFS 

order starting from the

JobOffer node. The BFS search 

algorithm does not go through 

all AGDS nodes, but it 

gradually stretches the BFS 

tree over the mostly associated 

nodes starting from the node 

defining the input criteria 

and finishing in the nodes 

representing results.

The nodes are stimulated 

until they do not achieved 

their stimulation thresholds.

Next, the destination nodes 

present the answers to 

the question about their fitting 

strengths to the JobOffer node.
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Example of Associative Inferences
Compare which structure is more suitable for inferences? Data analysis stored 

in tables are time-consuming, labor-intensive and resource-consuming. 
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Example of Associative Inferences

AGDS graph stimulates

nodes according to the 

associations strengths.

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Associative Inferences

We follow with 

stimulation of the next 

open nodes in the BFS 

order (we gradually 

span BFS activation tree 

on the AGDS graph).
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Example of Associative Inferences

We finish when 

the appropriate number 

of the destination 

(output) nodes are 

activated and closed.

Next, we can find out 

the final inference 

on the basis of reading 

the stimulation strength 

of those destination 

nodes which determine 

the associative strength 

to the input conditions.
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Efficiency of Associative Inferences

The heatmaps present the comparison of the time efficiencies of searching for 

ideal candidate using:

A) AGDS structures and

B) classic tabular structures

for different number of candidates and considered skills.
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AVB+trees Operations

AVB+tree structure is suitable 
to work with AGDS structures!

✓ AVB+trees are used to optimize data management, data access, 
data sorting due to speed and memory size.

✓ They support aggregative and associative mechanisms of various 
associative and cognitive structures and implement and supports 
the quick calculation of common operations like:
➢ Insert (new value),
➢ Remove (stored values),
➢ Search for any values (it can exist or not),
➢ GetMin, GetMax to find extreme values of the data collection,
➢ Sum (of selected or all values in a given range or all of them),
➢ Count (of selected or all values in a given range or all of them),
➢ Average (of selected or all values in a given range or all of them),
➢ Median,
➢ etc.
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Insert Operation 
on AVB+Trees

AVB+trees self-balance, self-sort and self-organize
the structure during the insert operation!
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Insert Operation

The Insert operation on the AVB+tree is processed as follows:
1. Start from the root and go recursively down along the branches to
the descendants until the leaf is not achieved after the following rules:
• if one of the elements stored in the node already represents the inserted 

key, increment the counter of this element, and finish this operation;
• else go to the left child node if the inserted key is less than the key 

represented by the leftmost element in this node;
• else go to the right child node if the inserted key is greater than 

the key represented by the rightmost element in this node;
• else go to the middle child node.
2. When the leaf is achieved:
• and if the inserted key is already represented by one of the elements in this 

leaf, increment the counter of this element, and finish this operation;
• else create a new element to represent the inserted key and initialize 

its counter to one, next insert this new element to the other elements 
stored in this leaf in the increasing order, update the neighbor connections, 
and go to step 3.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Insert Operation

3. If the number of all elements stored in this leaf is greater than two, divide 
this leaf into two leaves in the following way:
• let the divided leaf represent the leftmost element representing 

the least key in this node together with its counter;
• create a new leaf and let it represent the rightmost element representing 

the greatest key in this node together with its counter;
• and the middle element (representing the middle key together with 

its counter) and the pointer to the new leaf representing the rightmost 
element pass to the parent node if it exists, and go to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) and 
let it represent this middle element (representing the middle key together 
with its counter), and create new branches to the divided leaf representing 
the leftmost element and to the leaf pointed by the passed pointer to the 
new leaf representing the rightmost element. 
Next, finish this operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Rebalancing during
Insert Operation

Self-balancing and self-sorting mechanism of
the Insert Operation when a node is overfilled

and must be divided!

A self-balancing mechanism of an AVB+tree during the Insert operation 

when adding the value (key) „2” to the current structure which must be 

reconstructed because the node is overfilled and must be divided.
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Insert Operation

4. Insert the passed element between the element(s) stored in this node in 
the key - increasing order after the following rules:
• if the element has come from the left branch, insert it on the left side of 

the existing element(s) in this node;
• if the element has come from the right branch, insert it on the right side 

of the existing element(s) in this node;
• if the element has come from the middle branch, insert it between the 

existing element(s) in this node.

5. Create a new branch to the new node (or leaf) pointed by the passed 
pointer and insert this pointer to the child list of pointers immediately 
after the pointer representing the branch to the divided node (or leaf).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Insert Operation

6. If the number of all elements stored in this node is greater than two, 
divide this node into two nodes in the following way:
• let the existing node represent the leftmost element representing 

the least key in this node together with its counter;
• create a new node and let it represent the rightmost element representing 

the greatest key in this node together with its counter;
• the middle element (representing the middle key together with its 

counter) and the pointer to the new node representing the rightmost 
element pass to the parent node if it exists; and go back to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) and 
let it represent this middle element (representing the middle key together 
with its counter), and create new branches to the divided 
node representing the leftmost element and to the node pointed by 
the passed pointer to the new node representing the rightmost element. 
Next, finish this operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

http://home.agh.edu.pl/~horzyk/index-eng.php


Efficiency of
Insert Operation

The efficiency comparisons of Insert 
Operations of B-tree and AVB+tree: 

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

The efficiency comparisons of Insert 
Operations of B+tree and AVB+tree: 

AVB+tree is faster AVB+tree is faster

AVB+tree is slowerAVB+tree is slower
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Remove Operation

✓ The Remove operation allows to remove a key from 
the AVB+tree structure and next quickly rebalance and reorganize 
the structure automatically if necessary.

✓ If the removed key is duplicated in the current structure, 
then only the counter of the element which represents it
is decremented.

✓ When the removed key is represented by the element which 
counter is equal one then the element is removed from the node.

✓ If this node is a leaf containing only a single element, 
then the leaf is removed as well, and a rebalancing operation of 
the AVB+tree is executed.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

The Remove operation on the AVB+tree is processed as follows:

1. Use the search procedure to find an element containing the key intended 
for removal. If this key is not found in the tree, finish the delete operation with no 
effect;
2. Else if the counter of the element storing the removed key is greater than one, 
decrement this counter, and finish the delete operation.
3. Else if the element storing the removed key is a leaf, then remove the element 
storing this key from this leaf, switch pointers from its predecessor and successor 
to point themselves as direct neighbors. Next, if this leaf is not empty, finish the 
delete operation (Fig. A), else go to step 7 (Fig. B).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

4. Else the element storing the removed key is a non-leaf node that must be 
replaced by one of the neighbor connected elements stored in one of two leaves. 
If only one leaf from the leaves containing neighbor elements to the removed 
element contains two elements, then replace the removed element in the non-leaf 
node by this connected neighbor element from the leaf containing two elements, 
and finish the delete operation (Fig. 14C), else go to step 5.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

5. Here, both leaves containing a neighbor element to the removed one contain two 
elements or one element both. In this case, check which one of the neighbor child 
nodes contains more elements. Next, replace the removed element by the neighbor 
element stored in the leaf of the subtree which root contains more elements, and 
finish the delete operation (Fig. D) in case when no leaf left without any element or 
go to step 8 when there is left an empty node; else go to step 6.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

6. Here, both neighbor child nodes contain the same number of elements. 
In this case, check whether the key stored in the rightmost element from 
the left neighbor child or the key stored in the leftmost element from the right 
neighbor child is more distant from the key stored in the removed element. 
The distance can be calculated differently dependently on compared data types. 
We can use different metrics for the string and numerical data types:

where 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 means the i-th sign of the 𝐾𝐸𝑌1-th string 
and 𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] is equal to the number of signs (e.g. letters)

between 𝐾𝐸𝑌1 𝑖 and 𝐾𝐸𝑌2 𝑖 in a given sign set X (e.g. ASCII),
and 𝑋 determines the number of signs in the set X.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆𝑇𝑅 = ෍
𝑖=1

𝑚𝑎𝑥 𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌1 ,𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌2 1

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] ∙ 𝑋 𝑖−1

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑁𝑈𝑀 = 𝐾𝐸𝑌1 − 𝐾𝐸𝑌2

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] = ቊ
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐾𝐸𝑌1 𝑖 , 𝐾𝐸𝑌2 𝑖 𝑖𝑛 𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 ∧ 𝐾𝐸𝑌2 𝑖 ∈ 𝑋

𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∉ 𝑋 ∨ 𝐾𝐸𝑌2 𝑖 ∉ 𝑋
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Remove Operation

Next, replace the removed element by the right neighbor element when 
the distance of the key stored in this right neighbor child is greater or equal to 
the distance of the key stored in this left neighbor child (Fig. E or G), 
else replace it by the left neighbor element (Fig. F or H). 
If the leaves containing the neighbor elements contain two elements both, 
then finish the delete operation (Fig. E and F), else (Fig. G and H) go to step 7. 

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

7. After the removal of the element from the leaf or after the replacement of 
the removed element from the non-leaf node by the leaf element, there is left 
an empty leaf (Fig. B, G, or H) that must be filled by at least one element or 
removed from the tree. Next, the tree must be rebalanced to meet the AVB+tree
requirements. First, try to take an element from the nearest sibling. In these cases, 
remove the empty leaf and go to its parent, and go to step 8.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

http://home.agh.edu.pl/~horzyk/index-eng.php


Remove Operation

8. If the nearest sibling (or cousin) of the empty leaf contains more than a single 
element, then move the closest key (2 in Fig. I) to the removed one from the empty 
node to the parent (or ancestor), and move the neighbor element (1 in Fig. I) (to the 
removed one from the empty node) from the parent (or ancestor) node to the empty 
leaf (Fig. I). Use the siblings before the cousins. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

9. Else if the nearest sibling of the empty leaf contains only a single element 
(2 in Fig. J), but its parent contains two elements, then move the closest parent 
element (1 in Fig. J) to the element removed from the empty node to this sibling 
in the right order, remove the empty node (Fig. J), and finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

10. Else both the parent and the sibling contain only a single element. 
In this case, merge them in the parent node, moving the element from this sibling 
to its parent, and this parent node becomes to be a leaf which is placed one level 
higher than the other leaves (Fig. K). Hence, the tree must be rebalanced to meet 
the AVB+tree requirements in the subsequent routines described in the following 
steps.

11. In this and following steps, there is always one reduced subtree which is one 
level up, i.e. all its leaves are one level higher than the other leaves of the tree. The 
smallest subtree can consist of the leaf containing two elements. The rebalancing 
operation is started from the root of the reduced subtree in step 12.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

12. If the parent node of the root of the reduced subtree contains 
two elements go to step 16, else go to step 13.

13. If the second child of this parent contains a single element 
go to step 14 (Fig. L), else go to step 15 (Fig. M).

14. Merge this second child (containing a single element) with that parent as shown in 
Fig. L, and because the parent subtree of the reduced subtree has also lowered its height 

and must be rebalanced, go back to step 11 and rebalance the resultant subtree 
achieved after this transformation until the root of this subtree is not the root of the 

whole tree. If the main root is reached, it means that the tree is rebalanced,
and its height was lowered by one, therefore finish the deletion operation;

else go to step 15.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

15. Merge this second child 
(containing two elements) 

with that parent 
as shown in Fig. M, and 

because the merged parent 
node is overfilled, divide it 

and create a new root of this 
subtree (Fig. M). Next, finish 

the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

16. In this case, the parent node of the root of the reduced subtree contains
two elements. If this reduced subtree root is a left or right child of its parent, 

then go to step 17 (Figs. N and O), else (it is a middle child) go to step 20 (Figs. P and Q).

17. If one of the nearest neighbor siblings of this reduced subtree root contains
a single element, go to step 18 (Fig. N), else go to step 19 (Fig. O).

.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Remove Operation

18. Move the element (key = C) from the parent node (C|I) to the one-element 
nearest sibling (F) together with the subtree (A|B) and the connection to 

its parent to this merged sibling (C|F). Connect the node (A|B) to this merged.
Next, finish the delete operation.
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Remove Operation
19. Create a new node and move the closest parent element (key = C)
to this new node (in red). Next, move the nearest sibling element (F)

to the parent node instead to the position of the moved parent element (C). 
Switch the closest child (D|E) of this nearest sibling to the newly created node.

Connect the rebalanced subtree (A|B) to the newly created node as well.
Next, finish the delete operation.
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Remove Operation
20. Move and merge the left or right element of the parent node of 
this reduced subtree root together with this subtree with its left or 

right sibling if only it contains only a single element, else go to step 21. 
Choose the sibling on the basis of the lower distance between the left parent element 

and the element of the left sibling or between the right parent element and the element of 
the right sibling. The Fig. P shows the situation when the distance to the right sibling is 

lower than to the left one. The second situation is symmetrical. Next, finish this operation.
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Remove Operation
21. For the reduced subtree (A|B) which is a middle child of its parent,

move the rightmost element from the left sibling if its key is more 
distant to the key of the right parent element than the distance of the key of 

the leftmost element for the right sibling to the left parent element. In the symmetric case, 
move the leftmost element of the right sibling. The selected sibling element is moved to

the parent node, and the element from the parent node that is the closest to the elements of 
the reduced subtree is moved to the newly created node (in red). The closest child to the reduced 

subtree (G|H) of the subtree (C|F) from which the element was borrowed to the parent of 
the reduced subtree is moved to the newly created node as well. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Efficiency of
Remove Operation

The efficiency comparisons of Remove 
Operations of B-tree and AVB+tree: 

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

The efficiency comparisons of Remove 
Operations of B+tree and AVB+tree: 

AVB+tree is faster AVB+tree is faster

AVB+tree is slower
AVB+tree is slower

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Remove

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Remove

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Remove

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Example of Remove

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Update Operation

✓ The Update operation is a simple sequence of Remove and Insert 
operations because it is not possible to simply update 
a value in an element because of the structure of AVB+trees
which represent various relations.

✓ Data can be easily updated (a value can be changed) 
only in those structures which do not represent relations, 
e.g. unsorted arrays, lists, or tables.

✓ The Update operation on an AVB+tree removes the old key (value) 
from this structure using the Remove operation and inserts an 
updated one using the Insert operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Search Operation

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

The Search operation in the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to 
the descendants until the searched key or the leaf is not achieved 
after the following rules:
• If one of the keys stored in the elements of this node equals to 

the searched key, return the pointer to this element;
• else go to the left child node if the searched key is less than 

the key represented by the leftmost element in this node;
• else go to the right child node if the searched key is greater than 

the key represented by the rightmost key in this node;
• else go to the middle child node.
2. If the leaf is achieved and one of the stored elements in this leaf contains 
the searched key, return the pointer to this element, else return the null pointer.
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GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two 
different ways dependently on how often extreme elements are used 
in other computations using an AVB+tree structure:

1. The first way is used when extreme keys are not often used. 
In this case, it is necessary to start from the root node and always 
go along the left tree branches until the leaf is achieved and in its 
leftmost element (if there are two) is the minimum key (value) 
stored in this tree. 
Similarly, we go always along the right branches starting from the 
root node until the leaf is achieved and in its rightmost element (if 
there are two) is the maximum key (value) stored 
in this tree. These operations take log Ň time, where Ň is 
the number of elements stored in the tree, which is equal 
the number of unique keys (values) of the data.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two 
different ways dependently on how often extreme elements are used 
in other computations using an AVB+tree structure:

2. The second way is used when extreme keys are often used and 
should be quickly available (in constant time). 
In this case, the leftmost (minimum) and rightmost (maximum) 
elements of the leftmost and rightmost leaves appropriately are 
additionally pointed from the class implementing the AVB+tree. If 
using these extra pointers they are automatically updated when 
the minimum or maximum element is changed, and 
the minimum and maximum element can be easily recognized 
because its neighbor connection to the left or right neighbor 
element is set to null.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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MAGDRS
associative structures

✓ MAGDRS structure is a generalization of AGDS structure for storing 
data and their relationships from various databases in the associative.

✓ The objects of various kinds (from various tables) can be represented 
and connected according to the relationships that come from primary 
and foreign keys of the relational data model as well as being extended 
by new relations coming from data and relationships processing.

✓ They can also be used for various inferences, filtering, clustering, 
classification, similarity finding, or analysis of data and relationships.

✓ They also aggregate and all count duplicates of the same categories 
stored in various data tables of the whole database.

✓ They can save a lot of memory and computation time and effort of 
programmers because drawing conclusions is pretty easy and fast!

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!
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Association 
of Data and Facts

MAGDRS 
structure
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Conclusions
✓ AGDS structures combined with AVB+trees provide incredibly fast access to any data stored and 

sorted for all attributes simultaneously, combining sorted lists, aggregation and counting of all 
duplicates with fast access coming from the idea of binary search trees (BST).

✓ AGDS + AVB+trees stores data together with the most common vertical and horizontal relations, 
so there is no need to loop and search for these relations but to grab them when needed.

✓ Typical operations on AGDS + AVB+trees structures have pessimistically logarithmic time, 
but the expected time complexity on typical real data containing many duplicates is constant.

✓ AGDS structures can be used as 1st and 2nd class generation neural networks to produce various 
inferences, for classification, clustering, similarity finding, recognition, and other CI or KE tasks.
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