INTELLIGENCE

LABORATORY CLASSES

Implementation of MLP, Backpropagation with Cross-Validation,
using Wide and Deep Learning Strategies and Approaches
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and widely used in Computational Intelligence to be employed in many simple classification and
regression models as well as in deep learning strategies and networks.

We shall try to implement them before implementing more advanced models and methods.
Use the soft-switch neurons with the sigmoidal activation function and construct an MLP network.

At first, we will try to use MLP networks for various classification tasks. It has a real practical value.
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Use matrices and vectors to represent weightSyReurons, and other parameters in the network.

Weights of each layer can be represented by a single:matrix which size is defined by the number of stimulating
neurons (or nodes) [rows] and the number of the neurons which receives the stimuli [columns].

Neurons should be represented by vectors of classes which define weighted sums S,,, outputs y,,, errors &,
computed for these neurons during the backpropagation process.

Next, you multiply the input vectors X, = {x,, ..., Xy} taken from the training data set {(X;, d,), ..., (X, dy)} with
the matrix representing weights of the first layer hidden neurons, computing weighted sums and outputs.
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The output values computed inside the class VEGLOYS of neurons of the first hidden layer use to stimulate
the neurons of the second hidden layer, etc.

The propagation process is finished when you achieved the output neurons of the network.

Next, compute the error vector 8,, = {43, .., 03, } on the basis of the desired output vector d = {d,, ..., dy}
defined in the training data set for each input vector X, = {x,, ..., Xy}-

Now, you can start propagating back the errors and updating weights. It is useful to use extra matrixes for
representation of Aw.
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Each MLP neural network has a layer structure andisia kind of
feedforward neural networks. This means that the stimulation of
neurons of previous layer(s) can stimulate neurons of the next
layer(s). Hence, no recurrent or reverse connections are possible!

There are many ways of implementation of the MLP networks,
but taking into account the fact that we will use them to create
more complex deep architectures in the future, it is profitable -~ N  emos
to implement them in a universal way that will enable us to:

* add connections between various layers (not only the subsequent layers),

* add extra or remove some connections (i.e. not all-to-all neurons must be connected),

e connect various kinds of neurons (various activation functions) and various networks together,

e use various training routines for various layers of neurons in the future (when implementing deep approaches).

Hence, the neurons should be organized in layers processed in the same training step, but do not limit
the number of layers, number of neurons in them, or possible connections between neurons of various layers.

Use objects and object-oriented programming to implement: neurons with dynamic lists of connections.
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Construct an input interface to open datafiles'containing
training or testing data (text, spreadsheet, xml, database)
and put them into a table (list) or several tables (lists).
Various types of attributes should be possible to be stored.
The attributes can be numerical (integer, float, date, time),
symbolic (string) or boolean (bivalent {0,1} or fuzzy [0,1]).
The number of attributes should not be constant but limited.

Attributes: leaf-length leaf-width petal-length petal-width class
No Mumerical: float | Numerical: float | Numerical: float | Numerical: float | Symbolic: string
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The goal of these classes is to develop your Cl system to process various data!
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For Iris data which define 3 classes (Setosa, Vesicolor, and Virginica),
we have to define output vectors consisting of 3 values:

1. for lris Setosa

: _

2. for Iris Versicolor -““
mn

3. for Iris Virginica m-n-

We always suppose that for the desired class, we should achieve 1 at the output of the neuron
representing this class, and O for other classes, namely:
d.=[1,0, 0] for Iris Setosa
d;=[0,1, 0] for Iris Versicolor
=[0, 0, 1] for Iris Virginica
The winning neuron (the correct classification) is achieved when the neuron representing the desired

class calculates the biggest value on its output in comparison to other outputs computed by other
output neurons.
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Inputs should be implemented as a vector (or a

Each Neuron should be implemented as a class containit

 a table/list of input connections (synapses) or pointers to connected neurons to the other neurons or the inputs,
from where they take input values x;, ..., X, to process and compute weighted sums S and the output values'y,

* atable/list of output connections (synapses) or pointers to connected neurons to the other neurons or the outputs,
from where they take calculated delta (error) parameters to calculate their delta parameters 9,

e avariable containing a weighted sum: S,
e avariable containing a delta parameter: 5,
e avariable containing an output value: y.

* When using the table/list of pointers to the connected neurons instead of the list of synapses, we need additionally to create a table
of weights (wy,) for input connections in each neuron and the same-size table of computed sums of updates of these weights (Awy,)
when using batch training. On the other hand, when using the table/list of synapses, the weight is stored inside the class
implementing a synapsis.

We could do it much easier using tables of neurons and tables of pointers to the connected neurons or using matrices, but the above-

presented implementation model will let us change the connection lists easier to use them in deep learning algorithms, networks, and

strategies, so this kind of implementation is simply recommended, however, fill free to do it as you like if you have any other idea how
to implement it efficiently and satisfy our contemporary and future goals.

Neurons should be organized in layers. The layer class consists of a table/list of neurons.
The entire DeepMLP network (or each MLP subnetwork) should consist of a list of subsequent layers.

Outputs should be also implemented as a vector or a matrix of classes, which will contain output values of a neural network, desired
outputs (taken from training data), and compute delta parameters to propagate them back.
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Generally, we can represent weights (w,) an@iinput connections (In,) it three different ways:

1.

Using tables (inside each neuron) representing vectors of indices (I,) pointing out connected
neurons and in the same way, we represent weights using tables of weight values:

mmmm Indices of nine input connections
(1112 3[4 ]15 1617 18]19] insideeachneuron

mmmm Weight vector of nine input connections
inside each neuron

Using matrices (inside each layer of neurons) representing vectors of indices in rows for each
neuron in the layer, pointing out connected neurons and in the same way, we represent weights
using matrices of weight values for each layer of neurons:

In1 | In2 I3 Ind | In5 | In6 | In7 | In8 | In9 | In1 | In2 I3 Ind | In5 | In6_ In7 | In8 | In9 |

Indices of nine Weight martix of
input connections input connections

for the layer consisting for the layer consisting
[N4| 141|142 |143 144 145|146 147 148 149 | offive neurons | N4 |wal/wa2 wa3 wid|wd5| w6 wa7|wa8 wag|  of five neurons
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Using list/tables of pointers to the instances of the class representing synapses which contain
weights and pointers to the input and output neuron of this synaptic connection, while neurons
have two lists of synapses: the first one for input connections (the list of input synapses), and the
second one for output connections (the list of output synapses):

NEURON SYNAPSE NEURON

list of in list of in

Sender Receiver

list of out list of out
WEIGHT

SENDER1
1.00
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It is usually beneficial to normalize input hen using the backpropagation algorithm

and the sigmoidal activation function:
x;—x

Yi = xmax _

min
i xi

* X = [Xq, X, ..., X] — Is the vector of raw input data,

* v =1y Yy -, Yn] — IS the vector of normalized input data.

« x;"* —is the minimum value of the i-th value (attribute)
e x/"** —is the maximum value of the i-th value (attribute)

Unfortunately, normalization is sensitive to outliers and scattered data!

=)
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fucture when using the backpropagation algorithm
e for reconstructing or developing it.

We can just try to guess the suitable topology or try to use genetic algorithms or evolutionary
approaches to this task.

If you try to guess the network topology for a given dataset, start with a small number of neurons in a
single hidden layer. If it is not enough and the results of training are not satisfying, try to add several
neurons to this layer or add an extra hidden layer. Usually, subsequent hidden layers have fewer
numbers of neurons than the previous ones.

If the constructed neural network should be able to generalize training data well we have to build

the structure in such a way that the network has much fewer weights (N,,) than the number of trained
data (N) taking into account also the number of data attributes (N,), i.e. N, << N - N,.

On the other hand, the network can try to learn all training data too precisely,

but it will generalize poorly (this phenomenon is called overlearning).

Furthermore, the weights of the created structure must be initiated in small numbers, usually say not
bigger than [-5, 5], but the initializing range is often even smaller, e.g. [-0.1, 0.1].
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The delta ruIe is used for soft—switc "AEurons which activation functions are
continuous to allow its differentiation. The delta is defined as the difference between
desired and computed outputs: 6,,= d, —y,. This rule can be derivate as a result of
the minimization of the mean square error function:

K
1
Q=5 (dn=yn)? where — y,=f(S) 5= xc-w,
The correctior; of the weight for differentiable activation function f is canputed after:
Aw,=m:6,-f'(S) -x;, where 6,=d,—y,
where f” is the differential of function f.

When the activation function is sigmoidal then we achieve the following expression:
Awp=1:6,-(1—Yu)  Yn'Xx Where 6,=d, -y,
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1. The input propagation phase propagates
the inputs throughout all hidden layers to the
output layer neurons. In this phase, neurons
make the summation of weighted inputs
taken from the neurons in the previous layer.

the errors (delta values) computed on

the outputs of the neural network.

In this phase, neurons make the summation of
weighted errors (delta values) taken from rrors
the neurons in the next layer.

The computed corrections of weights are used to update weights after:
* the computed corrections immediately after their computation during the online training,

e the average value of all computed corrections of each weight after finishing the whole training cycle for all
training samples during the offline (batch) training.

This algorithm is executed until the mean square error computed for all training samples is less than the desired
value or to a given maximum number of cycles.
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This model employs a continuous igmoid activation function, which serves as a
soft-switch between two states: (0, 1)'or (-1, 1) according to the used function f:
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First, the inputs x;, X,, X5 stimulate neurons in"tAEMIrFSt hidden layer.
The neurons compute weighted sums S;, S,, S;, S;@nd output values
Y1, Yo, Y3, Y4 that become inputs for the neurons of the next hidden layer:
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Second, the outputs y,, v,, Y3,Y, stimulate neur@asin the second hidden
layer. The neurons compute weighted sums S, Sg;'S5.and output values
Y=, Ye, Y, that become inputs for the neurons of the output layer:
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Finally, the outputs vy, y,, Y, stimulate netfi@Rsin the output layer.
The neurons compute weighted sums Sg, S;andioutput values
Yo, Vg that are the outputs of the neural network'as well:
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Next, the outputs vy, Y, are compared with thesesired outputs dg, dyand
the errors 64, 65 are computed. These errors will'bepropagated back in order
to compute corrections of weights from the connected inputs neurons.

errors
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The errors &g, 64 are used for corrections of the WeIghts of the inputs
connections ys, Y, Y5, and propagated back along thefinput connections
to the neurons of the previous layer in order to compute their errors &, 6, 6-:

errors
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Next, the errors 6, 6., 6, are used for correctionsieifthe weights of the inputs  Awy ,= —1-6;, - (1 — ¥3) - V' Vi
connections y,, Y,, Y3, Y4, and propagated back alongthe input connections to 7
the neurons of the previous layer in order to compute their errors 6, 6,, 8, 6, O = zn=56" ‘Wi * (1 =Yn) - ¥n

errors
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Finally, the errors 6,, 6,, 65, 6, are used foFGOrrECtioNS
of the weights of the inputs x,, x,, X3:
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The number of hidden layer neuronsishiould be higher rather than lower.
However, for easy problems, one or tworhidden layers may suffice.

The numbers of neurons in the following layers usually decreases.

They can also be fixed experimentally or using evolutional or genetic approaches that
will be discussed and implemented later.

Initialization of weights is accomplished by setting each weight to a low-valued random
value selected from the pool of random numbers, say in the range from -5 to +5,
or even smaller.

The learning rate 77 should be adjusted stepwise (77 < 1), considering stability
requirements. However, since convergence is usually rather fast when the error
becomes very small, it is advisable to reinstate 7 to its initial value before proceeding.

In order to avoid the BP algorithm from getting stuck (learning paralysis) at a local
minimum or from oscillating the modification of learning rate should be employed.
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or

Next, experiment with more difficult ones (downloaded from )
and try to overcome training difficulties that can occur.

Use cross-validation that will be described and discussed later during the lectures.
Use a various number of layers and neurons.

Use genetic and evolutional approaches to find out possibly the best network
topology and initial weights after these methods will be presented during the
lectures.

Use various or adjusted learning rate 77 during the training process.

Try to avoid the BP algorithm from getting stuck (learning paralysis) at a local
minimum or from oscillating the modification of learning rate should be employed.

Use deep learning strategies to achieve better results of training.
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In order to overcome training difficultiesioifbackpropagation algorithm we can use:

* Bias - an extra constant input (say x,= 1) that is weighted (Wg ,) and somehow resembles
the threshold used in hard-switch neuron models.

* Momentum — that usually reduces the tendency to instability and avoids fast fluctuations
(0 < a < 1), but it may not always work or could harm convergence:

K

N -1
Aw,':n= a-Aw,’;n +n-6,,:f ZXk-wk cXj = a-Aw,’;n +1:-6,- (A —V,) Vn Xk
k=0
 Smoothing — that is also not always advisable for the same reason:
K
p p-1 '
Awk’n=a-Awk’n +(1—a)6nf ZXk-wk * X[
k=0

= a'AWk,;l‘l'(l—a)'Sn'(l_yn) "Y' Xk
where p is the training period (cycle) of training samples.
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In order to overcome convergence o) ob- of the backpropagation algorithm we can:
e Change the range of the sigmoid function from [0, 1] to [-1, 1].

* Modifying step size (learning rate n ) during the adaptation process.
e Start many times with various initial weights.

* Use various network architectures, e.g. change the number of layers or the number
of neurons in these layers.

e Use a genetic algorithm or an evolutional approach to find a more appropriate
architecture of a neural network than the casual ones.

* Reduce the number of inputs to overcome the curse of dimensionality problem.
e Use deep learning strategies and networks.

e Use cross-validation to avoid the problem of over-fitting.
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validation alternately during the training process.

,K-fold” means that we divide all training patterns into K disjoint more or less
equinumerous subsets. Next, we train a selected model on K-times and also
test this model on an K-times. The validation subset changes in the course
of the next training steps:

5FOLD|  / SUBSETS OF TRAINING PATTERN

/.
osteps | 1 /| 2 | 3 | Ja | 5
wan | wan | wan | am

1
o |
N
.
s

TRAIN TRAIN TRAIN TRAIN
TRAIN TRAIN TRAIN TRAIN

o o wan | aw
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We use different k parameters accor
to the number of training patterns:

e Kis usually small (3 <K <10) for
numerous training patters. It lets us
better validate the model if it is tested

on a bigger number of training patterns.

It also reduces the number of training
steps that must be performed.

e K is usually big (10 < K < N) for less
numerous training datasets, where N is

the total number of all training patterns.

It allows us to use more patterns for

training and achieve better-fitted model.
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The way of selection of the test'pa;cte nSinteach training step
from each class point of'View. regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:

 Randomly

* Grouped by categories (classes)

* Ordered by values of their attributes

* Grouped by classes and ordered by values of their attributes
* In an unknown way

SUBSETS OF TRAINING PATTERNS THAT ARE RANDOMLY ORDERED IN THE DATA SET
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The choice between various options should be made on the basis of
the initial order or disorder of patterns of all classes in the dataset
to achieve representative selection of the test patterns used for

the validated model.
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using extra layers added gradually, additional neurons,

update only a selected part of neurons that respond best to the given input data,
so the other neurons and their parameters (e.g. weights, thresholds) are not updated,

avoid connecting all neurons between successive layers, so we do not use all-to-all connection
strategy known and commonly used in MILP and other networks, but we try to allow neurons to
specialize in recognizing of subpatterns that can be extracted from the limited subsets of inputs,

create connections between various layers and subnetworks, not only between successive layers

use many subnetworks that can be connected in different ways in order to allow neurons from these
subnetworks to specialize in defining or recognizing of limited subsets of features or subpatterns,

let neurons specialize and not overlap represented regions and represent the same features
or subpatterns.
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Use neurons that have input connectionsf¢oming from
different layers, combining the variety of the previously
extracted features to compute their outputs.

During our laboratory classes:

Try to use this strategy instead of the classic MLP all-to-all
connections and compare achieved training results.

Use it together with limited number of connections between
neurons in the successive layers.
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Create (e.g. TORIKS data consisting of
4 inputs, 3 outputs and a single hidden'layer consisting of a
few neurons (5 - 20) to achieve possibly '@ NONONO
good generalization properties. You can
also use sparse aggregated connections: QEOEOEKOKO

Learn this network using backpropagation algorithm in a
number of steps (50 — 500) + (later) cross-validation until
the network error is not lower than a given training level.

Next, add with a next hidden layer, and
learn this network with/without (two options) changing the
weights of the previous subnetwork created

in step 1. Try to achieve better results than for the first
network, training it until the results are not significantly
better. Continue such a process until you will get
satisfactory training results.
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ORDER of creating and training the MLP subnetworks creating the final DeepMLP

1st subnetwork
outputs/results

FS -~ FS

Ourput Layer of
the 1st subnetwork
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Finally, try to use different structures ot connections as presented in the lectures.

Combine various approaches and/or structures and try to get the best possible classification
results as possible for the tested training datasets.

Compare those approaches and try to present us the best solution!
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ACADEMIC WEBSI

TE - ADRIAN HORZYK, PhD, DSc.

AGH University of Science and Technology in Cracow, Poland
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering
Department of Biocybernetics and Biomedical Engineering, Field of Biocybernetics

Research

LECTURES

(will be renewed and expanded
during the semester)

Introduction to Artificial and
Computational Intelligence

Artificial Neural Networks,
Multilayer Perceptron MLP,
and Backpropagation BP

Radial Basis Function Networks RBFN

Unsupervised Training
and Self Organizing Maps SOM

Recurrent Neural Networks

Introduction of Final Projects
and Description of Requirements

Associative Neural Graphs and
Associative Structures

Deep Associative Semantic Neural
Graphs DASNG

Associative Pulsing Neural Networks

Deep Learning Strategies
and Convolutional Neural Networks

Support Vector Machines SVM
Fuzzy Logic and Neuro-Fuzzy Systems
Motivated and Reinforcement Learning

Linguistic, Semantic Memories,
and Cognitive Neural Systems

Psychological Aspects of Intelligence,
Human Needs, and Personality

rnal Papers

Publications

COMPUTATIONAL INTELLIGENCE

Courses

Consultations

This course includes 28 lectures, 14 laboratory classes, and 14 project classes.

What is this course about?

This course is intended to give students a broad overview and deep knowledge about popular
solutions and efficient neural network models as well as to learn how to construct and train
intelligent learning tems in order to use them in everyday life and work. During the

will d with the popular and most efficient mod and methods of neural
networks, fuzzy systems and other learning systems that enable us to find specific highly
generalizing models solving difficult tasks. We will also tackle with various CI and Al

problems and work with various data and try to model their structures in such a w

optimize operations on them throughout making data available

for them. This is a unique feature of associati ructures and
will allow us to form and represent kno

which

understand solutions associated with various tas

intelligence.

s of motivated learning and cognitive

Lectures will be supplemented by laboratory and project classes during which you will train
and adapt the solution learned during the lectures on various data. Your hard work and
pra will enable you not only to obtain expert knowledge

> and skills but also to develop
yvour own intelligent learning em implementing a few of the most popular and efficient CI
methods.

Expected results of taking a part in this course:

Broad knowledge of neural networks, associative and fuzzy stems as well as other
intelligent learning s

Novel experience and broaden skills in construction, adaptation and training of r

Ability to construct intelligent learning
learning solutions.

Good and modern practices in modelling, construction, learning and
Own intelligent learning system to use in your life or work.
Satisfaction of enrollment to this course.

stems of various kinds, especially deep

eralization.
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