
COMPUTATIONAL
INTELLIGENCE

Implementation of MLP, Backpropagation with Cross-Validation,

using Wide and Deep Learning Strategies and Approaches

Adrian Horzyk

LABORATORY CLASSES

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://www.agh.edu.pl/en/
http://www.agh.edu.pl/en/

Implementation of Multi-Layer
Perceptron (MLP) Neural Network

The MLP neural networks and the backpropagation training algorithm are the most popular
and widely used in Computational Intelligence to be employed in many simple classification and
regression models as well as in deep learning strategies and networks.

We shall try to implement them before implementing more advanced models and methods.

Use the soft-switch neurons with the sigmoidal activation function and construct an MLP network.

At first, we will try to use MLP networks for various classification tasks. It has a real practical value.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Structure of Multi-Layer Perceptron
(MLP) Neural Network

Use matrices and vectors to represent weights, neurons, and other parameters in the network.

Weights of each layer can be represented by a single matrix which size is defined by the number of stimulating
neurons (or nodes) [rows] and the number of the neurons which receives the stimuli [columns].

Neurons should be represented by vectors of classes which define weighted sums 𝑺𝒏, outputs 𝒚𝒏, errors 𝜹𝒏
computed for these neurons during the backpropagation process.

Next, you multiply the input vectors Xn = {x1, …, xN} taken from the training data set {(X1, d1), …, (XN, dN)} with
the matrix representing weights of the first layer hidden neurons, computing weighted sums and outputs.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Structure of Multi-Layer Perceptron
(MLP) Neural Network

The output values computed inside the class vectors of neurons of the first hidden layer use to stimulate
the neurons of the second hidden layer, etc.

The propagation process is finished when you achieved the output neurons of the network.

Next, compute the error vector 𝜹𝒏 = {𝛿1, …, 𝛿𝑀} on the basis of the desired output vector dn = {d1, …, dN}
defined in the training data set for each input vector Xn = {x1, …, xN}.

Now, you can start propagating back the errors and updating weights. It is useful to use extra matrixes for
representation of Δw.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How to implement an MLP?

Each MLP neural network has a layer structure and is a kind of
feedforward neural networks. This means that the stimulation of
neurons of previous layer(s) can stimulate neurons of the next
layer(s). Hence, no recurrent or reverse connections are possible!

There are many ways of implementation of the MLP networks,
but taking into account the fact that we will use them to create
more complex deep architectures in the future, it is profitable
to implement them in a universal way that will enable us to:

• add connections between various layers (not only the subsequent layers),

• add extra or remove some connections (i.e. not all-to-all neurons must be connected),

• connect various kinds of neurons (various activation functions) and various networks together,

• use various training routines for various layers of neurons in the future (when implementing deep approaches).

Hence, the neurons should be organized in layers processed in the same training step, but do not limit
the number of layers, number of neurons in them, or possible connections between neurons of various layers.

Use objects and object-oriented programming to implement: neurons with dynamic lists of connections.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How to start implementation?

Construct an input interface to open data files containing
training or testing data (text, spreadsheet, xml, database)
and put them into a table (list) or several tables (lists).
Various types of attributes should be possible to be stored.
The attributes can be numerical (integer, float, date, time),
symbolic (string) or boolean (bivalent {0,1} or fuzzy [0,1]).
The number of attributes should not be constant but limited.

The goal of these classes is to develop your CI system to process various data!

OR

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Desired Output Values Explanation

How do we define the output vectors dn for training MLP networks?

For Iris data which define 3 classes (Setosa, Versicolor, and Virginica),
we have to define output vectors consisting of 3 values:

1. for Iris Setosa

2. for Iris Versicolor

3. for Iris Virginica

We always suppose that for the desired class, we should achieve 1 at the output of the neuron
representing this class, and 0 for other classes, namely:

di = [1 , 0 , 0] for Iris Setosa

dj = [0 , 1 , 0] for Iris Versicolor

dk = [0 , 0 , 1] for Iris Virginica

The winning neuron (the correct classification) is achieved when the neuron representing the desired
class calculates the biggest value on its output in comparison to other outputs computed by other
output neurons.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Implementation Tips and Tricks
Inputs should be implemented as a vector (or a matrix) of classes, from where neurons take input values
to compute their internal weighted sums. These classes should contain subsequent input data.

Each Neuron should be implemented as a class containing:
• a table/list of input connections (synapses) or pointers to connected neurons to the other neurons or the inputs,

from where they take input values x1, …, xK to process and compute weighted sums S and the output values y,

• a table/list of output connections (synapses) or pointers to connected neurons to the other neurons or the outputs,
from where they take calculated delta (error) parameters to calculate their delta parameters δ,

• a variable containing a weighted sum: S,

• a variable containing a delta parameter: δ,

• a variable containing an output value: y.

• When using the table/list of pointers to the connected neurons instead of the list of synapses, we need additionally to create a table
of weights (𝐰𝒌) for input connections in each neuron and the same-size table of computed sums of updates of these weights (∆𝐰𝒌)
when using batch training. On the other hand, when using the table/list of synapses, the weight is stored inside the class
implementing a synapsis.

We could do it much easier using tables of neurons and tables of pointers to the connected neurons or using matrices, but the above-
presented implementation model will let us change the connection lists easier to use them in deep learning algorithms, networks, and
strategies, so this kind of implementation is simply recommended, however, fill free to do it as you like if you have any other idea how
to implement it efficiently and satisfy our contemporary and future goals.

Neurons should be organized in layers. The layer class consists of a table/list of neurons.
The entire DeepMLP network (or each MLP subnetwork) should consist of a list of subsequent layers.

Outputs should be also implemented as a vector or a matrix of classes, which will contain output values of a neural network, desired
outputs (taken from training data), and compute delta parameters to propagate them back.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How to represent weights and connections?

Generally, we can represent weights (wx) and input connections (Inx) it three different ways:

1. Using tables (inside each neuron) representing vectors of indices (Ix) pointing out connected
neurons and in the same way, we represent weights using tables of weight values:

2. Using matrices (inside each layer of neurons) representing vectors of indices in rows for each
neuron in the layer, pointing out connected neurons and in the same way, we represent weights
using matrices of weight values for each layer of neurons:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How to represent weights and connections?

3. Using list/tables of pointers to the instances of the class representing synapses which contain
weights and pointers to the input and output neuron of this synaptic connection, while neurons
have two lists of synapses: the first one for input connections (the list of input synapses), and the
second one for output connections (the list of output synapses):

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Input Data Preprocessing

It is usually beneficial to normalize input data when using the backpropagation algorithm
and the sigmoidal activation function:

𝒚𝒊 =
𝒙𝒊−𝒙𝒊

𝒎𝒊𝒏

𝒙𝒊
𝒎𝒂𝒙−𝒙𝒊

𝒎𝒊𝒏

• x = [x1, x2, …, xN] – is the vector of raw input data,

• y = [y1, y2, …, yN] – is the vector of normalized input data.

• 𝑥𝑖
𝑚𝑖𝑛 – is the minimum value of the i-th value (attribute)

• 𝑥𝑖
𝑚𝑎𝑥 – is the maximum value of the i-th value (attribute)

Unfortunately, normalization is sensitive to outliers and scattered data!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Initializing the Neuronal Structure

It is necessary to construct the neural network structure when using the backpropagation algorithm
because this method has not built-in any procedure for reconstructing or developing it.

We can just try to guess the suitable topology or try to use genetic algorithms or evolutionary
approaches to this task.

If you try to guess the network topology for a given dataset, start with a small number of neurons in a
single hidden layer. If it is not enough and the results of training are not satisfying, try to add several
neurons to this layer or add an extra hidden layer. Usually, subsequent hidden layers have fewer
numbers of neurons than the previous ones.

If the constructed neural network should be able to generalize training data well we have to build
the structure in such a way that the network has much fewer weights (Nw) than the number of trained
data (N) taking into account also the number of data attributes (NA), i.e. Nw << N · NA.
On the other hand, the network can try to learn all training data too precisely,
but it will generalize poorly (this phenomenon is called overlearning).

Furthermore, the weights of the created structure must be initiated in small numbers, usually say not
bigger than [-5, 5], but the initializing range is often even smaller, e.g. [-0.1, 0.1].

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Delta Rule for Neuron Adaptation

The delta rule is used for soft-switch neurons which activation functions are
continuous to allow its differentiation. The delta is defined as the difference between
desired and computed outputs: 𝜹𝒏= dn – yn. This rule can be derivate as a result of
the minimization of the mean square error function:

𝑸 =
𝟏

𝟐

𝒏=𝟏

𝑵

𝒅𝒏 − 𝒚𝒏
𝟐 𝒘𝒉𝒆𝒓𝒆 𝒚𝒏 = 𝒇 𝑺 𝑺 =

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌

The correction of the weight for differentiable activation function f is computed after:
∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝒇

′ 𝑺 ∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

where f’ is the differential of function f.

When the activation function is sigmoidal then we achieve the following expression:
∆𝐰𝒌= 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌 𝒘𝒉𝒆𝒓𝒆 𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

The backpropagation algorithm (BP) includes two main phases:

1. The input propagation phase propagates
the inputs throughout all hidden layers to the
output layer neurons. In this phase, neurons
make the summation of weighted inputs
taken from the neurons in the previous layer.

2. The error propagation phase propagates back
the errors (delta values) computed on
the outputs of the neural network.
In this phase, neurons make the summation of
weighted errors (delta values) taken from
the neurons in the next layer.

The computed corrections of weights are used to update weights after:

• the computed corrections immediately after their computation during the online training,

• the average value of all computed corrections of each weight after finishing the whole training cycle for all
training samples during the offline (batch) training.

This algorithm is executed until the mean square error computed for all training samples is less than the desired
value or to a given maximum number of cycles.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Soft-Switch Perceptron

This model employs a continuous sigmoid activation function, which serves as a
soft-switch between two states: (0, 1) or (-1, 1) according to the used function f:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

First, the inputs x1, x2, x3 stimulate neurons in the first hidden layer.
The neurons compute weighted sums S1, S2, S3, S4 and output values
y1, y2, y3, y4 that become inputs for the neurons of the next hidden layer:

𝑺𝒏 =
𝒌=1

3

𝐱𝒌 ∙ 𝐰𝒙𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

Second, the outputs y1, y2, y3 ,y4 stimulate neurons in the second hidden
layer. The neurons compute weighted sums S5, S6, S7 and output values
y5, y6, y7 that become inputs for the neurons of the output layer:

𝑺𝒏 =
𝒌=1

4

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

Finally, the outputs y5, y6, y7 stimulate neurons in the output layer.
The neurons compute weighted sums S8, S9 and output values
y8, y9 that are the outputs of the neural network as well:

𝑺𝒏 =
𝒌=5

7

𝐲𝒌 ∙ 𝐰𝒌,𝒏 𝒚𝒏 = 𝒇 𝑺𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

Next, the outputs y8, y9 are compared with the desired outputs d8, d9 and
the errors δ8, δ9 are computed. These errors will be propagated back in order
to compute corrections of weights from the connected inputs neurons.

𝜹𝒏 = 𝒅𝒏 − 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

The errors δ8, δ9 are used for corrections of the weights of the inputs
connections y5, y6, y7, and propagated back along the input connections
to the neurons of the previous layer in order to compute their errors δ5, δ6, δ7:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

𝜹𝒌 =
𝒏=8

9

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

Next, the errors δ5, δ6, δ7 are used for corrections of the weights of the inputs
connections y1, y2, y3, y4, and propagated back along the input connections to
the neurons of the previous layer in order to compute their errors δ1, δ2, δ3, δ4:

∆𝐰𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒚𝒌

𝜹𝒌 =
𝒏=5

7

𝜹𝒏 ∙ 𝐰𝒌,𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Backpropagation Algorithm

Finally, the errors δ1, δ2, δ3, δ4 are used for corrections
of the weights of the inputs x1, x2, x3: ∆𝐰𝒙𝒌,𝒏= −𝜼 ∙ 𝜹𝒏 ∙ 1 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝒙𝒌

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Initialization & Training Parameters

The number of hidden layer neurons should be higher rather than lower.
However, for easy problems, one or two hidden layers may suffice.

The numbers of neurons in the following layers usually decreases.
They can also be fixed experimentally or using evolutional or genetic approaches that
will be discussed and implemented later.

Initialization of weights is accomplished by setting each weight to a low-valued random
value selected from the pool of random numbers, say in the range from -5 to +5,
or even smaller.

The learning rate  should be adjusted stepwise ( < 1), considering stability
requirements. However, since convergence is usually rather fast when the error
becomes very small, it is advisable to reinstate  to its initial value before proceeding.

In order to avoid the BP algorithm from getting stuck (learning paralysis) at a local
minimum or from oscillating the modification of learning rate should be employed.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Experiments with Training Data

1. First, use some easy and small training data, like Iris data or Wine data.

2. Next, experiment with more difficult ones (downloaded from ML Repository)
and try to overcome training difficulties that can occur.

3. Use cross-validation that will be described and discussed later during the lectures.

4. Use a various number of layers and neurons.

5. Use genetic and evolutional approaches to find out possibly the best network
topology and initial weights after these methods will be presented during the
lectures.

6. Use various or adjusted learning rate  during the training process.

7. Try to avoid the BP algorithm from getting stuck (learning paralysis) at a local
minimum or from oscillating the modification of learning rate should be employed.

8. Use deep learning strategies to achieve better results of training.

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Overcome Training Difficulties of BP

In order to overcome training difficulties of backpropagation algorithm we can use:

• Bias - an extra constant input (say x0=1) that is weighted (w0,n) and somehow resembles
the threshold used in hard-switch neuron models.

• Momentum – that usually reduces the tendency to instability and avoids fast fluctuations
(𝟎 < 𝜶 < 𝟏), but it may not always work or could harm convergence:

∆𝐰𝒌,𝒏
𝒑
= 𝜶 ∙ ∆𝐰𝒌,𝒏

𝒑−𝟏
+ 𝜼 ∙ 𝜹𝒏 ∙ 𝒇

′

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌 = 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏
+ 𝜼 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

• Smoothing – that is also not always advisable for the same reason:

∆𝐰𝒌,𝒏
𝒑
= 𝜶 ∙ ∆𝐰𝒌,𝒏

𝒑−𝟏
+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝒇

′

𝒌=𝟎

𝑲

𝐱𝒌 ∙ 𝐰𝒌 ∙ 𝐱𝒌

= 𝜶 ∙ ∆𝐰𝒌,𝒏
𝒑−𝟏
+ 𝟏 − 𝜶 ∙ 𝜹𝒏 ∙ 𝟏 − 𝒚𝒏 ∙ 𝒚𝒏∙ 𝐱𝒌

where p is the training period (cycle) of training samples.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Overcome Convergence Problems

In order to overcome convergence problems of the backpropagation algorithm we can:

• Change the range of the sigmoid function from [0, 1] to [-1, 1].

• Modifying step size (learning rate ) during the adaptation process.

• Start many times with various initial weights.

• Use various network architectures, e.g. change the number of layers or the number
of neurons in these layers.

• Use a genetic algorithm or an evolutional approach to find a more appropriate
architecture of a neural network than the casual ones.

• Reduce the number of inputs to overcome the curse of dimensionality problem.

• Use deep learning strategies and networks.

• Use cross-validation to avoid the problem of over-fitting.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Use K-fold Cross-Validation
to overcome convergence problems

Cross-Validation strategy allows us to use all available patterns for training and
validation alternately during the training process.

„K-fold” means that we divide all training patterns into K disjoint more or less
equinumerous subsets. Next, we train a selected model on K-1 subsets K-times and also
test this model on an aside subset K-times. The validation subset changes in the course
of the next training steps:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

We use different k parameters according
to the number of training patterns:

• K is usually small (3  K  10) for
numerous training patters. It lets us
better validate the model if it is tested
on a bigger number of training patterns.
It also reduces the number of training
steps that must be performed.

• K is usually big (10  K  N) for less
numerous training datasets, where N is
the total number of all training patterns.
It allows us to use more patterns for
training and achieve better-fitted model.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

The way of selection of the test patterns in each training step should be representative
and proportional from each class point of view regardless of the cardinality of classes!
We have to consider how the training data are organized in the training dataset:
• Randomly
• Grouped by categories (classes)
• Ordered by values of their attributes
• Grouped by classes and ordered by values of their attributes
• In an unknown way

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

K-fold Cross-Validation

The test patterns can also be selected randomly with or without repetition:

The choice between various options should be made on the basis of
the initial order or disorder of patterns of all classes in the dataset
to achieve representative selection of the test patterns used for
the validated model.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Try to Use a Simple Deep Learning Strategy

Try to use a simple deep learning strategy to upgrade your MLP Network:

• using extra layers added gradually, additional neurons,

• update only a selected part of neurons that respond best to the given input data,
so the other neurons and their parameters (e.g. weights, thresholds) are not updated,

• avoid connecting all neurons between successive layers, so we do not use all-to-all connection
strategy known and commonly used in MLP and other networks, but we try to allow neurons to
specialize in recognizing of subpatterns that can be extracted from the limited subsets of inputs,

• create connections between various layers and subnetworks, not only between successive layers

• use many subnetworks that can be connected in different ways in order to allow neurons from these
subnetworks to specialize in defining or recognizing of limited subsets of features or subpatterns,

• let neurons specialize and not overlap represented regions and represent the same features
or subpatterns.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Try to Use a Simple Deep Learning Strategy

Use neurons that have input connections coming from
different layers, combining the variety of the previously
extracted features to compute their outputs.

During our laboratory classes:

Try to use this strategy instead of the classic MLP all-to-all
connections and compare achieved training results.

Use it together with limited number of connections between
neurons in the successive layers.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Construct Deep MLP Structure

1. Create a simple MLP network (e.g. for Iris data consisting of
4 inputs, 3 outputs and a single hidden layer consisting of a
few neurons (5 - 20) to achieve possibly
good generalization properties. You can
also use sparse aggregated connections:

2. Learn this network using backpropagation algorithm in a
number of steps (50 – 500) + (later) cross-validation until
the network error is not lower than a given training level.

3. Next, add a next subnetwork with a next hidden layer, and
learn this network with/without (two options) changing the
weights of the previous subnetwork created
in step 1. Try to achieve better results than for the first
network, training it until the results are not significantly
better. Continue such a process until you will get
satisfactory training results.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Construct a Hierarchical Deep MLP Structure

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Construct a Hierarchical Deep MLP Structure

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Construct a Hierarchical Deep MLP Structure

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Construct a Hierarchical Deep MLP Structure

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Cascade Correlated and Wide Structures

Finally, try to use different structures of connections as presented in the lectures.

Combine various approaches and/or structures and try to get the best possible classification
results as possible for the tested training datasets.

Compare those approaches and try to present us the best solution!

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Bibliography and References

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php

