
AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl


Clustering

Clustering
• is a data mining technique and a group of machine learning methods that 

involves the grouping of data points taking into account the similarity of these 
points in a hyperspace of input data;

• does not require input data to be labeled as in the classification tasks;

• can group data into various groups, and next, these groups can be labeled;

• use unsupervised learning to adapt a model.

Main rule of clustering: Data points of the same cluster (group) should be similar, 
i.e. have similar properties and/or features, while data points in different clusters 
(groups) should be dissimilar, i.e. have highly dissimilar properties and/or features.

Clustering methods can be:

• Strong – data points from different clusters must be separable, 
i.e. each belongs to only a single cluster (clusters cannot overlap);

• Weak – clusters can share some data points (clusters can overlap).

http://home.agh.edu.pl/~horzyk/index-eng.php


K-Means and K-Medians Clustering

K-Means Clustering
• is probably the most well-known clustering algorithm;

• is easy to understand and implement;

• requires to set up the number of clusters first;

• produces different results according to the starting cluster centers;

• fails in cases where clusters are not circular.

K-Means Algorithm
1. Select a number of clusters (k) and randomly initialize their 

respective center points that are vectors of the same length as 
data point vectors.

2. Each data point is encompassed to the cluster point (group center) 
that distance to this data point is the smallest, i.e. each data point 
is assigned to the closest cluster (its center).

3. Based on these assigned points, we compute the group center by 
taking the mean of all the points in the group.

4. Repeat these steps until the group centers do not change much 
between subsequent iterations.

You can also randomly initialize the group centers a few times, and then 
rerun the algorithm to find the best clusters.

K-Medians Clustering
• is very similar to K-Means Clustering;

• computes the cluster centers using the median instead of the mean;

• is less sensitive to outliers;

• but it is slower because it requires sorting of cluster points to compute medians.

http://home.agh.edu.pl/~horzyk/index-eng.php


Mean-Shift Clustering

Mean-Shift Clustering

• Is a hill climbing and sliding-window-based algorithm that attempts to 
find dense areas of data points in each step until convergence.

• Is trying to locate the center points of clusters by updating candidates 
for center points to be the mean of the points within the sliding
window. Means automatically attract the sliding windows.

• These candidates are then filtered to eliminate near duplicates,
forming the final set of center points and their corresponding clusters.

• Each black dot in the animation represents the centroid of a sliding 
window and each gray dot is a data point.

• The selection of the window radius of clusters is not a trivial task.

Mean-Shift Algorithm
1. Begin with a circular sliding window centered at a randomly selected point C having 

a radius r as the kernel.

2. In every iteration, the sliding windows are shifted towards regions of higher density 
by shifting the center point to the mean of the points within the window. The density 
within the sliding window is proportional to the number of points inside it. 

3. Continue shifting the sliding of the windows according to the means (red points) 
until there are no directions at which they can be shifted and accommodate 
more points inside the kernels. In the figure, keep moving the circle until we can 
no longer increase the density, i.e. the number of points in this window.

4. Repeat this process until all points lie within windows. When multiple sliding 
windows overlap, the window containing the most points is preserved. The data 
points are then clustered according to the sliding window in which they reside.

http://home.agh.edu.pl/~horzyk/index-eng.php


Density-Based Spatial Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

• Is a density-based clustering algorithm:

1. Begin with an arbitrary starting data point that has not yet been visited.
Consider a neighborhood of this point defined by the circle with radius ε.

2. If there are a sufficient number of points (more than minPointsNumber) within
this neighborhood then the clustering process starts and the current data point
becomes the first point in a new cluster. Otherwise, the point will be labeled as
noise (later this noisy point might become the part of any cluster).
In both cases that point is marked as “visited”.

3. For this first point in the new cluster, the points within its ε distance neighborhood
also become part of the same cluster. This procedure of making all points in the ε
neighborhood belong to the same cluster is then repeated for all of the new points
that have been just added to the currently developing cluster.

4. The process is repeated until all points in the cluster are determined,
i.e. all points within the ε neighborhood of the cluster have been visited and labeled as „visited”.

5. Once we are done with the current cluster, a new unvisited point is retrieved and processed in the same way, creating another
cluster or a noise point. This process repeats until all points are marked as visited and belong to a cluster or being a noise.

DBSCAN poses many great advantages over other clustering algorithms:

• It does not require a preset number of clusters.

• It identifies outliers as noise.

• It finds arbitrarily sized and arbitrarily shaped clusters quite well.

The main drawback of DBSCAN is that it does not perform as well as other algorithms when the clusters are of varying density.
This is because the setting of the distance threshold ε and minPointsNumber for identifying the neighborhood points will vary 
from cluster to cluster when the density varies. This drawback occurs with high-dimensional data since again the distance 
threshold ε becomes challenging to estimate.

http://home.agh.edu.pl/~horzyk/index-eng.php


Expectation-Minimization Clustering

Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)
• assumes that the data points are Gaussian distributed, i.e. we have two parameters to describe

the shape of the clusters: the mean and the standard deviation. Therefore, the clusters can take
any kind of elliptical shape, and each Gaussian distribution is assigned to a single cluster.

• In order to find the parameters of the Gaussian distribution for each cluster (i.e. the appropriate
mean and standard deviation), we use an Expectation–Maximization (EM) optimization algorithm.

Expectation–Maximization Algorithm
1. Select a number of clusters and randomly initialize the Gaussian distribution parameters

for each cluster.

2. For the given Gaussian distributions for each cluster, compute the probabilities of belonging of
data points to particular clusters. The closer a point is to the Gaussian’s center, the more likely
it belongs to that cluster. This should make sense since with a Gaussian distribution,
we assume that most of the data lie closer to the center of the cluster.

3. Based on these probabilities, we compute a new set of parameters for the Gaussian distributions such that we maximize 
the probabilities of data points within the clusters. We compute these new parameters using a weighted sum of the data point 
positions, where the weights are the probabilities of the data point belonging in that particular cluster.

4. The above steps are iteratively repeated until convergence, where the distributions do not change much from iteration to iteration.

There are two key advantages to using GMMs:

• GMMs (ellipses) are a lot more flexible in terms of cluster covariance than K-Means (circles) due to the standard deviation 
parameter. K-Means is actually a special case of GMMs in which each cluster’s covariance along all dimensions approaches 0.

• Since GMMs use probabilities, they can have multiple clusters per data point. So if a data point is in the middle of two 
overlapping clusters, we can simply define its class by the probability of belonging to class 1 and another probability of 
belonging to class 2, i.e. GMMs support mixed membership.

The disadvantage is that EM Clustering requires preset the number of clusters.

http://home.agh.edu.pl/~horzyk/index-eng.php


Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering
• Is a bottom-up algorithm which treats each data point as a single cluster at the outset and then it successively 

merges (agglomerate) pairs of clusters until all clusters have been merged into a single cluster that contains all data 
points. This hierarchy of clusters is represented as a tree (dendrogram). The root of the tree is the unique cluster 
that gathers all the samples, the leaves being the clusters with only one sample. 

1. At the beginning, treat each data point as a single cluster, i.e. if there are N data points in our dataset then we have 
N clusters. Then select a distance metric that measures the distance between two clusters. Use an average linkage 
which defines the distance between two clusters to be the average distance between data points in the first cluster 
and data points in the second cluster.

2. On each iteration, combine two clusters into one when the clusters have the smallest average linkage, i.e. according 
to our selected distance metric, these two clusters have the smallest distance between each other and therefore are 
the most similar and should be combined.

3. Repeat step 2 until the root of the tree is reached,
i.e we achieved one cluster that contains all data
points. 
In this way, we can select how many clusters
we want to have in the end, simply by choosing
when to stop combining the clusters,
i.e when we stop building the tree.

• Hierarchical clustering does not require to specify the number of clusters, and we can even select which number of 
clusters looks best after we have built the tree. The algorithm is not sensitive to the choice of distance metric; 
all of them tend to work well whereas the choice of distance metric is critical for other clustering algorithms. 

• A particularly good use case of hierarchical clustering methods is when the underlying data has a hierarchical 
structure and you want to recover this hierarchy. The cost of hierarchical clustering has time complexity of O(N³), 
unlike the linear complexity O(N) of K-Means and GMM.

http://home.agh.edu.pl/~horzyk/index-eng.php


Comparison of Clustering Algorithms

Here, we can notice the pros and cons of the different clustering algorithms on difficult data points:

http://home.agh.edu.pl/~horzyk/index-eng.php


Biclustering and Triclustering

Biclustering
• called also block clustering, co-clustering, or two-mode clustering is a data mining 

technique that allows simultaneous clustering of the rows and columns of a matrix;

• is searching for the similarities of these points in a space of input data taking into 
account only a subset of attributes (e.g. rows);

• does not require input data to be labeled as in the classification tasks;

• can group data into various groups, and next, these groups can be labeled;

• use unsupervised learning to adapt a model.

Definition: Given a set of m samples represented by an n-dimensional 
feature vector, the entire dataset can be represented as m rows in n columns 
(i.e., an m × n matrix). The biclustering algorithm generates biclusters – a subset of 
rows which exhibit similar behavior across a subset of columns, or vice versa. 

Triclustering
• additionally takes into account the time and searches for patterns that frequently 

repeat in time. Clusters of such frequently repeated patterns spanned over time will 
be the result of triclustering.

http://home.agh.edu.pl/~horzyk/index-eng.php


Biclustering Types

1.Bicluster with constant values
When a biclustering algorithm tries to find a constant bicluster, the normal way for 
it is to reorder the rows and columns of the matrix so it can group together similar 
rows/columns and find biclusters with similar values. This method works well 
when the data are tidy. But as the data can be noisy most of the times, it cannot
satisfy us. 

More sophisticated methods should be used. A perfect constant bicluster is a 
matrix(I,J) where all values a(i,j) are equal to μ. In real data, a(i,j) can be seen as 
n(i,j) + μ where n(i,j) is the noise. According to the Hartigan’s algorithm, by splitting 
the original data matrix into a set of biclusters, variance is used to compute 
constant biclusters. So, a perfect bicluster is a matrix with variance zero. 

Also, in order to prevent the partitioning of the data matrix into biclusters with 
only one row and one column, Hartigan assumes that there are K biclusters within 
the data matrix. When the data matrix is partitioned into K biclusters, the 
algorithm ends.

http://home.agh.edu.pl/~horzyk/index-eng.php


Biclustering Types

2.Biclusters with constant values on rows or columns
This kind of biclusters cannot be evaluated just by variance of its values.

To finish the identification, the columns and the rows should be normalized at first. 

There are other algorithms, without normalization step, which can find biclusters that have 
rows and columns with different approaches.

3.Biclusters with coherent values
For biclusters with coherent values on rows and columns, there is used an analysis of 
variance between groups, using co-variance between both rows and columns.

Cheng and Church's defined a bicluster as a subset of rows and columns with almost the 
same score. The similarity score is used to measure the coherence of rows and columns.

http://home.agh.edu.pl/~horzyk/index-eng.php


Bibliography and Literature
1. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-
1-59327-741-3 or PWN 2018.

3. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

4. https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-
know-a36d136ef68

5. https://en.wikipedia.org/wiki/Biclustering

University of Science 
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://en.wikipedia.org/wiki/Biclustering
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

