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Computer Vision

Computer vision is a group of tasks that play a very important role 
today and can be supported by convolutional neural networks (CNN) 
due to their unique ability to recognize objects whenever their 
location in the image:

Convolutional filters allow us to filter out and detect basic and secondary features 
gradually in the subsequent layers of the network using adaptive filtering (dot 
product) and weights of the filters trained during the CNN training process:

Filters allow the network to adjust them to recognize particular shapes and colors.
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Filters and Convolutions

Filters are commonly used in computer graphics, and allow 
us to find edges and convolve images:

• Example result of applying the vertical-line filter:

convolution
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Adaptive Filtering

In convolutional layers, we use adaptive filters, which have 
no constant filters but weights wi that are adapted during 
the training process to represent  frequent patterns of 
the filter size in the input images:

The output value is computed as a dot product of the input area where the filter is 
adapted and the filter (matrix of the adaptable weights).

Weights are parameters of the model, so they are updated in the training process.

*
convolution

=
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Stride 1

To adapt the filter to the whole image we must move the filter over the image with 
a given stride s that defines the number of fields (pixels) we move in vertical 
and/or horizontal directions (it is a hyperparameter of the model):

• For stride 1 we jump over two pixels as presented in the figure below:
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Stride 2

To adapt the filter to the whole image we must move the filter over the image with 
a given stride s that defines the number of fields (pixels) we move in vertical 
and/or horizontal directions (it is a hyperparameter of the model):

• For stride 2 we jump over two pixels as presented in the figure below:
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Padding

When moving the filter (f x f) over the image (n x n) with a given stride, 
we cannot move over the edges/boarder of the image, so we are forced to 
treat the pixels on boarders in the different way (“Valid”) or add 0-value 
boarder outside the image to adapt filters on the boarders (“Same”):

• Valid Convolution (no padding): Output size is n x n * f x f = (n – f + 1) x (n – f + 1)

• Same Convolution (padding is balances the filter size p = (f – 1)/2, then the output 
size is the same as the one of the input image.

• The chosen way of convolution (“same” or “valid”) is one the hyperparameters of 
the model!
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Output volume size for stride and padding

The output matrix size can be computed for given:

• Input matrix (image) dimension n x n

• Filter size f x f

• Stride s

• Padding p

in the following way: 
𝑛+2𝑝−𝑓

𝑠
+ 1 ×

𝑛+2𝑝−𝑓

𝑠
+ 1

Example for n = 7, f = 3, s = 2, p = 1: 
7+2∙1−3

2
+ 1 ×

7+2∙1−3

2
+ 1 = 𝟒 × 𝟒
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Multiple Adaptive Filters on RGB Images

If the input image has 3 color channels then the filters
must also have the depth equal to 3, so we always
convolve over the volume:

R
G

B

R
G

B

R
G

B

Filter 1:

Filter 2:

Number of channels (filters 

or depth of the conv. layer): 

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 ×

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 × 𝒏𝒄

Output Volume Size = 

𝒏𝒄 = 𝟐
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Convolution and Convolutional Layer

What happens in the convolutional layer?
The input 𝒂 𝟎 is convolved by the convolutional filters 𝑾 𝟏 and using the bias 𝒃 𝟏

the output 𝒂 𝟏 is computed (here two filters are used):

Number of parameters = (number of weights + bias) * number of filters = (3x3x3 + 1) * 2 = 28 * 2 = 56

+ 𝒃𝟏
[𝟏]

)

+ 𝒃𝟐
[𝟏]

)

𝒈[𝟏](

𝒈[𝟏](

𝑾 1 𝒛 1 𝒂 1

𝒂 0

𝒛 1 = 𝑾 1 ∙ 𝒂 0 + 𝒃 1 𝒂 1 = 𝒈 1 𝒛 1
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Convolutional Layer Notation

For a convolutional layer 𝒍, we will use the following notations:

𝒇[𝒍] - filter size

𝒑[𝒍] - padding

𝒔 𝒍 - stride

𝒏𝑯
[𝒍]

- height (vertical dimension)

𝒏𝑾
[𝒍]

- width (horizontal dimension)

𝒏𝒄
[𝒍]

- number of channels or filters (depth of the layer)

For a given input:

𝒏𝑯
[𝒍−𝟏]

× 𝒏𝑾
[𝒍−𝟏]

× 𝒏𝒄
[𝒍−𝟏]

we get the following filter size: and weight size:

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

× 𝒏𝒄
[𝒍]

and the output:

𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]
=

𝒏𝑯
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 ×

𝒏𝑾
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 × 𝒏𝒄

[𝒍]

𝑨[𝒍] = 𝒎× 𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]

http://home.agh.edu.pl/~horzyk/index-eng.php


Example of Simple Convolutional Network

Let’s compute the sizes for this exemplar convolutional network:

𝒏𝑯
[𝟏]
× 𝒏𝑾

[𝟏]
× 𝒏𝒄

[𝟏]
=

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 ×

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 × 𝟏𝟔 = 𝟏𝟏 × 𝟏𝟏 × 𝟏𝟔

𝒏𝑯
[𝟐]
× 𝒏𝑾

[𝟐]
× 𝒏𝒄

[𝟐]
=

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 ×

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 × 𝟑𝟐 = 𝟔 × 𝟔 × 𝟑𝟐 = 𝟏𝟏𝟓𝟐 = 𝒏𝑯

[𝟑]

𝒂 1

𝒂 0

𝒂 2

𝒏𝒄
[𝟎]

= 𝟑 𝒏𝒄
[𝟏]

= 𝟏𝟔 𝒏𝒄
[𝟐]

= 𝟑𝟐
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1 x 1 Convolutions

[Paper: Network In Network, Authors: Min Lin, Qiang Chen, Shuicheng Yan. 
National University of Singapore, arXiv preprint, 2013]:

One-by-one convolutions (called also as network in network) can use various 
features represented by the various convolutional filters with different 
strengths expressed through the one-by-one-dimensional convolution filter: 

This kind of convolution
can be used to shrink
the filter volume (depth):
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Pooling Layer

To downsample the image, we often use pooling layers:
• Max-pooling chooses the maximum value from the selected region (stride = 2):

• Avg-pooling chooses the average value from the selected region (stride = 2):

Be careful about using max-pooling because it neglects details.

Max-pooling is more often used in the convolutional networks.

We usually do not use padding (padding = 0) for the pooling operations.
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Pooling Layer

Max-pooling layer for stride = 1, filter size = 3x3:

Notice that there are no parameters that can be adapted during the training process! 

Max-pooling and avg-pooling are computed separately for each channel.

It is often used to downsample the high-dimensional images.
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Pooling layers

Pooling layers are usually counted together with convolutional 
layers, however sometimes are computed separately.

An example convolutional network with pooling layers:
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Presentation of CNN Structure

We usually present the structure of convolutional networks in 
the following way:
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Benefits of using CNN

Convolutional Neural Network:
• Share parameters, so the same feature may be recognized in any part of the image

• Use sparse connections, so the convolutional layers are not connected all-to-all 
(dense/fully-connected), which saves a lot of parameters, and allows to train 
the network faster.

• Outputs depend directly only on some selected areas of the input images, so the 
neurons can specialize in recognizing, but their position in the convolutional layer 
defines the location where the features have been found.

Timeline of the development of Convolutional Neural Networks:

http://home.agh.edu.pl/~horzyk/index-eng.php
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LeNet-5 (1998)

[LeCun et al., 1998. Gradient-based learning applied to document recognition]:

This net has 60K parameters.

LeNet-5 is one of the simplest architectures.

The average-pooling layer as we know it now was called 
a sub-sampling layer and it had trainable weights
which isn’t the current practice of designing CNNs nowadays.

The modern version of LeNet-5 uses SoftMax in the output layer.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]
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AlexNet (2012)

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]:

It was the first to implement Rectified Linear Units (ReLUs) as activation functions.

This net has 60M parameters.
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VGG-16 and VGG-19 (2014)

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]:

VGG16 This net has 138M
parameters.
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ResNets

[He at al., 2015, Deep residual networks for image recognition]:
ResNets are constructed from the stacked residual blocks that regularize the 

non-linear processing using short-cut (identity, skip connection) connections:

𝒛[𝒍+𝟏] = 𝑾[𝒍+𝟏] ∙ 𝒂[𝒍] + 𝒃[𝒍+𝟏]

𝒂[𝒍+𝟏] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟏]

𝒛[𝒍+𝟐] = 𝑾[𝒍+𝟐] ∙ 𝒂[𝒍+𝟏] + 𝒃[𝒍+𝟐]

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] + 𝒂[𝒍]

𝒂[𝒍] and 𝒛[𝒍+𝟐] must have the same
dimensions, so in ResNets, we use 
the “same convolutions”:

Residual

Block 

short-cut

𝒂[𝒍]

𝒂 𝒍+𝟏 𝑹𝒆𝑳𝑼

𝒂[𝒍+𝟐] 𝑹𝒆𝑳𝑼

𝒛[𝒍+𝟐]

𝒛[𝒍+𝟏]

𝑾[𝒍+𝟏]

𝑾[𝒍+𝟐]

𝒃[𝒍+𝟏]

𝒃[𝒍+𝟐]

ResNet
34 layers

ResNets are allow us 

to construct much 

deeper architectures 

because residual 

blocks avoid 

overfitting.

If we want to use different 

dimensions of 𝒂[𝒍] and 𝒛[𝒍+𝟐], 
we must use an extra weight 

matrix Ws to transform:

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] +𝑾𝒔
𝒍+𝟐 ∙ 𝒂[𝒍]

𝒂[𝒍]
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Comparison of ResNet to PlainNet and VGG-19

[He at al., 2015, Deep residual networks for image recognition]:
ResNets are constructed from the stacked residual blocks that regularize the 

non-linear processing using short-cut (identity, skip connection) connections:
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ResNet-50 (2015)

This net has 26M parameters!

It used skip connections the first 
time, designed much deeper 
CNNs (up to 152 layers) without 
compromise with generalization, 
and was among the first to use 
batch normalisation.
Paper: Deep Residual Learning for Image 

Recognition, Authors: Kaiming He, Xiangyu

Zhang, Shaoqing Ren, Jian Sun. Microsoft

Published in: 2016 IEEE Conference on 

Computer Vision and Pattern Recognition 

(CVPR).

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]
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Inception Module

Inception modules allow to use various convolutions (filters) at the same time:

Using 1x1 convolutions we can reduce the number or multiplications 10 times:

(28x28x16 x 1x1x192) + (28x28x16 x 1x1x192) ≈ 12.4M operations 

[Szegedy et al. 2014. Going deeper with convolutions]

Computational cost of this convolution is

28x28x32 x 5x5x192 ≈ 120M operations.
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Inception Networks (2014)

Building an inception network from inception modules:

1x1x96

1x1x96

28x28x192 28x28x32

28x28x32

28x28x128

28x28x64
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Inception-v1 (2014)

Paper: Going Deeper with Convolutions,

Authors: Christian Szegedy, Wei Liu, Yangqing Jia,

Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.

Google, University of Michigan, University of North Carolina

Published in: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)

This net has 5M
parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

It has parallel towers of 
convolutions with different 
filters, uses 1x1 convolutions, 
adding nonlinearity, and two 
auxiliary classifiers to provide 
additional regularization.
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Inception-v3 (2015)

Paper: Rethinking the Inception Architecture for Computer Vision

Authors: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 

Jonathon Shlens, Zbigniew Wojna. Google, University College London

Published in: 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR)

This net has 24M
parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

It factorizes 

n×n convolutions 

into asymmetric 

convolutions: 

1×n and n×1

convolutions, 5×5 

convolution to two 

3×3 convolutions, 

and replaces 7×7 

to a series of 3×3 

convolutions
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Inception-v4 (2016)

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Authors: Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

This net has 43M
parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

It changed in Stem module,

added more Inception modules,

and chose Inception-v3 modules uniformly,

i.e. used the same number of filters for every module.
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Xception (2016)

Xception is an adaptation from Inception, where the Inception modules have been 
replaced with depth-wise separable convolutions. 

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

This net has 23M parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

Paper: Xception: Deep 

Learning with Depthwise

Separable Convolutions

Authors: François Chollet. 

Google.

Published in: 2017 IEEE 

Conference on Computer 

Vision and Pattern 

Recognition (CVPR)

Cross-channel 

correlations were 

captured by 1×1 

convolutions, and 

spatial correlations 

within each channel 

were captured via 

the regular 3×3 or 

5×5 convolutions.
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Inception ResNet-v2 (2016)

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,

Authors: Christian Szegedy, Sergey Loffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

This solution:

• converts Inception modules to Residual Inception blocks.

• adds more Inception modules.

• adds a new type of Inception module (Inception-A) after the Stem module.

This net has 56M
parameters.
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ResNeXt-50 (2017)

Paper: Aggregated Residual Transformations for Deep Neural Networks

Authors: Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He. University of 

California San Diego, Facebook Research

Published in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

It scales up the number of parallel towers (“cardinality”) within a module:

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

This net has 25M parameters.
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GitHub sources

It is not necessary to implement all these networks from scratch, but use the 
original sources available on GitHub repositories:

1. Find the source at GitHub.

2. Copy the source at GitHub repository.

3. Clone it in your computer:
> git clone https://github.com/...

4. Go to the repository, e.g.: cd deep-residual-networks

5. Go to the prototxt/more and look at the structure of the chosen network.

When implementing a selected type of the network, we usually use 
open-source implementations available on GitHub and adapt it to our tasks.

In the same way, we copy implementations with trained parameters 
when we want to use transfer learning.

https://github.com/
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Transfer Learning and some Tricks

Training of big deep learning architectures can take weeks on many GPU units, 
so it is wise to use some open-source networks that are already trained on big 
datasets, and next, retrain the network adapting it to the given task.

Such weights might be a very good initialization of the weights of your network.

This way is usually faster than training the network from scratch.

This is called a transfer learning.

When transferring the network with weights, we can freeze some number of 
the first layers (not changing their weights during the following training), and 
just train only parameters of e.g. soft-max layer or a few last layers more. 

We can also unfreeze some layers during the training when not achieving good-
enough results. We can also freeze the fewer number of first layers.

To make training faster, we can compute output values of the last frozen layer, 
save them to the disk, and use them instead of original inputs to train the last 
unfrozen layers only.

http://home.agh.edu.pl/~horzyk/index-eng.php


Let’s start using convolutional networks!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?
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