AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering
Department of Biocybernetics and Biomedical Engineering

Knowledge-based Cl and
ML in Biomedicine

Data and Model Optimization and

Performance Measuring and Improvement

Ad H k)
| h 41 horzrll?nal? Eﬁﬁ pl Google: Adrian Horzyk

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Orthogonalization Process and
Controlling the Training Process

How to define knobs tocontrol the training?

http://home.agh.edu.pl/~horzyk/index-eng.php

T\ @
&
Orthogonalization:

* is aclear-eyed process about what to tune and how to achieve a supposed effect.

Orthogonalization

* is the process that lets us refer to individual hyperparameters in such a way that we
can fix a selected training problem by tuning on a limited subset of hyperparameters.

Why do we prefer to use drones over helicopters?
* Which one is easier to control and why?

* Isit easier to control a single knob changing a single parameter
or a compound joystick changing many parameters at the same time?

Have you tried to fly a helicopter or a drone in the past? What is your experience? //

il

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Car Controllers

What about the car controllers like a weal, pedals, knobs, shifts, and buttons?
Is it easier to control it (e.g. speed) when each parameter is controlled separately?
How do you prefer to control the car:

= set of controllers (like weal, pedals, knobs, shifts, and buttons) that control individual
parameters of the car (speed, direction, etc.) or

= an integrated controller (like a joystick) that can control a combination of parameters
(like speed and direction) by the same move?

FRONT AND
¥ LIGHTS AND REAR WIPERS ;
INDICATORS |, 3 o
S - : ’
‘v\y
/ - DOOR
T = <3 v MIRROR'S |
RN sty) ADJUSTER
L o P 3y -
‘& 3 g (*2 i

INSTRUMENT PANEL
SPEEDOMETER, REV
COUNTER,
GEAR INDIC, ATOR

COMFORT
CONTROLS.

CCCCCC

e
s

ACCELERATOR, BONNE
BRAKE,CLUTCH RELEAS

we
A

T
E

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Scores for Measuring
Performance and Generalization

How to measure the model quality?

http://home.agh.edu.pl/~horzyk/index-eng.php

~ When adapting the model, we usually train it with different

Single Number Evaluation Metric \\\\ Q

hyperparameters and compare achieved precision and recall:

Precision — defines the percentage of correct classifications, e.g. if the achieved
precision is 98% after the training is finished, and the network says that the input is
a car, there is a 98% that it really is a car.

Recall - is the percentage of correctly classified objects (inputs) for training classes,

e.g. how many cars of all the cars from training data were correctly classified?
2

.q- . . Fy= —
Classifier ~ Precision Recall F, Score '™ Precision™! + Recall !
2. i o
Classifier A 96% 90% IR 5, - LB Precision Recall
B? - Precision + Recall
Classifier B 98% 88% 92,73% (1+pB%)-TP

“(1+B2)-TP+B%-FN +FP

3 0
Classifier C 94% B - how many times recall is more important than precision

TP — true positive, FP — false positive, FN — false negative

Which classifier from the above three is the best one?

It turns out that there is often a trade-off between precision and recall,
but we want to care about both of them! ;

Yo

We sometimes use F1 Score that is a harmonic mean of the precision and recall.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

N\

Confusion Matrix & Popular Scores °

Confusion Matrix groups the results of binary classification:

* TP (true positive) — is the number of examples correctly classified as positive.
* FP (false positive) — is the number of examples incorrectly classified as positive.
* TN (true negative) — is the number of examples correctly classified as negative.

* FN (false negative) — is the number of examples incorrectly classified as negative.

¢ GROUND-TRUTH POSITIVE
@ GROUND-TRUTH NEGATIVE
ACCURACY=

PRECISION = RECALL =

n FP
FALSE
POSITIVE

o FP

FALSE
POSITIVE

Precision=TP /(TP +FP) Recall=TP /(TP +FN) Accuracy=(TP+TN)/ALL
Precision — a ratio of how Recall — a ratio of how Accuracy — a ratio of how

EN ° ™ _ many examples were many examples were many examples were
FALSE TRUE correctly classified as correctly classified as correctly classified to all
NEGATIVE NEGATIVE - - . g
_, positive (class A) to all positive (class A) to all examples in the training ‘
\%\ CLASSIFIED AS POSITIVE examples classified as positive (class A) set. //
CLASSIFIED AS NEGATIVE positive (while not all examples in the

) are really positive, i.e. of training set.
‘E\\\Q\ class A). //// 7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

All Examples
(ALL)

Metrics and Measures of Results

The most popular measures of results are:

CONFUSION MATRIX

Defined as Positive (P) = TP + FN

Prevalence = PP / ALL

Defined as Negative (N) = FP +
N

Predicted as
Positive (PP)
=TP + FP

Predicted as
Negative (PN)
=FN+ TN

True positive (TP)

True Positive Rate (TPR) =

Recall = Sensitivity = TP / P

Accuracy (ACC) = (TP + TN) / ALL

Precision = Positive Predictive Value (PPV)=TP /
PP

False Discovery Rate (FDR) = FP / PP

False Omission Rate (FOR) =FN /PN

True Negative (TN)

Negative Predictive Value (NPV) = TN/ PN

False Positive Rate (FPR) =

F4 =2 - Precision - Recall / (Precision + Recall)

Fall-out=FP /N

Positive Likelihood Ratio (LR+) = TPR/FPR

False Negative Rate (FNR) =

Miss Rate =FN /P

True Negative Rate (TNR) =

Negative Likelihood Ratio (LR-) = FNR / TNR

Selectivity = Specificity = TN / N

Diagnostic Odds Ratio (DOR) = LR+ /LR- /ﬁ

Vil

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

’ Q‘” 7 Metrics for Comparison of Classifiers_ Q

W

When we have results collected by many classifiers, we need to choose
the best one, preferably using a single criterion that takes into account,
e.g. various positive or negative classifications for all classes separately:

* Compute the average error or harmonic mean for all classes and classifiers to compare them:

95% 90% 94% 99% 94.5% 94.39%
B 96% 93% 97% 94% 95.0% 94.97%
C 92% 93% 95% 97% 94.3% 94.21%
D 94% 95% 99% 94% 95.5% 95.46%
E 97% 98% 95% 97% 96.8% 96.74%
F 99% 91% 96% 92% 94.5% 94.39%

* Thanks to such measures, we can more easily point out the best classifier taking into account

K\ results collected for all classes. /
\ /4
W e

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

U Other Criteria for Choosing Classifier\\\\\@

Sometimes an application must run in real-time, so we cannot
simply choose the classifier with the best accuracy, precision, or
recall, but we must take into account the classification time:

* The accuracy must be the highest but available at the acceptable time, e.g. < 100 ms

Classification Time

A 94.5% 70 ms
B 95.0% 95 ms
C 94.3% 35 ms
D 95.5% 240 ms
E 96.8% 980 ms
F 94.5% 60 ms

« Sometimes we must take into account additional criteria to find out the suitable
classifier for a given practical problem, e.g., we choose this one with the highest
accuracy of those, which have their classification time lower than 100 ms.

\5\ * The accuracy is optimized, while the classification time must be satisfied. /ﬁ/
So we have to do with multi-criteria optimization here. / /
(/10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Preventing Overfitting

How to stop before the model starts

overfitting?

http://home.agh.edu.pl/~horzyk/index-eng.php

Early Stopping

AW

&Q

One of the easiest method preventing overfitting is to use “early stopping” of the
training process, which is stopped when the error on the dev set starts to grow.

K

error

e

training set
dev set ——

overfitting

-......Garlystopping ________

number of iterations

Validation MAE

50

45

stop training

VR

Epochs

30 &0 500

We save the model during training and use the last model with the least dev error.

Y
e

This method does not cure overfitting but only reacts its symptoms
and prevents its occurrence when it reveals.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Data Augmentation and
Synthetizing Training Data

What can we do when having too small number of

training data or unequal number of representatives?

http://home.agh.edu.pl/~horzyk/index-eng.php

Data Augmentation "\ @
N

If we have not enough data to train the model or classes are represented by

very different number of representants, we can augment the training data of

given less numerous classes appropriately or all training data to avoid training
limitations or privileging the most numerous classes.

Augmentation (image data generation) o B
. . B ral Ve LA gt
is a standard method implemented to ¥ Rl /.‘% g\?‘\ ,(;%
images which can be easy augmented |) & | Mo o
. . . ’ A)4 |
using the following operations: P’ <4 :
« Shift and Rotate [N S gy
| JRE | & € | &
* Scale (zoom in or out) R, A & | TS
’B-’ \ 2: & \ o ’/b , o
Al £ Kuirst L P

» Shearing (different parts of images)
datagen = ImageDataGenerator(

* Flip (horizontally or vertically) rotation range=50

« Inverse or change colors width_shift_range=0.2,
. . height_shift_range=06.2,
* Apply random jitters and perturbations shear range=6.2,

zoom_range=0.2, /4’6
horizontal flip=True, /4

fill mode="nearest") ,
e

https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

) A
AN\ Jias

: R\
Augmentation Prevents Overfitting \ @
Data augmentation takes the approach of generating more trai\;%
data from existing training samples, by "augmenting" the samples
via a number of random transformations (like rotation, shifting,
zooming, flipping etc.) that yield believable-looking images.

The goal is that at training time, the model would never see
the exact same picture twice. This helps the model get exposed to
more aspects of the data and generalize better.

Thanks to it, it also prevents overfitting that is caused by having
too few samples to learn from and to cover input data space
enough representatively, rendering us unable to train a model
able to generalize to new data.

In Keras, this can be done by configuring a number of random
transformations to be performed on the images read by /ﬁ
the ImageDataGenerator instance. /

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

- Augmentation by ImageDataGenerator

The most popular parameters of ImageDataGenerator are:
rotation_range is a value in degrees (0-180), a range within which to randomly rotate pictures.

width_shift and height_shift are ranges (as a fraction of total width or height) within which to
randomly shift pictures vertically or horizontally.

shear_range is for randomly applying shearing transformations.
zoom_range is for randomly zooming inside pictures.

horizontal_flip is for randomly flipping half of the images horizontally - relevant when there are
no assumptions of horizontal asymmetry (e.g. real-world pictures).

fill_mode is the strategy used for filling in newly created pixels, which can appear after a
rotation or a width/height shift.

from keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
rotation_range=50,
width shift range=6.2,
height shift range=6.2,
shear_range=0.2,

zoom_range=0.2, //

horizontal flip=True,

fill mode='nearest") /,////ie

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Image Data Generator

In Keras, the ImageDataGenerator supplies us with a rich set of transformations:

tf.keras.preprocessing.image.ImageDataGenerator(
featurewise center=False,
samplewise center=False,
featurewise std normalization=False,
samplewise std normalization=False,
zca whitening=False,
zca_epsilon=1e-06,

rotation range=o,

width_shift _range-0.0,
height shift range=0.09,

brightness range-None,

shear range-=0.0,

Zoom_range-0.0,
channel shift range-=0.09,

till mode="nearest”,

cval=0.0,

horizontal flip-False,

vertical flip=False,

rescale=None,

preprocessing function=None,
data_format=None,

validation split=e.0,

dtype-None,

gxnu:ms <
B Ao 08 s AL

ABU-T23 AeCTea JiUCIN FLLQ

O s

n “a8 | ‘pm O exeiome

TS I RCTToR MBCCie ALy

900VWVVIEGE
90999VHIEG6
99099IEGEGE
99DDIIIGE G G
99999866EEE.

///17

https://keras.io/api/preprocessing/image/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Synthetic Training Data

When dev data, testing data or real-world data differ from training data (e.g.

are noisy), we can try to artificially synthetize new training data that will be
more similar to real-world data (noise data augmentation), e.g.:

* add typical noise to training data.
* blur training data.

* add some distortions to training data.

Such techniques allow us to overcome the Data Mismatch Problem between
training data and real-world noisy data.

When dealing with texts, we can use various text generators or transformers
like SynthText or TextRenderer used e.g. by CAPTCHA or HIP.

con PR L P eevELED
Fov BN+ n<Iude m aced

18

https://github.com/ankush-me/SynthText
https://github.com/contentful/rich-text-renderer.py
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

A\
CAPTCHA & HIP \ \\
Web services are often protected with a challenge that's supposed to be easy

for people to solve, but difficult for computers. Such a challenge is often called:

 CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart) or

* HIP (Human Interactive Proof). morping W"
HIPs are used for many purposes, such as

Type the two words:
to reduce email and blog spam and prevent -

brute-force attacks on web site passwords.

BT e S P egn
& M T P WY
'39 A > ,;J RN “ \/ I'm not a robot J
5 N e - -
ﬂ%\ L N 1+ | /ﬁ/

http://home.agh.edu.pl/~horzyk/index.php
http://home.agh.edu.pl/~horzyk/index.php

Local Minima and Saddle Points

How to train the network without stacking in

local minima or sacddle points?

http://home.agh.edu.pl/~horzyk/index-eng.php

A loss function can have many local minima, but we are interested in
finding the global minimum do reduce training error as much as possible:

* We must avoid stacking in local minima or saddle points of the cost function.
 We can use such loss functions that are not prone to local minima.
* Normalization speeds up the training and better avoids local minima.

 We can try to escape from local minima using

v" smaller mini-batches, S S
v momentum, @ ~Q. N Z
v RMSprop, @ 7 \ AN |
v Adam optimizer etc. | ; ~.0
* The gradient in any local minimum . @ . '®) ®
or saddle point is always equal to 0! |
* We can also start training process many times
starting from different random weights.
We can use activation functions without plateau! . %/

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

“
=
> (»]
z ”
=
d)
5o
& =
Q S
&) (&
(1 -
. @
£
=) ‘c
n P—t
«
/)]
o

11

o
Ay
v
P
e
)
3]
/)]

The loss function surface can be
local plateaus (flat areas) where
ients are very small.

locally flat
We want to escape from such

lose or equal to 0

where the gradient algorithm can stack because the grad
the grad

Even if the loss function has no local m

ISC

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Learning Rate Decay

How to iImprove training process using

on-line adaptation of ‘the learning rate?

http://home.agh.edu.pl/~horzyk/index-eng.php

Learning Rate Decay

To avoid oscillation close to the minimum of the cost function,
we should use non-constant learning rate, but its decay, e.g.:

 We can decay the learning rate along with the training epochs:
Qg

1+decayrate - noepoch

* We can use an exponential learning rate decay:
- a=ua,- e—decayrate-noepoch ST

* Another way to decay a learning rate:
k’do

Jnoepoch W

Learning rate reduction during the training process: https://Reras.io/callbacks/#reducelronplateau
learning_rate_reduction = ReducelLROnPlateau(monitor="'val_acc', # quantity to be monitored (val_Lloss)
factor=0.5, # factor by which the learning rate will be reduced. new Lr = Lr * factor
patience=5, # number of epochs that produced the monitored quantity with no improvement after
verbose=1, # @: quiet, 1: update messages.
min_lr=0.001) # Lower bound on the Llearning rate

N #

[] a:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Learning Rate Decay

To avoid oscillation close to the minimum of the cost function,
we should use non-constant learning rate, but its decay, e.g.:

 We can also use a staircase decay, decreasing a learning rate after a given number of
epochs by half or in another way:

def 1r_schedule(epoch):
lrate = 0.001

A
if epoch > 50: ' -m-/i;_ N
lrate = ©.0005 AN
if epoch > 1e00: N

lrate = ©.0003
return lrate

model.compile(loss="categorical crossentropy', optimizer=opt_rms, metrics=["accuracy’])
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),\
steps_per_epoch=x_train.shape[®] // batch_size,epochs=125,\
verbose=1,validation_data=(x_test,y test),callbacks=[LearningRateScheduler(lr_schedule)])

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Initialization of Weights

How to accelerate the training process?

http://home.agh.edu.pl/~horzyk/index-eng.php

We initialize weights with small random values:

* to put the values of activation functions in the range of the largest variance,
which speeds up the training process.

A

Initialization of Weights W \@

>

e —— B

e taking into account the number neurons nl=1 of the previous layer,

2
=1l 1l *

multiplying the random numbers from the range of 0 and 1 by such a factor./)

S

1 el ne .
e.g. for tanh: —1) (popular Xavier initialization) or\/n[

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Standardization and Normalization

Make the data similarly influencing on the network

and speed up the training process!

http://home.agh.edu.pl/~horzyk/index-eng.php

Data Standardization \\\\ @

Standardization is an operation commonly used in statistics,
which consists in rescaling data of each element of the set against
the mean values and standard deviation in accordance with the

formula: X;—m

Yi 5
X = [Xy, X,, ..., Xy] — is the N-element vector of the source data,
Y = [V Yo - Yp] — is the N-element data vector after standardization,
m — is the average value determined from these data,
o —is the standard deviation.

As a result of standardization, we get a vector of features which
average value is zero, while the standard deviation is equal to one.

&\ It should not be used for data about standard deviation close to zero! /%/

A\ s

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

. e A\
Data Normalization \ @
NS
Normalization is the data scaling with respect to extreme values

(min and max) of a given data vector, usually to the range [0, 1]
(sometimes to [-1, 1]) according to the following formula:

Xi — Xmin

Yi =
Xmax — Xmin
X = [Xy, X,, ..., Xy] — is the N-element vector of the source data,

Y = [V Yy - Yp] — is the N-element data vector after normalization.

Normalization is sensitive to outliers and large scatter
because then the right data will be squeezed in a narrow range,
which can significantly hamper their discrimination!

Normalization is sometimes necessary to use a method that requires input or
output data to fall within a certain range, e.g. using sigmoidal functions or

%\ hyperbolic tangent. /%/
A\ 30

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

s /// Standardization and Normalization '\ @
L of Training Data Sets K

Standardization and normalization:

* make data of different attributes (different ranges) comparable and not favourited or
neglected during the training process. Therefore, we scale all training, validating
(dev), and testing data inside the same normalized ranges.

« We also must not forget to scale testing data using the same u and o?.

A Unnormalized A A Normalized
° ° . ° A R °
Coer teee o R L> sgeeze ¢! e .
<:||] move o e .. R Q P elog o ©
4 ° o e L) o ° o A o ° ° o® °
LX)] 9] ° ° e o ° ° ° % 2] L] >
% ° 0 .. [° ’:‘03 ° °
£ Y oo ° R o * 2 ° o.
@ < > Ve e
» <« >

Unnormalized

\\ ’j. /
Normalized /”/

> w W

!:\ = Z x(l *elementwise x(2 X:=x/o

ElgE

\Q\ The training process is faster and better when training data are normalized! ,7/31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Standardization and A\ @
Batch Normalization (Batch Norm) K

We normalize data to make their gradients comparable and to speed up the training process:

* We compute mean:
1 r
 and variance:
. 421 ' 2
g = ;Zi(z(l) - ﬂ)
 to normalize:

» - - @_
« 0=y, Zgzlt))rm +B8 where Zgzl())rm = ,Z/(;Z+l::

where 8, y are trainable parameters (B! := gl — o . dglll, yl!l := ylll _ g . dyll]) of
the model, so we use gradients to update them in the same way as weights and biases.

« Ify=+e%+¢eand B = u, then 2 = z(®

« so the sequence of input data processing with normalization is as follows:
o x8 Zl1l 5 3l 5 glll= gl1] (2[1]) > zI121 5 321 5 gl2l= gl2] (2[2])___

« and we apply it usually for t € {1, ..., T} minibatches subsequently.

Thus, we have WU, pltl yl!l and glU parameters for each layer, but we do //
not need to use bllU, because the shifting function is supplied by g!Y.

////I// 3é

Batch Norm has a slight
regularization effect,
the less the bigger are
the mini-batches.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Batch Normalization and \\\\

Standardization K

How do we use normalization inside layers in Keras models?

We simply add it before the layer where it should be used when defining the model:

model.add(BatchNormalization())

It usually helps to improve the model:

model.add(Conv2D(128, (3,3), padding='same', kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu’))

model.add(BatchNormalization())

model.add(Conv2D(128, (3,3), padding='same’', kernel regularizer=regularizers.l2(weight _decay)))
model.add(Activation('elu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool size=(2,2)))

model.add(Dropout(9.4))

We can also use standardize our data using the following formulas, which transforms
the train and test datasets using mean and standard deviation:

mean = np.mean(x_train, axis=(0,1,2,3))
std = np.std(x_train, axis=(0,1,2,3))
X_train = (x_train - mean) / (std + 1le-7)

x_test = (x_test - mean) / (std + 1le-7) //”z

AN\ =

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Batches, Mini-batches and
Training Types
How to speed up the tratning and avoid local

minima and saddle points?

http://home.agh.edu.pl/~horzyk/index-eng.php

[] [] (] \\\
On-line and Batch Training \ | ‘ g'
N
When using a gradient descent algorithm, we have to decide after what number

of presented training examples parameters (weights and biases) will be updated,
and due to this number, we define:

» Stochastic (on-line) training — when we update parameters (e.g. weights) immediately
after the presentation of each training example.
In this case, training process might be unstable.

» Batch (off-line) training — when we update parameters (e.g. weights) only once
after the presentation of all training examples.
In this case, training process might take very long time and stuck in local minima or
saddle points.

* Mini-batch training — when we update parameters after the presentation of
a subset of training examples consisting of a defined number of training examples.
In this case, training process is a compromise between the stability and speed,
much better avoiding to stuck in local minima, so this option is recommended.
If the number of examples is too small, the training process is more unstable.
If the number of examples is too big, the training process is longer but more stable

and robust.
The mini-batch size is one of the hyperparameters of the model. /75/

\ /i

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

7 Mini-batches used in Deep Learning A\ .

N

Training examples are represented as a set of m pairs which are trained and update parameters one
after another in on-line training (stochastic gradient descent):

X, ¥) = {(x®, y®), (x@,y@), ..., (20, y@))

Hence, we can consider two big matrices storing input data X and output predictions Y,
which can be presented and trained as one batch (batch gradient descent):

X =[x, x@, x®, | x(1000) | (2000) x(3000) x(m) |

Y = [y(l),y(z),y(3), ., y(1000) 1,(2000) ,,(3000) (m)]

Or we can divide them to mini-batches (mini-batch gradient descent) and update the network
parameters after each mini-batch of training examples presentation:

X = [x(l)' x(Z)' x(3)' . x(lOOO) | x(1001)’ . x(2000) | x(2001)' ...,x(3°°°) | x(3001)‘ m,x(m)]

x{ x2} x {3 x{m/batchsize}

Y = [y(l),y(z),y(3), ___,y(1000) |y(1°°1), _._,y(zooo) | y(2°°1), ___’y(sooo) |y(3oo1), _",y(m)]

y{ y2 y(3 ym/batchsize)
(X,Y) = {(X{l}’ y{l})’ (X{Z}, Y{Z})’ . (X{m/batchsize}, Y{m/batchsize})}

If m= 20.000.000 training examples and the mini-batch size is 1000, we get 20.000 mini-batches
‘ (i.e. training steps for each full training dataset presentation, called training epoch), \,
\%\ where T = m/batchsize. //

\\SQ deep learning, we use mini-batches to speed up training and avoid stacking in saddle points. /
o1 36

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

" '¥ 7 Graphical Interpretation of Mini-batches\\\

|
Convergence of the training process depends on the size of mini-batche&
Stochastic Gradient Descent

>

unstable, fluctuating, and difficult
to converge and lose the benefits of vectorizatign

error (loss)

Batch Gradient Descent

A
) stable convergent, but very slow
8 for big training data collections
— can stack the saddle points
S
o | vectorization possible .

Mini-Batch Gradient Descent

_A unstable convergent, but much
3 faster than batch gradient descent
o for big training data collections
— - the fastest training
usually very large oscillations close to the minimum g . .
almost no oscillations close to the minimum o vectorization possible 5

possible small oscillations close to the minimum convergence of training

N\ Y ey

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Mini-batch Gradient Descent \\\\ @

To optimize computation speed, the mini-batch size (mbs) is "¢Pe2! K

usually set according to the number/multiplication of parallel /=1

cores in the GPU unit, so it is typically a power of two: forj = 1ton,
* mbs =32, 64, 128, 256, 512, 1024, or 2048 djw;=0
because then such mini-batches can be processed dLB =0
time-efficiently in one or more parallel steps fort=1toT

dependently of the number of parallel cores of the GPU. 700 — wTx(0 1 B

If mbs = m, we get Batch Gradient Descent typically used for Al = (210

small training dataset (a few thousands of training examples).

. . — — (YW log AY 1 — vy 1 — Att
If mbs = 1, we get Stochastic Gradient Descent. J#= = (V' log 41 +(Jlog())

. . . . (6} — 4(t) _ ylt)
Therefore, instead of looping over every training example LA = AR =1

(like in stochastic training) or stacking all training examples forj =1ton,

into two big matrices X and Y, W= XV - djz0

we loop over the number of mini-batches, computing "

outputs, errors, gradients, and updates of parameters k= b

(weights and biases): J/=m

* One training epoch consists of T training steps over forj =1ton,

the mini-batches. djW;/=m

%\ * Mini-batches are used for big training dataset Wi—=a-djW; %
\ (ten or hundred thousands and millions of training dJ/B/=m /

E\\\\ examples) to accelerate computation speed. B -djB /// -

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

BIBLIOGRAPY

. Francois Chollet, “Deep learning with Python”, Manning
Publications Co., 2018.

. Ian Goodfellow, Yoshua Bengio, Aaron Courville, “Deep
Learning”, MIT Press, 2016, ISBN 978-1-59327-741-3.

siidome gage fornithisicolirse
http:/ /home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php

. Nikola K. Kasabov, Time-Space, Spiking Neural
Networks and Brain-Inspired Artificial Intelligence, In
Springer Series on Bio- and Neurosystems, Vol 7.,
SpRnoary A0 19,

. Holk Cruse, Neural Networks as Cybernetic Systems,
2nd and revised edition

. R. Rojas, Neural Networks, Springer-Verlag, Berlin,
R

8. Convolutional Neural Network (Stanford)

. Visualizing and Understanding Convolutional Networks,
Zeiler s Fergus, ECCV-20 14,

http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

BIBLIOGRAPY

10.IBM:
https://www.ibm.com /developerworks /library/ba-
data-becomes-knowledge-1/index.html

11NV IA:
https:/ /developer.nvidia.com/discover/convolutional-
neural-network

12 JUPYTER: https: L jupyter.oref

J BRE R
| CERTIFICATE OF PARTICIPATION t.
presented to

ADRIAN HORZYK
VERSITY OF SCIENC CHNOLOGY IN KF

https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

