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AVB+DRZEWA
Sortujące i Agregujące Wartości B-drzewa 

 AVB+drzewa są zwykle dużo mniejsze i niższe niż B-drzewa i B+drzewa 
dzięki agregacji duplikatów oraz nie wykorzystywaniu dodatkowych 
wewnętrznych wierzchołów jako drogowskazów jak B+drzewach. 
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Właściwości AVB+DRZEW

 AVB+drzewa mogą przechowywać jedną lub dwie wartości (klucze) 
w elementach (kontenerach) w każdym wierzchołku drzewa podobnie 
jak B-drewa i B+drzewa 3. stopnia.

 AVB+drzewa agregują reprezentację duplikatów wartości i przechowują 
liczniki ich ilości w każdym elemencie przechowującym wartość.

 W porównaniu do B-drzew, wszystkie elementy przechowują unikalne 
klucze (wartości), które są dodatkowo połączone do sąsiednich wartości 
(przez niebieskie linie) i dzięki nim możliwe jest szybkie przechodzenie 
po posortowanym ciągu liczb dla każdego atrybutu.

 W porównaniu do B+drzew, AVB+drzewa nie stosują dodatkowych 
wierzchołków wewnętrznych w celu organizacji dostępu do liści, 
gdzie przechowywanie są obiekty, lecz przechowują wartości (klucze) 
we wszystkich wierzchołkach podobnie jak B-drzewa, lecz sortują wartości 
tak samo jak B+drzewa, co przyspiesza dostęp do wszystkich elementów 
oraz upraszcza i zmniejsza ilość operacji wyważających te drzewa.

 Nadają się więc do zastosowań operujących na Big Data.
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Pojemność AVB+DRZEW

Na poniższym rysunku widać przykłady najmniejszych AVB+drzew
oraz ilości elementów, jakie mogą przechowywać:
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AVB+TREES Operations

 The AVB+trees provide a few common operations as other 
data structures: Insert, Remove, Update, GetMin, GetMax, 
and various Search operations.

 We can also easily define other operations computing, 
e.g. Sum, Count, Average, or Median.

 These operations can calculate results faster than 
equivalent operations on classic tables, arrays, or lists 
because the total sum of all elements is computed going 
along neighbor connections multiplying the key values 
by the numbers of their occurrences (duplicates) stored 
in the AVB+tree elements.
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Insert Operation on AVB+trees
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Insert Operation on AVB+trees

The Insert operation of the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to the 
descendants until the leaf is not achieved after the following rules:

• if one of the elements stored in the node already represents the inserted key, 
increment the counter of this element, and finish this operation;

• else go to the left child node if the inserted key is less than the key represented 
by the leftmost element in this node;

• else go to the right child node if the inserted key is greater than the key 
represented by the rightmost element in this node;

• else go to the middle child node.

2. When the leaf is achieved:

• and if the inserted key is already represented by one of the elements in this leaf, 
increment the counter of this element, and finish this operation;

• else create a new element to represent the inserted key and initialize its counter 
to one, next insert this new element to the other elements stored in this leaf 
in the increasing order, update the neighbor connections, and go to step 3.
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Insert Operation on AVB+trees

3. If the number of all elements stored in this leaf is greater than two, divide this 
leaf into two leaves in the following way: 

• let the divided leaf represent the leftmost element representing the least key in 
this node together with its counter;

• create a new leaf and let it represent the rightmost element representing the 
greatest key in this node together with its counter;

• and the middle element (representing the middle key together with its counter) 
and the pointer to the new leaf representing the rightmost element pass to the 
parent node if it exists, and go to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) and let it 
represent this middle element (representing the middle key together with its 
counter), and create new branches to the divided leaf representing the leftmost 
element and to the leaf pointed by the passed pointer to the new leaf representing 
the rightmost element. Next, finish this operation.
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Insert Operation on AVB+trees

 A self-balancing mechanism of an AVB+tree during the Insert operation 
when adding key equal 2 to the current structure which must be 
reconstructed to be able to represent this new key.

http://www.agh.edu.pl/en/
http://www.agh.edu.pl/en/


Insert Operation on AVB+trees

4. Insert the passed element between the element(s) stored in this node 
in the key- increasing order after the following rules: 

• if the element has come from the left branch, insert it on the left side of 
the existing element(s) in this node;

• if the element has come from the right branch, insert it on the right side of t
he existing element(s) in this node;

• if the element has come from the middle branch, insert it between the existing 
element(s) in this node.

5. Create a new branch to the new node (or leaf) pointed by the passed pointer and 
insert this pointer to the child list of pointers immediately after the pointer 
representing the branch to the divided node (or leaf).
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Insert Operation on AVB+trees

6. If the number of all elements stored in this node is greater than two, 
divide this node into two nodes in the following way:

• let the existing node represent the leftmost element representing the least key 
in this node together with its counter;

• create a new node and let it represent the rightmost element representing 
the greatest key in this node together with its counter;

• the middle element (representing the middle key together with its counter) and 
the pointer to the new node representing the rightmost element pass to the parent 
node if it exists; and go back to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree) and let it 
represent this middle element (representing the middle key together with its 
counter), and create new branches to the divided node representing the leftmost 
element and to the node pointed by the passed pointer to the new node 
representing the rightmost element. Next, finish this operation.
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Remove Operation

 The Remove operation allows to remove a key from 

the AVB+tree structure and next quickly rebalance and 

reorganize the structure automatically if necessary.

 If the removed key is duplicated in the current structure, 

then only the counter of the element which represents it

is decremented.

 When the removed key is represented by the element which 

counter is equal one then the element is removed from the node.

 If this node is a leaf containing only a single element, 

then the leaf is removed as well, and a rebalancing operation of 

the AVB+tree is executed.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

1. Use the search procedure to find an element containing the key intended 

for removal. If this key is not found in the tree, finish the delete operation with 

no effect;

2. Else if the counter of the element storing the removed key is greater than 

one, decrement this counter, and finish the delete operation.

3. Else if the element storing the removed key is a leaf, then remove the 

element storing this key from this leaf, switch pointers from its predecessor 

and successor to point themselves as direct neighbors. Next, if this leaf is not 

empty, finish the delete operation (Fig. A), else go to step 7 (Fig. B).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

4. Else the element storing the removed key is a non-leaf node that must be 

replaced by one of the neighbor connected elements stored in one of two 

leaves. If only one leaf from the leaves containing neighbor elements to the 

removed element contains two elements, then replace the removed element in 

the non-leaf node by this connected neighbor element from the leaf containing 

two elements, and finish the delete operation (Fig. 14C), else go to step 5.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

5. Here, both leaves containing a neighbor element to the removed one contain 

two elements or one element both. In this case, check which one of the neighbor 

child nodes contains more elements. Next, replace the removed element by the 

neighbor element stored in the leaf of the subtree which root contains more 

elements, and finish the delete operation (Fig. D); else go to step 6.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

6. Here, both neighbor child nodes contain the same number of elements. 

In this case, check whether the key stored in the rightmost element from 

the left neighbor child or the key stored in the leftmost element from the right 

neighbor child is more distant from the key stored in the removed element. 

The distance can be calculated differently dependently on compared data types. 

We can use different metrics for the string and numerical data types:

where 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 means the i-th sign of the 𝐾𝐸𝑌1-th string 

and 𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] is equal to the number of signs (e.g. letters)

between 𝐾𝐸𝑌1 𝑖 and 𝐾𝐸𝑌2 𝑖 in a given sign set X (e.g. ASCII),

and 𝑋 determines the number of signs in the set X.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆𝑇𝑅 =  
𝑖=1

𝑚𝑎𝑥 𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌1 ,𝑙𝑒𝑛𝑔ℎ 𝐾𝐸𝑌2 1

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] ∙ 𝑋 𝑖−1

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑁𝑈𝑀 = 𝐾𝐸𝑌1 − 𝐾𝐸𝑌2

𝐾𝐸𝑌1 𝑖 − 𝐾𝐸𝑌2[𝑖] =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐾𝐸𝑌1 𝑖 , 𝐾𝐸𝑌2 𝑖 𝑖𝑛 𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∈ 𝑋 ∧ 𝐾𝐸𝑌2 𝑖 ∈ 𝑋

𝑋 𝑖𝑓 𝐾𝐸𝑌1 𝑖 ∉ 𝑋 ∨ 𝐾𝐸𝑌2 𝑖 ∉ 𝑋



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

Next, replace the removed element by the right neighbor element when 

the distance of the key stored in this right neighbor child is greater or equal to 

the distance of the key stored in this left neighbor child (Fig. E or G), 

else replace it by the left neighbor element (Fig. F or H). 

If the leaves containing the neighbor elements contain two elements both, 

then finish the delete operation (Fig. E and F), else (Fig. G and H) go to step 7. 

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

7. After the removal of the element from the leaf or after the replacement of 

the removed element from the non-leaf node by the leaf element, there is left an 

empty leaf (Fig. B, G, or H) that must be filled by at least one element or 

removed from the tree. Next, the tree must be rebalanced to meet the AVB+tree

requirements. First, try to take an element from the nearest sibling. In these 

cases, remove the empty leaf and go to its parent, and go to step 8.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

8. If the nearest sibling of the empty leaf contains more than a single element, 

then move the closest key (2 in Fig. I) to the removed one from the empty node 

to the parent, and move the neighbor element (1 in Fig. I) (to the removed one 

from the empty node) from the parent node to the empty leaf (Fig. I). 

Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

9. Else if the nearest sibling of the empty leaf contains only a single element 

(2 in Fig. J), but its parent contains two elements, then move the closest parent 

element (1 in Fig. J) to the element removed from the empty node to this sibling 

in the right order, remove the empty node (Fig. J), and finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation on the AVB+tree is processed as follows:

10. Else both the parent and the sibling contain only a single element. 

In this case, merge them in the parent node, moving the element from this 

sibling to its parent, and this parent node becomes to be a leaf which is placed 

one level higher than the other leaves (Fig. K). Hence, the tree must be 

rebalanced to meet the AVB+tree requirements in the subsequent routines 

described in the following steps.

11. In this and following steps, there is always one reduced subtree which is 

one level up, i.e. all its leaves are one level higher than the other leaves of the 

tree. The smallest subtree can consist of the leaf containing two elements. The 

rebalancing operation is started from the root of the reduced subtree in step 12.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

12. If the parent node of the root of the reduced subtree contains 

two elements go to step 16, else go to step 13.

13. If the second child of this parent contains a single element 

go to step 14 (Fig. L), else go to step 15 (Fig. M).

14. Merge this second child (containing a single element) with that parent as shown 

in Fig. L, and because the parent subtree of the reduced subtree has also lowered 

its height and must be rebalanced, go back to step 11 and rebalance the resultant 

subtree achieved after this transformation until the root of this subtree is not the root 

of the whole tree. If the main root is reached, it means that the tree is rebalanced 

and its height was lowered by one, therefore finish the deletion operation;

else go to step 15.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation

The Remove operation 

on the AVB+tree is 

processed as follows:

15. Merge this second 

child (containing two 

elements) with that parent 

as shown in Fig. M, and 

because the merged parent 

node is overfilled, divide it 

and create a new root of this 

subtree (Fig. M). Next, finish 

the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

16. In this case, the parent node of the root of the reduced subtree 

contains two elements. If no one of the neighbor siblings of this reduced subtree

root contains two elements, then go to step 17 (Figs. N and O), else go to step 20.

17. If this reduced subtree root is a left or right child of its parent, then go to step 18 

(Fig. N), else go to step 19 (Fig. O).

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

18. Move the element (key = 5) from the middle sibling to the parent node 

together with the pointers to the children of this node, and next move these 

pointers left and right together with the left (4|..) and right (6|..) nodes to the left 

and right children of the parent node appropriately as shown in Fig. N. 

Create a new parent (with key = 3) for the reduced subtree, also connecting 

this new parent to the node containing the passed left child node of the moved 

middle sibling (with key = 5). Connect this new parent (key = 3) to the parent node 

containing moved element (key = 5) as well. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

19. Merge the left or right element of the parent node of this reduced 

subtree root together with this subtree with the left or right child (that contains 

only a single element) as shown in Fig. O. Choose the child on the basis of 

the lower distance between the left parent element and the element of the left child 

or between the right parent element and the element of the right child. 

The Fig. O shows the situation when the distance to the right child is lower than to 

the left one. The second situation is symmetrical.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

20. In this case, the parent node of the root of the reduced subtree 

contains two elements, and at least one of the siblings of this reduced subtree 

root contains two elements. If there is no direct sibling of the reduced subtree root 

that contains two elements, go to step 21 (Fig. P), else go to step 22 (Fig. Q and R).

21. Move elements between the parent node and both children in a way shown in 

Fig. P. to rebalance this subtree. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

22. If the reduced subtree is placed in the left or right subtree of its parent,

then go to step 23 (Fig. Q), else go to step 24 (Fig. R).

23. Move the closest element from the neighbor siblings containing two elements to 

the parent node and replace the closest element to the elements stored in the root 

of the reduced subtree, and this replaced element use to rebalance this subtree as 

shown in Fig. Q. Next, finish the delete operation.

Less than logarithmic expected computational complexity 
(typically constant) for data containing duplicates!



Remove Operation
The Remove operation on the AVB+tree is processed as follows:

24. In this case, the reduced subtree is the middle child of its parent. 

Therefore, move the rightmost element from the left sibling if its key is more distant to 

the key of the right parent element than the distance of the key of the leftmost element 

for the right sibling to the left parent element. In the symmetric case, move the leftmost 

element of the right sibling. The selected sibling is moved to the parent node, and the 

element from the parent node that is the closest to the elements of the reduced 

subtree is moved together with its closest child to the middle child where the reduced 

subtree is placed. Then, the new node (with the element 6 in Fig. R) is created. 

Next, finish the delete operation.
Less than logarithmic expected computational complexity 

(typically constant) for data containing duplicates!



Update Operation on AVB+trees

 The Update operation is a simple sequence of Remove and Insert 
operations because it is not possible to simply update a value in 
an element because of the structure of AVB+trees which represent 
various relations.

 Data can be easily updated (a value can be changed) only in those 
structures which do not represent relations, e.g. unsorted arrays, lists, or 
tables.

 The Update operation on an AVB+tree removes the old key (value) 
from this structure using the Remove operation and inserts an updated 
one using the Insert operation.
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GetMin and GetMax Operations
on AVB+trees

The GetMin and GetMax operations can be implemented in two different ways 
dependently on how often extreme elements are used in other computations 
using an AVB+tree structure:

1. The first way is used when extreme keys are not often used. 
In this case, it is necessary to start from the root node and always go along 
the left tree branches until the leaf is achieved and in its leftmost element 
(if there are two) is the minimum key (value) stored in this tree. 
Similarly, we go always along the right branches starting from the root node until 
the leaf is achieved and in its rightmost element (if there are two) is the maximum 
key (value) stored in this tree. These operations take log Ň time, where Ň is 
the number of elements stored in the tree, which is equal the number of unique 
keys (values) of the data.

2. The second way is used when extreme keys are often used and should be quickly 
available (in constant time). In this case, the leftmost (minimum) and rightmost 
(maximum) elements of the leftmost and rightmost leaves appropriately are 
additionally pointed from the class implementing the AVB+tree. If using these 
extra pointers they are automatically updated when the minimum or maximum 
element is changed, and the minimum and maximum element can be easily 
recognized because its neighbor connection to the left or right neighbor element 
is set to null.
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Search Operation on AVB+trees

The Search operation in the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to the 
descendants until the searched key or the leaf is not achieved after the 
following rules:

• If one of the keys stored in the elements of this node equals to the searched 
key, return the pointer to this element;

• else go to the left child node if the searched key is less than the key 
represented by the leftmost element in this node;

• else go to the right child node if the searched key is greater than the key 
represented by the rightmost key in this node;

• else go to the middle child node.

2. If the leaf is achieved and one of the stored elements in this leaf contains 
the searched key, return the pointer to this element, else return the null 
pointer.
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AVB+TREES can be used in 
DASNG and AGDS
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