Syllabus

Computer Aided Engineering

Mechanical Engineering and Robotics	Field of study:	Mechatronics, Mechanical Engineering		
	Specialisation:	All		
	Level of study:	1 st year (2 nd semester)		
	System of education:	Bachelor degree		

Proszę wpisać propozycje semestru (semestrów) w których przedmiot powinien być realizowany.

Cour	'se obligatory / o	ptional				ECTS poin	its:
Semester	No. of hours	L	С	Р	Lab	Seminar	Completion/Exam
2 nd		30			15		C + E
Proposal 2							С

Course content (Lecture)

Fall semester Spring semester

- 1. Introduction to CAE. dependencies between CAD, CAM, CAT 2h
- 2. Role and importance of CAE in operation of an enterprise. Special stress on Research & Development processes 2h
- 3. Structure and examples of CAD, CAM systems. Interfaces and standards 2h
- 4. Introduction of MATLAB, environment, basics of syntax 2h
- 5. Preparation of MATLAB scripts and graphics 2h
- 6. Introduction to toolboxes (Signal Processing Toolbox) 2h
- 7. Introduction to SIMULINK. Preparation of simple models of mechanical systems 2h
- 8. Introduction to Fast Prototyping. Presentation of used hardware and software -2h
- 9. Industrial computers. Most popular standards and manufacturers 2h
- 10. Real Time Operating Systems. Key features. Application in rapid prototyping 2h
- 11. Computer assisted Mechatronic design 4h
- 12. Introduction to AMESIM The integrated platform for 1D multi-domain system simulation 2h
- 13. Introduction to multibody simulation MSC ADAMS 2h
- 14. Introduction to multiphysics simulation COMSOL 2h

Course content (Classes)

Fall semester Spring semester

Course content (Project)

Fall semester Spring semester

Course content (Laboratory)

Fall semester

Spring semester

1. Modeling of mechatronic systems with MATLAB/ SIMULINK, problem definition, possible

approaches, model parameters – 4h

- 2. Modeling of several proposed mechanical systems -4h
- 3. Modification of models, analysis of steady state and transient responses, linear analysis tools 2h
- 4. Introduction to AMESIM 2h
- 5. *Modeling of electrohydraulic and pneumatic systems with AMESIM 3h*

Course content (Seminar)

Fall semester Spring semester

References (Basic):

- 1. AMESIM LMS
- 2. COMSOL Tutorial and user guide
- 3. MATLAB. MathWorks
- 4. SIMULINK. MathWorks

References (Additional):

Expected learning outcome:	Knowledge of CAE advantages in product development. Good command of MATLAB/ SIMULINK environment. Ability to model mechanical systems state stat	
Language of instruction:	English	
ERASMUS subject code:		
Prerequisites:	Mathematics, Physics	
Assessment method:	Positive assessment of laboratory reports (2 reports)	
Unit:		
Lecturer:	dr inż. Tomasz Barszcz	
Lecturer (Project / Laboratory):	mgr inż. Adam Jabłoński	
Modified:		