

log_anal
Internal Logic State Analyzer

Author: Ernest Jamro

jamro@agh.edu.pl

Rev. 1.4

January 6, 2005

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 1 of 22

Revision History

Rev. Date Author Description
1.0 04 Dec 02 Ernest Jamro First Draft
1.1 09 Oct 03 Ernest Jamro Logic Analyzer Data width up to 64 bits
1.2 8 Jan 04 Ernest Jamro Logic Analyzer trigger width up to 64 bits

Run-Length Coding Added
1.3 2 Feb 04 Ernest Jamro Data Clock Enable trigger-like function added
1.4 6 Jan 05 Erenst Jamro Additional LA identifications registers added, also

previous registers addresses have been changed

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 2 of 22

Contents
1 Introduction ___ 3

Abstract___3
Main Features __3

2 IO Ports __ 5

3 Registers __ 7
List of Registers __7
Internal Dual Port Memory___15
Status Register ___8
Stop_Counter Register __11
Tirg_Value Register __11
Trig_Care Register ___11
Trig_Value64 &TrigCare64 Registers __12
CED_Control Register __12
CED_Value Register ___13
CED_Care Register __14
CED_Value64 Register__14
CED_Care64 Register __14

4 Operation __ 16
Data Acquisition ___16
Data transfer __17
Watching the Recorded Signals ___18
Run Length Coding___20

5 Implementation ___ 21
Xilinx ___21

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 3 of 22

1
Introduction

Abstract
The internal Logic state Analyser (LA) is a simplified version of a standard logic

state analyzer, however it is build in the prototyped circuit and therefore allows for
probing internal signals. The LA at first writes probed signals into its internal memory,
and then allows for off-line transfer through WISHBONE bus to a PC where the probed
data can be watched. As during design prototyping watched signals are very often
changed, the LA is mainly intended for FPGAs and works similarly to Xilinx ChipScope.

Main Features
Internal memory for on-line data probing and off-line probed data transfer.

Generic probed signals number: 8, 16, 32 or 64 bits.

Generic acquired data depth (internal memory size) (16 to 64k).

Software programmable single trigger value (and don’t care).

Software programmable trigger place.

Separate trigger bus with generic width 1 to 64 bit.

Acquired trigger clock enable for easy additional trigger logic.

Separate Data Capture Clock Enable or Additional Trigger, width 0 to 64-bit

Generic (implement or not) run-length coding for acquired data compression

Generic single or double clock operation (separate or not clock for data acquisition
and system interface).

WISHBONE compatible.

An internal Logic state Analyser (LA) is a device that works similarly to an
analog oscilloscope but only digital (zero or one) signals are recorded only at certain
moments (rising system clock edges). The LA samples signals at different time (one
sample per clock cycle) and therefore allows for checking if the device works properly
and how the real signal states behave. Recorded data (different signals states at different
time intervals) should be then read off-line from the LA through 8-bit WISHBONE bus
to your personal computer (PC). Then a special module written in vhdl (la_view.vhd)
reads the recorded data and displays them in a VHDL simulator. This allows for not only

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 4 of 22

a very convenient probing internal signals but also for some additional functions related
with VHDL simulation. Firstly, real (internal) signals recorded by the LA can be
compared with your simulation and the difference can be easily detected. Secondly, the
LA data can be used as a stimulus for simulation. The latest may be a very convenient
simulation approach when typing in long stimulus vectors is a very time-consuming
procedure.

The LA is mainly intended for testing FPGA designs as probed signals can be
easily changed by connecting different signals to the LA and then reconfiguring a FPGA.
The LA has a similar functionality as the ChipScope sold by Xilinx. A trigger value can
be changed by a proper write to the LA through WISHBONE control interface. Similarly,
a trigger place (whether in the beginning, somewhere in the middle or in the end of the
sampled data) can be also freely set without reprogramming the FPGA.

The LA has separate data and trigger buses. This introduces little additional logic
but allows the LA to be trigger by input signals which need not be observed. Besides the
LA may have two separate clock signals: the first for acquiring data and the second for
interfacing the LA by the WISHBONE bus. The LA data acquisition clock frequency
may be much higher then the system frequency and this allows for data sampling several
times during a system (wishbone) clock cycle. The LA contains a clock enable inputs for
data and trigger. Therefore in the case when input data are acquired at a low frequency,
the clock enable signals rather than the two separate clocking should be used. Besides
these clock enable signals might be used when only selected data sequence is to be
acquired.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 5 of 22

2
IO Ports

Core Parameters:
Parameter Value Default Description
data_width 8, 16,

32, 64
16 Width of the observed data (the number of different

one-bit signals to be watched)
mem_adr_
width

4÷16 9 Sampled data depth (internal memory address width).
Number of samples= 2mem_adr_width

adr_width 5÷18 11 WISHBONE interface address width:
adr_width= 1 + mem_adr_width + log2(data_width/8)
adr_width must be >= 7

trig_width 1÷64 8 Trigger bus width
ce_dwidth 1÷64 8 Data capture clock enable or additional trigger logic
ced_type 0÷3 2 Data capture clock enable logic input selection

0 – data capture clock enable is always 1 (advance
clock enable and additional trigger logic is not
implemented)
1 – bus ce_data is clock enable (CE) logic input
(implement advance clock enable logic)
2- bus data is the CE logic input, ce_data input is
ignored (ce_dwidth must not be greater than
data_width)
3- signal trig is CE logic input, ce_data input is
ignored (ce_dwidth must not be greater than
trig_width)

two_clocks 0, 1 0 0 – single clock operation – the LA signal (clk) is the
same as wb_clk_I (this option has a slightly reduced
area)
1 – the LA has two separate clocks

use_run_le
ngth_codin
g

0, 1 1 implement (1) or not (0) run-length coding for
acquired data compression. See also ced_control
register bit RLC

Control WISHBONE Slave interface signals

Port Width Direction Description
wb_clk_i 1 Input Clock input. For two_clocks=0 also trigger and

analyzed data are latched on the rising edge of this

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 6 of 22

Port Width Direction Description
signal

wb_dat_i 8 Input Input data bus
wb_dat_o 8 Output Output data bus
wb_adr_i adr_

width
Input Address bus

wb_we_i 1 Input Write Enable
wb_stb_i 1 Input Strobe
wb_ack_o 1 Output Acknowledge

Other Control Signals

Port Width Direction Description
arst 1 Input Active high asynchronous reset signal (needed

mainly for simulation purpose)

The Logic Analyzer Interface

Port Width Direction Description
clk 1 Input Separate clock for the LA interface. Should be the

same as wb_clk_I when generic two_clocks= 0
data data_

width
Input observed signals bus

ce_data ce_dwi
dth-1

Input Data capture Clock Enable or additional trigger
logic

trig trig_
width

Input Trigger input bus

ce_trig 1 Input Clock Enable for trigger bus – Trigger is valid
only when ce_trig=’1’ and clk rises

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 7 of 22

3
Registers

List of Registers
Name Address Width Access Description
LA ID 0 8-bit Rd Constant value 0x45 to identify the LA

gen_me
m_adr_
width

1 8-bit Rd bits: 4-0 – generic – mem_adr_width
bit 5: generic - use_run_length_coding
bits: 7-6 – generic - ce_dtype

gen_data
_width

2 8-bit Rd generic data_width - 1

gen_trig
_width

3 8-bit Rd generic trigger bus width - 1

gen_ce_
dwidth

4 8-bit Rd generic ce_dwidth-1

reserved 5-7 24-bit Rd Reserved for future use
status 8 8-bit Rd/Wr Status Register which sets/indicates the

state of the LA and the trigger place
reserved 9 8-bits Rd Unknown
ced_cont
rol

0x0A 5-bit Wr Data Capture and Additional Trigger
output function, Run- Length-Coding
Control

reserved 0x0B 8-bit Rd Unknown
stop_
counter

0x0C-
0x0D

mem_adr_
width
- bit

Rd Shows the place where the sampled data
will be written to the internal memory.

trig_
value

0x10 –
0x13

min(trig_
width, 32)
bit

Rd/Wr Trigger Value (the value written to this
register is then compared with the input
trig)

trig_care 0x14 –
0x17

min(trig_
width, 32)
bits

Rd/Wr Trigger Care (the value written to this
register states that the corresponding
trig_value bit is consider or ignored

trig_valu
e64

0x18 –
0x1B

trig_width
-32 bit

Rd/Wr Trigger Value the Most Significant bits.
This register is used for trig_width>32)

trig_care
64

0x1C –
0x1F

trig_width
-32 bit

Rd/Wr Trigger Care the MSB. This register is
valid for trig_width>32

dce_valu 0x20 – min(32, Rd/Wr Clock Enable (or additional trigger)

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 8 of 22

Name Address Width Access Description
e 0x23 ce_dwidth

)
active value – this value is then compared
with the ce_data. This register (and the
next dce registers) is implemented only
when ced_type>0

dce_care 0x24 –
0x27

min(32,
ce_dwidth
)

Rd/Wr Clock Enable (or additional trigger) care
– the corresponding input bit ce_data is
considered (1) or not (0)

dce_valu
e64

0x28 –
0x2B

ce_dwidth
-32

Rd/Wr Dce_value register upper 32-bit – valid
when ce_dwidth>32

dce_care
64

0x2C –
0x2F

ce_dwidth
-32

Rd/Wr Dce_care register upper 32-bit – valid
when ce_dwidth>32

none 0x30 –
(M-1)

M-0x30 None Must not be written and undefined when
read.

internal
memory

M –
2*M-1

M-byte Rd Sampled data internal memory

where: M = 2adr_width-1 (the size of the internal memory)

LA Identification Constant
Address: 0. Constant value: 0x4A.

Constant identification value used to check if LA is present in the specified address
location.

Gen_Mem_Adr_Width Constant
Address:1, Value: bits: 4-0 – generic – mem_adr_width, bit 5: generic
use_run_length_coding, bits: 7-6 – generic - ce_dtype,
Constant values the same as the generic values defined in the log_anal entity in VHDL.
This constant value should be then read (from the file) by the la_view.vhd in order to
properly display captured data.

Gen_Data_Width Constant
Address: 2, Value: data_width-1
Constant values the same as the generic value defined in the log_anal entity in VHDL.
This constant value should be then read by the la_view.vhd in order to properly display
captured data. Example: data_width= 16, then the data read from address 2= 0x0F.

Gen_Trig_Width Constant
Address: 3, Value: trig_width-1
Constant values the same as the generic value defined in the log_anal entity in VHDL.
This constant value should be then read by the la_view.vhd in order to properly display
captured data.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 9 of 22

Gen_CE_DWidth Constant
Address: 4, Value: ce_dwidth-1
Constant values the same as the generic value defined in the log_anal entity in VHDL.
This constant value may be then read by the la_view.vhd in order to properly display
captured data.

Status Register
Address: 0x08. Reset value: 0x00.

The status register defines the current operation mode of the LA and consists from 3
sections: Run bit – the trigger has been detected and now data are acquired, Finish bit–
the data acquisition is finished (or not), Trig_Place – the trigger place in comparison to
the acquired data.

Bit # Access Description
7
Run

 Rd

Wr

1 – the LA is in data acquisition mode and the trigger has been
detected.

0 – the trigger has not been detected or the data acquisition is
finished (see Finish bit). Note: The data are written to the
internal memory whenever the Finish=0, this allows for
recording data before the trigger.

1 – forces the LA to behave as if the trigger has occurred. Note: If
the trigger place is not set for the beginning
(Trig_Place=000000), the data before the trigger are undefined.
This does not hold when the finish bit has been ‘0’ for a long
enough time. Consequently, it is recommended to write only
10000000 to the Status Register.

0 – forces the LA to wait for the trigger (normal operation).
6
Finish

Rd

Wr

1 – the LA has finished the data acquisition (the internal memory is
no more written).

0 – the LA is in the acquisition mode (data are written to the internal
memory).

1 – forces the LA to stop data acquisition. Note: This might caused
that the data in the internal memory are undefined (at the
beginning in the la_view module).

0 – sets the LA into the acquire mode (normal operation)
5÷0
Trig
Place

Rd

Wr

The trigger place – where the trigger is placed in the watched data.
000000 – at the beginning, 111111 – at the end, 100000 – in the half,
etc.
Finish=0, Run= 0 – the same value as previously written
Finish=0, Run= 1 – indicates how much data are still to be acquired
(acquisition stops when the Trig_Place up-counter overflows).
Finish= 1 – the Trig_Place up-counter has overflowed and should be
zero (or almost zero).
000000 – the trigger is placed at the beginning of the acquired data
(the data acquisition process starts a few moments after the trigger,

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 10 of 22

Bit # Access Description
therefore the trigger moment is not recorded)
000001 – the trigger is placed almost at the beginning (the data
acquisition is started a few moments before the trigger, and therefore
the trigger moment is recorded)
xxxxxx – the trigger is placed in the middle of the acquired data, the
greater the number the closer to the end
111111 – the trigger is placed at the end of the sampled data (the
trigger moment can be observed)

Note1: The standard size of the Trig_Place section is 6-bits. Nevertheless for
mem_adr_width<6 the size of the Trig_Place is defined by the mem_adr_width
parameter, and the LSBs are fill with zeros.

Note2: The actual size of the Trig_Place counter is mem_adr_width-bits, and the Status
Registers shows only 6 MSBs of the counter. Consequently every tick of the Trig_Place
section is equivalent to 2(adr_width-6) data samples. See: Stop_Counter Register.

Note3: The reset value of the Status Register is 0x00 and the reset value of the
Trig_Value and Trig_Care Registers is 0x0...00. Consequently the LA starts to acquire
data just after the reset (signal: arst) is deactivated.

Note4: In order to properly configure the LA for data acquisition at first the Trig_Value
and Trig_Care registers and then the Status Register should be properly written.
Otherwise the LA may be trigged by the old version of the trigger.

Note5: When a trigger is not placed at the beginning, the trigger condition is ignored until
a proper amount of data is sampled before the trigger. (See: trig_counter_down internal log_anal
signal). This ensures that only valid data are observed by the LA.

Examples:

writebyte address data_to_be _written – writebyte instruction format used in this
document.

writebyte 8 0x01 – standard acquisition – trigger at the beginning (the trigger moment is
sampled).

writebyte 8 0x10 – standard acquisition – the trigger in ¼ if the acquired data.

writebyte 8 0x20 – standard acquisition – trigger in the half of the acquired data.

writebyte 8 0x3F – standard acquisition – trigger at the end.

writebyte 8 0x80 – force data acquisition just after the write instruction is executed.

readbyte address – readbyte instruction format used in this document

readbyte 8, result: 0x40 – the LA has finished data acquisition and is ready for data
reading.

readbyte 8, result: 0x00 – acquisition mode, the trigger has not been detected, the trigger
will be at the beginning.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 11 of 22

readbyte 8, result: 0x3F – acquisition mode, the trigger has not been detected, the trigger
will be at the end.

readbyte 8, result: 0xA0 – acquisition mode, the trigger has been detected and the half of
the data has been acquired.

Stop_Counter Register
Address 0x0C-0x0D, Reset value: 0x0000

The width of the Stop_Counter Register is defined by the mem_adr_width parameter.
This register is read only register (writes are ignored). It’s function depends slightly on
the Finish bit in the Status Register.

Finish= 0. The Stop_Counter Register shows the position where the acquired data are
written to the internal memory (actually, the address of the next write).

Finish= 1. The Stop_Counter Register indicated the address where the last data was
written to the internal memory (actually: Stop_Counter-1 does).

 The Stop_Counter value should be read in order to obtain where is the beginning
of the data sequence recorded inside the internal memory and should be therefore
included in the la_data.bin file, see Operation/Data transfer Section. The Stop_Counter
might be also used to indicate how quickly the data acquisition occurs.

Tirg_Value Register
Address 0x10-0x13, Reset value: 0x0...00

The width of this register depends on the trig_width parameter. The read value is the
same as the last written value. Each bit of this register specifies the trigger activation
value on the corresponding trig input (see also: Trig_Care Register).

Trig_Care Register
Address 0x14-0x17, Reset value: 0x0000

The width of this register depends on the trig_width parameter. The read value is the
same as the last written value. Each bit of this register specifies if the corresponding bit of
the Trig_Value Register and trig input is taken into account (1) or ignored (0) while
evaluating the trigger condition. Consequently the following condition must be satisfied
to activate the trigger:

trigger= (NOT (trig(0) XOR trig_value(0)) OR NOT trig_care(0)) AND

AND (NOT (trig(1) XOR trig_value(1)) OR NOT trig_care(1)) AND

................ AND

(NOT (trig(trig_width-1) XOR trig_value(trig_width-1)) OR

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 12 of 22

NOT trig_care(trig_width-1))

It should be noted that the trigger is ignored just after the status register write
(e.g. after command: start data acquisition). At first the internal memory must be filled
with valid captured data and then the trigger is taken into account. The trigger ignore time
is the greatest when the trigger is at the end of the captured data, and is almost zero (1
sample must be recorded) when the trigger is at the beginning. This condition is very
important when additional clock enable logic is used.

Trig_Value64 &TrigCare64 Registers
Address 0x18-0x1B & 0x1C-0x1F, Reset value: 0x0...00

Same as TrigCare and TrigValue but used when trigger width is greater than 32-bit.

Example:

For trig_width= 3 and trigger condition: X01

writebyte 0x10 0b0101 // Trig_Value Register Write

writebyte 0x14 0b0011 // Trig_Care Register Write

the following result is obtained for the following input trig data.

clk

trig(0)

trig(1)

trig(2)

trigger

CED_Control Register
Address 0x0A, Reset value: 0x00

Function of the Clock Enable Data (ced) logic- this register and whole Data Clock Enable
logic is implemented only when generic dce_type>0.

Bit # Access Description
0
ced_acti
ve_low

Wr The DCE logic active low, i.e. is activated when ced_care and
ced_value condition is (=0) or is not (1) satisfied.
0- active high
1- active low

1
ced_reg

Wr 0 – direct logic
1 – additional flip-flop delay on the ced logic- this allows e.g. for

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 13 of 22

Bit # Access Description
edge detection

2
ced_dat

Wr

0 – The data are captured regardless of the dce logic.
1 – The data are captures only when ced logic is 1 – see ced_care

and ced_value registers
3
and_trig

Wr 0 – The AND-gate for trigger is not active. Trigger logic is
defined only by the trig input and trig_value and trig_care logic
or by the or_trig bit.

1 – trigger is active only when both trig and dce output functions
are active. This bit is ignored when or_trig=1.

4
or_trig

Wr 0 – The OR-gate for trigger is not active. Trigger logic is defined
only by the trig input and trig_value and trig_care logic or by the
and_trig bit.
1- trigger is active when trig or dce output functions are active

5
RLC
(not)

Wr 0 – implement data compression (RLC) (valid only when
use_run_length_coding=1)
1 – do not use Run Length Coding (however the number of
acquired signals is still decreased by 1 when
use_run_length_coding=1).

Summing up the following functions are implemented

Clock_Enable_Data_Capture= ced OR NOT ce_dat

Activate_Trigger= (ced AND or_trig) OR (trig_out AND (NOT and_trig OR ced))

Where

ced= ced_active_low XOR [Flip_Flop_Output] AND_REDUCE(NOT ced_care OR
NOT (ce_data XOR ced_value))

trig_out= AND_REDUCE(NOT trig_care OR NOT (trig XOR trig_value))

It should be noted that this register can be written at any time (e.g. during data capture)
and the LA will work properly and will update immediately the capture mode.

CED_Value Register
Address 0x20 – 0x23, Reset value: 0x0...00

The width of this register depends on the ce_dwidth parameter and is implemented when
ced_type>0. The logic function of this register is similar like for Trig_Value register. The
difference is that different input ce_data (not trig) is the input logic. The result of the
logic can be used as captured data clock enable (data is captured or not) or can be used as
an additional trigger – to extend the trigger width or condition. The output function is
software configured by the dce_control register.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 14 of 22

 It should be noted that the CE logic is a very sophisticated function especially
when combined with Run Length Coding. This can cause that captured memory is never
filled, e.g. when captured data are the same for the clock enable condition.

 In order to record the trigger moment the additional clock enable for captured data
is generated when the trigger condition is met and the logic analyser is not in the run
mode (the trigger moment). This may however cause that during trigger ignore time (see
trigger register) the captured data are filled with the trigger rather than clock enable
signals.

CED_Care Register
Address 0x24-0x27, Reset value: 0x0...00

Enable (1) or not (0) each bit of the dce_value. See trig_care and dce_value registers
description.

CED_Value64 Register
Address 0x28 – 0x2B, Reset value: 0x0...00

The upper 32 bit of the dce_value register – valid when ce_dwidth>32

CED_Care64 Register
Address 0x2C-0x2F, Reset value: 0x0...00

The upper 32 bit of the dce_care register – valid when ce_dwidth>32

Example 1

Data, trig and ce_data input are connected together and the following input is used:

D0÷D7- Data bus

D8÷D15- Address bus

D16- Stb – Strobe active data and bus (driven by a bus master)

D17 – Ack – Acknowledge – active when a slave device is ready for data transfer

D18 – RNW – Read not write – 1 for reading, 0 –for writing.

In order to capture only a write cycles to the memory location A0÷AF trigged by a read
from address location A0 when the read value is 50÷53, the following should be set:

trig_value= 0x6A050

trig_care = 0x6FFFC

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 15 of 22

ced_control= 0x2 (ce_dat=’1’)

ced_value= 0x2A000

ced_care= 0x2F000

Example 2

Input is the same as in the Example 1.

Trigger when address bus was (in the previous clock cycle) different than 5x and strobe
was active and now address is equal 51 and strobe is 1.

trig_value= 15100

trig_care= 1FF00

ced_control= B (and_trig=1, ced_reg=1, ced_active_low=1)

ced_value= 05000

ced_care= 1F000

Internal Dual Port Memory
Address: M – (2*M-1) Size: M

The data probed by the LA are written to the internal memory and then these data should
be read out off-line to the PC to file la_data.bin. The size of the internal memory M
[Bytes] is defined by the mem_adr_width and data_width generic parameters. M=
2mem_adr_width ⋅ data_width/8 = 2adr_width-1.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 16 of 22

4
Operation

The normal operation of the LA consists from three different procedures:

• Data acquisition when data (watched signals) are sampled into the internal
memory.

• Data transfer, when previously acquired data are transferred to your PC
through the WISHBONE bus.

• Signal watching, when the previously transferred data are displayed on your
PC by a VHDL simulator and the la_view.vhd file.

Data Acquisition

Log_anal entity instantiation
In order to see what happens inside the prototyped circuit you should instantiated

the log_anal entity into your design and connect the data input to the signals which states
are to be watched. Then the trig input should be connected to the signals that will trigger
the LA. In most cases the data and trig signals are the same. Then the LA should also be
connected to the WISHBONE bus through which the LA trigger and operation setting are
written and then the acquired data are transferred to a personal computer. Instantiating the
LA into a circuit might influence the normal operation of your circuit as the LA uses
standard CLB and routing resources of a FPGA. Nevertheless it might be the only way to
learn what happens inside your real circuit. Besides every input (data and trig) is
connected directly to the flip-flop in order to reduce propagation time and to allow Place
& Route tool to optimise rather your circuit than the LA routing.

After the log_anal has been instantiated into your design, the standard design
procedure should be invoked: synthesis, place & route, simulation and design
downloading to the FPGA. Every time a different signal or trigger is used, the above
procedure should be repeated. This might be time consuming especially when a lot of
different signals are to be watch to spot an error. In this case, it is encourage to use inputs
multiplexers (not included in the source code) which configured by the WISHBONE bus
might switch a proper signals to the LA inputs.

The log_anal entity consists from the following sub-entities:

la_trig –main function is trigger logic (it is included inside the log_anal.vhd).

la_mem – is a technology dependent description of the dual port (dual clock for
two_clocks=1) synchronous SRAM.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 17 of 22

Example for Xilinx Virtex family:

la_mem – internal memory, this entity should be replaced by the technology dependent
dual port synchronous memory. Default la_mem entity divides large memory to smaller
BlockRAM which size depends on the technology and therefore is defined by a constant
values: constant BRAM_max_data_width, BRAM_size which should be adjust to proper
values whenever the default la_mem entity is used for the synthesis.

la_bram – this file should be used only when default la_mem entity is used. This entity
contains a synthesable (only by Xilinx XST) single clock (parameter two_clocks= 0)
VHDL description. For two independent clocks (two_clocks=1) a BlockRAM
components (RAMB4_S?_S?) are directly instantiated.

Clocks and Clock Enables (CEs)
 The signals connected to the data and trig inputs are sampled on the rising edge of
the clk input. It is strongly recommended to uses single clock operation (parameter:
two_clocks= 0) whenever the data sampling clock (signal clk) is the same as the
WISHBONE clock (signal wb_clk_i), as it will reduce the circuit area and the
WISHBONE access time.

 In the case when input data and trig should be sampled several times per clock
cycle or WISHBONE clock differs from the clock for the watched signals, two separate
clocks (two_clocks=1) should be used. It should be noted that data sampling clock
frequency should not be very small (especially must not be gated – f= 0 Hz) as the
control register write time is at least sum of clocks periods: Tclk + Twb_clk_i. For reading
access time is constant and equal 2⋅Twb_clk_i. Consequently for fclk << fwb_clk_i it is
recommended to use the data and trigger clock enable (CE) signals.

 In addition to the above CE consideration, the CE signals (ce_data and ce_trig)
can be also used when only specific data sequence should be watched, e.g. when
watching WISHBONE activity only when wb_cyc=1 or only cases when data transfer
occurs wb_ack=1. This allows for reducing memory size.

Data transfer
The previously sampled data written to the internal memory should be transferred

to a personal computer and written to the la_data.bin file. This file should contain not
only sampled data (internal memory contents) but also the Control Registers’ settings.
Consequently the following two instructions should be executed by the wishbone master
device:

readblock file_name address_start address_stop append – the readblock instruction
format.

where: file_name= la_data.bin – default file name.

address_start – address from which data reading starts

address_stop – address of the last transferred data.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 18 of 22

append – File append option: 0- create a new file, 1- append read data to the
already created file

M- the size of the internal memory M= 2adr_width-1.

adr_width – input parameter specified in the the log_anal by generic value.

Instructions:

 readblock la_data.bin 0 0x3F 0

 readblock la_data.bin M (2*M-1) 1

Watching the Recorded Signals
 After the file la_data.bin has been created on your PC you can watch the recorded
signals sequence employing a VHDL simulator and la_view.vhd. At first you should
update the generics in the file la_view.vhd to properly watch the captured data.

The generic values are:

RLC_max_count - limits the maximum number of the same signal displayed during
simulation. The same signal values can be repeated millions of times and Run Length
Coding module can compress them very efficiently using only 2 samples. Unfortunately
the VHDL simulator often cannot display such long sequence. Besides such waveform is
often difficult to analyse by the user (nothing is changing for a very long time).
Consequently the maximum number of clock cycles for which no change is detected is
limited to RLC_max_count values. This generic value refers only to the viewing process,
and this value can be changed at any time without the need for rerunning the LA
hardware capture procedure. To disable this reduction, use RLC_max_count=-1.

trigger_same_as_data – The LA has separate data and trigger bus. In the case when
these buses are the same (which often the case), dedicated logic inside the la_view.vhd
displays when the trigger condition is satisfy – signal trigger is then equal ’1’.

file_name - the file name which contains captured data (by default "la_data.bin")

 Afterwards you should start the VHDL simulator. During simulation the la_view
reads the la_data.bin file and assigns the acquired signals at data input (log_anal) to
signal name d. Very often watched signals connected to the data bus have different
names: e.g. rd, wr, ack, adr(3:0), and it would be rather difficult to tract which index of
the d signal corresponds to the signal of interest. Therefore it is strongly encouraged to
define your own signals, and then assign a corresponding d signal to it. Therefore the
la_view.vhdl should be edited in the following way for the previously given example of
used signals:

Example:

The signal assignment for the log_anal:

data(6 downto 0)<= adr & ack & wr & rd;

The signal assignment inside the la_view:

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 19 of 22

 signal rd, wr, ack: std_logic;

 signal adr: std_logic_vector(3 downto 0);

begin --(architecture)

 rd<= d(0);

 wr<= d(1);

 ack<= d(2);

 adr<= d(6 downto 3);

It should be noted that by default OPB (by IBM) bus is defined.

The simulation is automatically stopped when all recorded samples are shown. The
following report is presented:

O.K. All acquired data in the LA has already been shown.

Advance design simulation examples

The acquired data might be also used for real signals sequence simulation, i.e. the
data recorded by the LA are then used to stimulate your design. For example: a device is
connected to a PC by the parallel port. It is rather difficult (or at least time consuming) to
specify real signal sequence issued by the parallel port. However the LA can be easily
used to record the real signals sequence and then the data can be used as the stimulus for
simulation. In this case you should place your top-level entity inside the la_view and feed
the inputs with the proper d signal.

Another simulation approach is to compare the real signals obtained by the LA
with a simulation results. In this case the la_view should be combined with the simulated
circuit. Then the simulation result should be compared at every rising clock with the
signals obtained by the LA. The following VHDL code might be included inside your
code:

process(clk)

 variable error: std_logic:= ‘0’;

 begin

 if clk’event and clk=’1’ then

 for i in 0 to data_width-1 loop

 error:= error OR (d_from_LA(i) XOR d_simulated(i));

 end loop;

 end if;

end process;

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 20 of 22

Run Length Coding
For generic: use_run_length_ciding= 1, the run length ciding compression is
implemented. Consequently if input data does not change for several clock cycles then
the memory writes is reduced only to the data and the number of repeats of the data. For
example for data= 001E for consecutive 9 clock cycles only two memory writes occur
(001E and 8007 (MSB=1 and count value –2)) instead of the 9 memory writes. In this
way the virtual memory size is enlarged especially when input data are often repeated.
The drawback of the run length ciding is that the most significant bit (data_width-1) is
used for data compression and not for data acquisition, therefore the acqured data width
is reduced by 1. The run length coding logic occupies little additional recourses:
(data_width-1) 2-input xor gates; (data_width-1)-input AND gate, data_width-bit counter
and data_width flip-flops. These additional resources however significantly enlarge the
number of requered data, therefore the memory size can be reduced. Consequently it is
strongly recommended to implement the run-length coding. The only exception is that the
input sequence is completely random and changes every clock cycle, in this case the run-
length coding reduces the acquired data width.

 The RLC is very efficient compression, and in the case when a dead-lock occurs
the LA cannot work properly – the captured data memory is never filled. Consequently an
additional setting: bit RLC (not) in ced_control register can be used to stop using the
RLC.

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 21 of 22

5
Implementation

Xilinx
Optimal Generic Selection
Generic mem_adr_width and data_width should be selected with respect to the FPGA
built-in memory size.

Precaution: Constant Values: BRAM_max_data_width, BRAM_size specified in the
la_mem entity define a single BRAM maximum data width and size and should be
specified according to FPGA family.

Virtex (BRAM 4kb)

BRAM_max_data_width= 16, BRAM_size= 4kb (4096)

BRAM data_width mem_adr_width adr_width

1 8

16

9

8

10

10

2 8

16

32

10

9

8

11

11

11

4 8

16

32

11

10

9

12

12

12

Virtex II (BRAM 16 kb)

BRAM_max_data_width= 32, BRAM_size= 16kb (16 384) (parity bits not included)

BRAM data_width mem_adr_width adr_width

1 8

16

32

11

10

9

12

12

12

 OpenCores The Logic Analyzer 2005-01-06

www.opencores.org Rev 0.8 Preliminary 22 of 22

2 8

16

32

12

11

10

13

13

13

4 8

16

32

13

12

11

14

14

14

Implementation results for Virtex Family (XCV300PQ240-6)
For the following log_anal parameters:

data_width:= 16, mem_adr_width:= 9, adr_width:= 11 trig_width:= 8, two_clocks:= 0

Implementation result:

Number of Slices: 78 out of 3,072 2%

 Number of Slices containing

 unrelated logic: 0 out of 78 0%

 Number of Slice Flip Flops: 40 out of 6,144 1%

 Total Number 4 input LUTs: 116 out of 6,144 1%

 Number used as LUTs: 105

 Number used as a route-thru: 11

 IOB Flip Flops: 34

 Number of Block RAMs: 2 out of 16 12%

 Number of GCLKs: 1 out of 4 25%

 Total equivalent gate count for design: 34,245

Minimum period is 13.492ns.

