
R

EDK MicroBlaze
Tutorial

EDK MicroBlaze Tutorial www.xilinx.com
1-800-255-7778

http://www.xilinx.com

www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, SelectI/O, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com
1-800-255-7778

EDK MicroBlaze Tutorial

The following table shows the revision history for this document:

Version Revision

11/2002 1.0 Initial Xilinx release.

04/2003 1.1 Updated to support the EDK 3.2 release.

http://www.xilinx.com

www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778

Preface: About This Manual
Additional Resources . 7
Conventions . 8

Typographical . 8
Online Document . 9

EDK MicroBlaze Tutorial
System Requirements . 11
Accessing the Tutorial Design Files. 11
MicroBlaze Hardware System Description . 11

Tutorial Design Hardware . 12
Tutorial Design Memory Map . 12

Completing the Tutorial . 13
Creating the Project File in XPS . 13

Starting XPS . 13
Defining the System Hardware . 15

MHS and MPD Files . 15
Updating the Tutorial MHS File . 15
Adding Additional IP or Hardware to an Embedded System . 18
Generating a Netlist and Creating a Project Navigator Project. 19
Implementing the Tutorial Design . 21

Defining the Software Design . 22
Setting the Driver Interface Level . 22
Setting STDIN/STDOUT with Libgen . 23
Finishing the Tutorial C Code. 23
Compiling the Code . 26
Downloading the Design . 26
Debugging the Design . 27
Simulating the Design. 30

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com
1-800-255-7778

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 7
November 2002 1-800-255-7778

R

Preface

About This Manual

This tutorial guides you through the process of finishing and testing a partially completed
MicroBlaze system design using the Embedded Development Kit (EDK).

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists some
of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

8 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 November 2002

Preface: About This Manual
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 9
November 2002 1-800-255-7778

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text

Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

10 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 November 2002

Preface: About This Manual
R

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 11
April 2003 1-800-255-7778

R

EDK MicroBlaze Tutorial

This tutorial guides you through the process of finishing and testing a partially completed
MicroBlaze system design using the Embedded Development Kit (EDK). The following
steps are included in this tutorial:

“Starting XPS”

“Updating the Tutorial MHS File”

“Adding Additional IP or Hardware to an Embedded System”

“Generating a Netlist and Creating a Project Navigator Project”

“Implementing the Tutorial Design”

“Setting the Driver Interface Level”

“Setting STDIN/STDOUT with Libgen”

“Finishing the Tutorial C Code”

“Compiling the Code”

“Downloading the Design”

“Debugging the Design”

“Simulating the Design”

System Requirements
You must have the following software installed on your PC to complete this tutorial:

• Windows 2000 SP2/Windows XP

• EDK 3.2 Service Pack 1or later

• ISE 5.2i SP1

Accessing the Tutorial Design Files
To access the tutorial design files, unzip edk_tutorial_mb.zip into the directory of your
choice.

MicroBlaze Hardware System Description
In general, to design an embedded processor system, you need the following:

• Hardware components

http://www.xilinx.com

12 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

• Memory map

• Software application

Tutorial Design Hardware
The MicroBlaze tutorial design includes the following hardware components:

• MB

• LMB Bus

♦ LMB_LMB_BRAM_IF_CNTLR

♦ BRAM_BLOCK

• OPB BUS

♦ OPB_GPIO

♦ OPB_BRAM_IF_CNTLR

♦ OPB BRAM

♦ OPB_UARTLITE

Tutorial Design Memory Map
The following table shows the memory map for the tutorial design:

Figure 1: Tutorial Design Hardware Components

X9937

LMB BRAM
LMB_LMB_BR
AM_IF_CNTLR

MB

ILMB Bus

OPB Bus

DLMB Bus

OPB_GPIO OPB_GPIO OPB_UARTLITE
OPB_BRAM_IF

_CNTLR

OPB BRAM

Table 1: Tutorial Design Memory Map

Device
Address

Size Comment
Min Max

LMB_BRAM 0x0000_0000 0x0000_3FFF 16kB LMB Memory
OPB_GPIO1 0xFFFF_4300 0xFFFF_43FF 256B DIP Switch Input
OPB_GPIO0 0xFFFF_4200 0xFFFF_42FF 256B LED Output
OPB_UARTLITE 0xFFFF_4500 0xFFFF_45FF 256B Serial Output
OPB_BRAM 0xFFFF_0000 0xFFFF_3FFF 16kB OPB Memory

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 13
April 2003 1-800-255-7778

R

Completing the Tutorial

Creating the Project File in XPS
The first step in this tutorial is using the Xilinx Platform Studio (XPS) to create a project file.
XPS allows you to control the hardware and software development of the MicroBlaze
system, and includes the following:

• An editor and a project management interface for creating and editing source code

• Software tool flow configuration options

You can use XPS to create the following files:

• Project Navigator project file that allows you to control the hardware implementation
flow

• Microprocessor Software Specification (MSS) file

Note: For more information on the MSS file, refer to the “Microprocessor Software
Specification” chapter in the Embedded Systems Tool Guide.

• Microprocessor Verification Specification (MVS) file

Note: For more information on the MVS file, refer to the “Microprocessor Verification Specification”
chapter in the Embedded Systems Tool Guide.

XPS supports the software tool flows associated with these software specifications.
Additionally, you can use XPS to customize software libraries, drivers, and interrupt
handlers, and to compile your programs.

Starting XPS

1. To open XPS, select the following:

Start → Programs → Xilinx Embedded Development Kit → Xilinx
Platform Studio

2. Select File → New Project to open the Create New Project dialog box shown in
the following figure:

http://www.xilinx.com

14 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

Figure 2: Create New Project Dialog Box

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 15
April 2003 1-800-255-7778

R

3. Use the Project File Browse button to browse to the edk_tutorial_mb folder shown in
the following figure. Click Open to create the system.xmp file.

4. Use the MHS File to Import Browse button to select the system.mhs file.

5. Set the Target Device to the following:

♦ Architecture: Virtex2Pro

♦ Device Size: xc2vp4

♦ Package: -fg456

♦ Speed Grade: -7

6. Click OK to create the project.

Defining the System Hardware

MHS and MPD Files

The next step in the tutorial is defining the embedded system hardware with the
Microprocessor Hardware Specification (MHS) and Microprocessor Peripheral
Description (MPD) files.

MHS File

The Microprocessor Hardware Specification (MHS) file describes the following:

• Embedded processor: either the soft core MicroBlaze processor or the hard core
PowerPC (only available in Virtex-II Pro devices)

• Peripherals and associated address spaces

• Buses

Figure 3: XPS Project Files Directory

http://www.xilinx.com

16 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

• Overall connectivity of the system

The MHS file is a readable text file that is an input to the Platform Generator (the hardware
system building tool). Conceptually, the MHS file is a textual schematic of the embedded
system. To instantiate a component in the MHS file, you must include information specific
to the component.

MPD File

Each system peripheral has a corresponding MPD file. The MPD file is the symbol of the
embedded system peripheral to the MHS schematic of the embedded system. The MPD
file contains all of the available ports and hardware parameters for a peripheral. The
tutorial MPD file is located in the following directory:

$EDK/hw/iplib/pcores/<peripheral_name>/data

Note: For more information on the MPD and MHS files, refer to the “Microprocessor Peripheral
Description” and “Microprocessor Hardware Specification” chapters in the Embedded Systems Tool
Guide.

Updating the Tutorial MHS File

The EDK Platform Specification Utility (PsfUtil) allows you to build the MHS file. You can
use one of the following modes to run this utility:

• Graphical dialog mode

In this mode, you can describe the embedded hardware system using graphical
selections.

• Textual mode

In this mode, you can add templates for each peripheral to the MHS file and then
manually modify the MHS file.

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 17
April 2003 1-800-255-7778

R

Using the Graphical Dialog Mode

Use the following steps to add peripheral base addresses and external ports to the tutorial
MHS file:

1. Open the graphical core tool by selecting the following:

Project → Add/Edit Cores

The System Settings dialog box appears as shown in the following figure. The
peripherals should already be added to the design.

2. Modify the peripheral Base Address and High Address settings to match the settings
in Figure 4 and in the memory map in Table 1. To modify the address values, double-
click the white box and type in the address value in hexadecimal format.

Note: The following message will be displayed when the ports tab is selected, “These cores
(instance, version) are deprecated cores. We recommend that you choose a core/version that is not
deprecated my_lmblmbbramcntlr, 1.00.a Continue? Press yes to continue using the deprecated
cores” Click Yes.

Figure 4: System Settings

http://www.xilinx.com

18 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

3. Select the Ports tab to display the Ports settings as shown in the following figure:

4. There are three reset signals for this system: OPB (opb_dataside_SYS_Rst), LMB
(lmb_dataside_SYS_Rst), and LMB (lmb_instside_SYS_Rst). Connect the reset

Figure 5: Ports Settings

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 19
April 2003 1-800-255-7778

R

signals by pressing the CTRL key and selecting each reset signal, and then pressing
Connect. The Port Connections dialog box appears as shown in the following figure:

5. Enter sys_rst in the Net Name to Use field and select External for the type of port.
Click OK.

6. Specify the RX, TX, dips, and leds nets as external signals using the pull-down menu in
the Kind field.

Figure 6: Port Connections Dialog Box

http://www.xilinx.com

20 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

7. Change the size of each of the GPIO buses to 8 as shown in the following figure:

8. Click Apply then OK to update these values in the MHS file.

9. Open the MHS file by double clicking on “system.mhs” in the System tab to verify
these changes.

Adding Additional IP or Hardware to an Embedded System

You can use the following methods to add IP or hardware to an embedded system:

• Add IP or hardware to the MHS file

• Instantiate the embedded system in a top-level wrapper file

Figure 7: Port Connections

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 21
April 2003 1-800-255-7778

R

To incorporate additional IP or hardware into an embedded system, you must maintain a
strict directory structure. The following figure shows a depiction of the tutorial design
peripheral directory structure.

Platform Generator uses the following search priority mechanism to locate peripherals:

• Search the pcores directory located in the project directory

• Search <repository_dir>\pcores as specified by the -rd option

• Search $XILINX_EDK/hw/iplib/pcores and $XILINX_EDK/hw/edklib/pcores
(UNIX) or %XILINX_EDK%\hw\iplib\pcores and
%XILINX_EDK%\hw\edklib\pcores (PC)

Generating a Netlist and Creating a Project Navigator Project

Now that the hardware has been completely specified in the MHS file, you can run the
Platform Generator. The Platform Generator elaborates the MHS file into a hardware
system consisting of NGC files that represent the processor system.

Figure 8: Peripheral Directory Structure

http://www.xilinx.com

22 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

To generate a netlist and create a Project Navigator project, follow these steps:

1. In XPS, select Tools → Generate Netlist to create the following directories:

♦ implementations

♦ hdl

♦ synthesis

♦ xst

2. To specify the design hierarchy and implementation tool flow, select:

Options → Project Options

The following dialog box is displayed:

3. In the Project Options dialog box, select the Hierarchy and Flow tab.

4. Select the following options:

Design Hierarchy: This is the top level of my design

Netlist Generation: Hierarchical

Synthesis Tool: ISE XST

Implementation Tool Flow: ISE (ProjNav)

Figure 9: Project Options

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 23
April 2003 1-800-255-7778

R

In the NPL File field, follow these steps:

a. Click the “…” button to open the following figure:

b. Create a new directory named proj_nav_proj in the root XPS project directory by
using the right mouse button and selecting New → Folder from the pop-up
menu.

c. Select this directory and click Open.

Note: Verify that the Project Navigator project is created in the root directory to ensure that
it is not deleted when you clean up the XPS project.

5. Click OK.

6. In XPS, select the following to create a Project Navigator project in the directory
previously specified:

Tools → Export to ProjNav

7. Open the Project Navigator project.

Implementing the Tutorial Design

The Project Navigator project created by XPS does not contain all of the information
necessary to implement the tutorial design. For example, the UCF file must be added to the
project. You can add additional logic to the tutorial design using ISE.

To implement the design, follow these steps:

1. Since all of the files currently included in the project are machine generated, any
changes to the MHS file will result in these files being regenerated. For this reason,
double click on system.vhd in the Source Window to open it, and select File→ Save
As to save this file in the proj_nav_proj directory as top.vhd:

2. Remove system.vhd in the Source Window.

Figure 10: ProjNav Project (NPL) Files

http://www.xilinx.com

24 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

3. Select Project → Add Source to add top.vhd to the Project Navigator project.

4. Select Project → Add Source to add the system.ucf file in the data directory.

5. Select Project→ Add Source to add the bram_init.bmm file in the implementation
directory.

6. Select top.vhd in the Source Window.

7. Right click on Generate Programming File in the Process Window and select
Properties...

8. Under the Startup options tab, select JTAG Clock for FPGA Start-up Clock.

9. Click Ok.

10. Double click Generate Programming File in the Process Window to generate the
uninitialized bit file.

Defining the Software Design
Now that the hardware design is completed, the next step is defining the software design.
If you closed XPS, reopen it and load the project located in the edk_tutorial_mb directory.

Setting the Driver Interface Level

For each of the peripherals utilized in the tutorial design, you need to set the driver
interface level as follows:

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 25
April 2003 1-800-255-7778

R

1. In XPS, select the System tab and double click on “my_uart” to open the Peripheral
Options dialog box shown in the following figure. There are two levels of drivers for
each peripheral.

The architecture of the device drivers is layered as shown in the following table. This
layered architecture accommodates the many use cases of device drivers and provides
portability across operating systems, toolsets, and processors. The architecture
provides seamless integration with RTOS (Layer 2) high-level device drivers that are
full-featured and portable across operating systems and processors (Layer 1) and low-
level drivers for simple use cases (Layer 0). You can use any or all layers.

2. Set the Interface Level to Level 0.

Figure 11: Peripheral Options

Table 2: Drivers Layered Architecture

Layer 2, RTOS Adaptation

Layer 1, High Level Drivers

Layer 0, Low Level Drivers

http://www.xilinx.com

26 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

3. Click OK.

4. Set the Interface Level to Level 1 for the following peripherals:

♦ my_mblaze

♦ my_gpin

♦ my_gpout

Note: For information on what functions are available for the different driver levels, refer to
xilinx_driver.pdf located in the Xilinx_EDK\doc directory.

Setting STDIN/STDOUT with Libgen

Libgen allows you to map printf, scanf, and so forth to an I/O peripheral in your design.

1. Double click on my_mblaze to open the “microblaze instance my_mblaze” dialog box.

2. Select the Processor Property tab.

3. In the Communication Peripherals section, use the pull-down menu for the STDIN
and STDOUT Peripheral to select my_uart.

4. Click OK.

5. In XPS, select Tools→ Generate Libraries to run libgen and compile the drivers
associated with the design.

6. Libgen creates the following directories in the my_mblaze directories:

♦ code: contains the compiled and linked application code in an ELF file

♦ include: contains the header files for peripherals included in the design (such as
xgpio.h and xuartlite.h)

♦ lib: contains the library files (such as libc.a and libxil.a)

♦ libsrc: contains the source files used to create libraries

Note: For more information on these files, refer to the Embedded Systems Tool Guide.

Finishing the Tutorial C Code

An incomplete C program is provided with this tutorial. This section walks you through
the steps to complete the program. Specifically, you will complete the Xgpio_Initialize()
function call. Additionally, you will fix an error in the program in the “Debugging the
Design” section.

To complete the C program, follow these steps:

1. Click on my_mblaze in the System BSP tree.

2. Select Project→ Add Program Sources to open the Add Source and Header Files
to the current processor dialog box.

3. Select the system.c file located in the edk_tutorial_mb/code directory.

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 27
April 2003 1-800-255-7778

R

4. Double click on system.c to open it in XPS as shown in the following figure:

5. Select the following:

Figure 12: Tutorial C Code

http://www.xilinx.com

28 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

Start → Programs → Xilinx Embedded Development Kit → EDK
Documentation

6. Select Documents.

7. Select Xilinx Drivers to open xilinx_drivers.pdf.

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 29
April 2003 1-800-255-7778

R

8. Select Xgpio Struct Reference as shown in the following figure:

9. Using the Edit → Find search for XGpio_Initialize function until the detailed
description of the function is found..

10. The documentation outlines two parameters:

♦ InstancePtr is a pointer to a XGpio instance. The memory the pointer references
must be pre-allocated by the caller. Further calls to manipulate the component
through the XGpio API must be made with this pointer.

♦ DeviceId is the unique id of the device controlled by this XGpio component.
Passing in a device id associates the generic XGpio instance to a specific device, as
chosen by the caller or application developer.

With this information, return to the C code in XPS.

11. The first parameter you need to add is a pointer to an Xgpio instance. Note that a
variable named gp_in has been created. This variable is used as the first parameter in
the Xgpio_Initialize function call. Add this variable to the function call. It should now
look as follows:

XGpio_Initialize(&gp_in,

12. The second parameter is the device id for the device you want to initialize. This
information is in the xparameters.h file. In XPS, select File → Open.

13. Browse to the edk_tutorial_mb\my_mblaze\include directory and select
xparameters.h. The xparameters.h file is written by Libgen and provides critical
information for driver function calls. This function call is used to initialize the GPIO
used as an input for the dip switch found on the board.

14. In the xparameters.h file find the following #define used to identify the MYGPIN
peripheral:

#define XPAR_MY_GPIN_DEVICE_ID 0

Note: The “MY_GPIN” matches the instance name assigned in the MHS file for this peripheral.

This #define can be used as the DeviceId in the function call.

Figure 13: Driver Documentation

http://www.xilinx.com

30 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

15. Add the DeviceId to the function call so that it looks as follows:

XGpio_Initialize(&gp_in, XPAR_MY_GPIN_DEVICE_ID);

16. Save and close the file.

Compiling the Code

Using the GNU GCC Compiler, compile the application code and BSP as follows:

1. In XPS, select Tools → Generate Libraries to run libgen. Libgen compiles the
drivers associated with this design.

2. Select Tools → Compile Program Sources to run mb-gcc. Mb-gcc compiles the
source files.

Tutorial Test Question:

At what address has the application code been placed? ______________________

3. To answer this question, open a Xygwin shell:

Start → Programs → Xilinx Embedded Development Kit → Xygwin Shell

4. In the Xygwin shell cd to the project directory and cd to the inst_microblaze/code
directory.

5. Enter mb-objdump -d executable.elf > objdump. This command
disassembles the executable contents of the executable.elf.

6. Using your favorite editor, open the objdump file you just created.

Tutorial Test Questions:

At what address has the application code been placed? ______________________

Is there any physical memory at this address? ______________________

7. Close objdump.

Downloading the Design

Note: This section requires the Insight Virtex-II Pro Demonstration Board. For more information on
this board, refer to the Insight Web Site at http://www.insight-electronics.com/

Now that the hardware and software designs are completed, the device can be configured.
Follow these steps to download and configure the FGPA:

1. Connect the host computer to the target board, including connecting the Parallel 4
cable and the serial cable.

2. Start a hyperterminal session with the following settings:

♦ com1

♦ Bits per second : 19200

♦ Data bits: 8

♦ Parity: none

♦ Stop bits: 1

♦ Flow control: none

3. Turn On the board power.

4. Turn all of the DIP switches on except number 1.

5. In XPS, select Tools → Import from ProjNav…

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 31
April 2003 1-800-255-7778

R

6. Select system.bit file in the proj_nav_proj directory.

7. Select bram_init_bd.bmm in the implementation directory.

8. Click OK.

9. Select Tools → Download to create a new bit file that has been updated with the
recently compiled code. iMPACT is used to configure the device.

10. Once the device is configured, the hyperterminal should look like the following figure:

11. As the message states, the DIP switches control the rate at which the counter counts.
By turning on switch two, the count is now delayed by three seconds. The delay can be
specific from 0 to 255 in binary using all eight switches.

Tutorial Test Questions:

If you turn on the second and third DIP switch, is the count delayed by seven
seconds?___________

Does the HyperTerminal DIP output equal seven? ___________

12. The “Debugging the Design” section describes how to solve this software coding error.
Close the Hyperterminal.

Debugging the Design

Now that the device is configured, you can debug the software application directly via the
xmd_stub software. GDB connects to the xmd_stub core through the Xilinx
Microprocessor Debug (XMD) engine utility. XMD is a program that facilitates a unified
GDB interface and a Tcl (Tool Command Language) interface for debugging programs and
verifying systems using the MicroBlaze or PowerPC (Virtex-II Pro) microprocessor.

The XMD engine is used with MicroBlaze and PowerPC GDB (mb-gdb & powerpc-eabi-
gdb) for debugging. Mb-gdb and powerpc-eabi-gdb communicate with XMD using the
remote TCP protocol and control the corresponding targets. GDB can connect to XMD on
the same computer or on a remote Internet computer as illustrated in the following figure:

Figure 14: Hyperterminal Output

http://www.xilinx.com

32 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

To debug the design, follow these steps:

1. Double click inst_microblaze to open the S/W Settings – microblaze instance
my_mblaze dialog box.

2. Select the Processor Property tab. Select XmdStub and set the Debug Peripheral as
myuart. Click OK.

3. Select Tools → Compile Program Sources.

4. Select Tools → Download to download the XMDSTUB.

5. Select Tools → XMD.

6. After xmd has initialized, enter the following:

mbconnect stub –comm serial –port com1 –baud 19200

7. In XPS, select Tools → Software Debugger to open the GDB interface.

Figure 15: GDB and XMD Connections

X9939

mb-gdb

Built-in Simulator

User Interface GDB Remote Protocol

(TCP/IP)

XMD

MicroBlaze System

cycle-accurate
Instruct Set Simulator

UART

TCL/Terminal Interface

XMD Stub

UART Lite JTAG UART

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 33
April 2003 1-800-255-7778

R

8. In GDB, select File → Target Settings to display the Target Selection dialog box
as shown in the following figure:

9. Configure the Target Selection dialog box to match Figure 16. Click Ok.

10. In GDB, select File → Open File.

11. Select executable.elf in the inst_microblaze/code directory.

Tutorial Test Questions:

Do you see the C code or the assembly code? _________________________________

Why can you not see the C code? ______________________________________

12. In GDB, select File → Exit.

13. In XPS, select Tools → Set Options → Compiler Options.

14. In the microblaze instance inst_microblaze dialog box, select the Optimization tab.

15. Select Create symbols for debugging (-g option).

16. Click OK.

17. Perform the following steps:

♦ recompile the code

♦ load the new executable.elf into GDB

Tutorial Test Question:

Do you see the C code? ________ If you do not see the C code, repeat steps 9-13.

18. Select Run → Run

There is an automatic breakpoint at main. GDB allows you to single step the C or
assembly code. This is an exercise to help you learn how to run GDB.

Note: The default values displayed in the Registers Window are in hex, while the values displayed
in the Source Window are in decimal.

19. Once you have determined the error, recompile the code and download it through
GDB.

Figure 16: Target Selection

http://www.xilinx.com

34 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

Simulating the Design

Simulation allows you to verify the hardware and software. XPS provides integration with
the SimGen (Simulation Model Generation) tool that generates and configures various
simulation models for a specified hardware system. SimGen supports behavioral (VHDL),
structural, and timing simulation models. This section of the tutorial demonstrates
behavioral VHDL simulation.

Note: When performing a simulation, you must be aware of the components in the design. For
example, the simulation of a UART peripheral could take several hundred microseconds depending
on the UART baud rate. For the purpose of this tutorial, we recommend that you comment out all
references to the UART before generating the simulation model. The following file
edk_tutorial_ppc\code\simulation.c can be used as a reference.

To simulate the design, follow these steps:

1. In XPS, the simulation model is specified by right clicking on Sim Model in the
System window and selecting either Behavior, Structural, or Timing.

2. Select Tools → Sim Model Generation to generate a simulation model. This
generates the following files in the simulation directory:

♦ system.do – initializes the simulation environment

♦ system_init.do - memory initialization of BRAMs

♦ system_comp.do – compiles the simulation source files

♦ system_init.vhd – VHDL used to initial BRAMs with the software application

♦ system_sim.bmm – BMM file used to generate system_init.vhd

These files are used to perform the simulation.

3. Open the ISE project in the proj_nav_proj directory.

4. Select Project → Add Source and select testbench.vhd in the sim directory.
Associate the testbench.vhd with top.vhd.

5. Double click the testbench.vhd file in the Source Window. Examine the testbench.vhd
file. Note that the test bench contains several processes to drive the top level signals.

6. The system_init.vhd contains the BRAM initialization strings. The initialization strings
are applied to the design utilizing a configuration statement. The following
configuration must be included at the end of the testbench.vhd:

configuration testbench_conf of testbench is
for behavior

for uut : system
for IMP

for all : lmbbram_wrapper use configuration work.lmbbram_conf;
end for;

end for;
end for;

 end for;
end testbench_conf;

7. Save and close the testbench.vhd file

8. Select File → Open to open the system_init.do in the simulation directory.

9. Examine the system_init.do file. Note that the testbench.vhd has not been included.
Add the following command after the line compiling the system_init.vhd:

vcom -93 -work work ../sim/testbench.vhd

10. Change the line :

vcom -93 -work work ./system_init.vhd

http://www.xilinx.com

EDK MicroBlaze Tutorial www.xilinx.com 35
April 2003 1-800-255-7778

R

to:

vcom -93 -work work ../simulation/system_init.vhd

11. Change the line:

do system_comp.do

to:

do ../simulation/system_comp.do

12. Now that a testbench has been added to the system_init.do file, add the following vsim
command line:

vsim -Lf unisim -t ps +notimingchecks work.testbench_conf

 This loads the configuration statement in testbench.vhd.

13. Add the following command to the system_init.do file located in the sim directory:

add wave *

14. Select File → Save As and save system_init.do as system.do in the sim directory.
This protects the file from being overwritten.

15. In the Source Window in ISE, select the testbench.vhd.

16. In the Process Window, right click Simulate Behavioral VHDL Model and select
Properties.

17. In the Simulation Properties Tab, set Custom Do File to the system.do in the sim
directory.

18. Uncheck the Use Automatic Do File option.

19. Click OK to close the dialog box.

20. Double click Simulate Behavioral VHDL Model to start the simulation.

21. In the Modelsim window enter the following command:

run 100us

http://www.xilinx.com

36 www.xilinx.com EDK MicroBlaze Tutorial
1-800-255-7778 April 2003

R

http://www.xilinx.com

	EDK MicroBlaze Tutorial
	About This Manual
	Additional Resources
	Conventions
	Typographical
	Online Document

	EDK MicroBlaze Tutorial
	System Requirements
	Accessing the Tutorial Design Files
	MicroBlaze Hardware System Description
	Tutorial Design Hardware
	Tutorial Design Memory Map

	Completing the Tutorial
	Creating the Project File in XPS
	Defining the System Hardware
	Defining the Software Design

