
R

Processor IP
Reference Guide

January 2003

Processor IP Reference Guide www.xilinx.com January 2003
1-800-255-7778

http://www.xilinx.com

January 2003 www.xilinx.com Processor IP Reference Guide
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

http://www.xilinx.com

Processor IP Reference Guide www.xilinx.com January 2003
1-800-255-7778

Processor IP Reference Guide
January 2003

The following table shows the revision history for this document..

Version Revision

August
2002

1.0 Initial Xilinx release for EDK 3.1

October
2002

1.1 Add memory and peripheral cores

November
2002

1.2 Release for EDK 3.1 Service Pack 2

January
2003

1.3 Release for EDK 3.1 Service Pack 3

http://www.xilinx.com

Processor IP Reference Guide www.xilinx.com v
January 2003 1-800-255-7778

R

Preface

About This Manual

The Processor IP Reference Guide supports the Embedded systems Design Kit (EDK) for
MicroBlaze™ and Virtex-II Pro™.

Note: For more information, refer to the Embedded Software Tools Reference Guide and PowerPC
405 Processor Reference Guide.

Manual Contents
This manual contains the following sections:

“Part I: Embedded Processor IP”

• Chapter 1: “OPB Usage in FPGAs”

• Chapter 2: “PLB Usage in Xilinx FPGAs”

• Chapter 3: “Bus Infrastructure Cores”

♦ “On-Chip Peripheral Bus V2.0 with OPB Arbiter” (v1.00a)

♦ “On-Chip Peripheral Bus V2.0 with OPB Arbiter” (v1.10a)

♦ “On-Chip Peripheral Bus V2.0 with OPB Arbiter” (v1.10b)

♦ “OPB to PLB Bridge” (v1.00a)

♦ “OPB to PLB Bridge” (v1.00b)

♦ “OPB to OPB Bridge (Lite Version)”

♦ “OPB to DCR Bridge Specification”

♦ “Processor Local Bus (PLB) V3.4”

♦ “PLB to OPB Bridge” (v1.00a)

♦ “PLB to OPB Bridge” (v1.00b)

♦ “Device Control Register Bus (DCR) V2.9”

♦ “Processor System Reset Module”

♦ “Local Memory Bus (LMB) V1.0”

♦ “OPB Arbiter” (v1.02c)

• Chapter 4: “IPIF”

♦ “OPB IPIF Architecture”

♦ “OPB IPIF Slave Attachment”

♦ “OPB IPIF Master Attachment”

♦ “OPB IPIF Address Decode”

♦ “OPB IPIF Interrupt”

http://www.xilinx.com

vi www.xilinx.com Processor IP Reference Guide
1-800-255-7778 January 2003

R

♦ “OPB IPIF Packet FIFO”

♦ “Direct Memory Access and Scatter Gather”

• Chapter 5: “Memory Interface Cores”

♦ “LMB Block RAM (BRAM) Interface Controller”

♦ “Dual LMB Block RAM (BRAM) Interface Controller”

♦ “OPB External Memory Controller (EMC)” (v1.00d)

♦ “OPB External Memory Controller (EMC)” (v1.10a)

♦ “OPB Synchronous DRAM (SDRAM) Controller”

♦ “OPB Block RAM (BRAM) Interface Controller”

♦ “OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller”

♦ “OPB SYSACE (System ACE) Interface Controller”

♦ “PLB External Memory Controller (EMC)” (v1.00d)

♦ “PLB External Memory Controller (EMC)” (v1.10a)

♦ “PLB Synchronous DRAM (SDRAM) Controller”

♦ “PLB Block RAM (BRAM) Interface Controller”

♦ “PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller”

♦ “Instruction Side OCM Block RAM (ISBRAM) Interface Controller”

♦ “Data Side OCM Block RAM (DSBRAM) Interface Controller”

♦ “Block RAM (BRAM) Block”

♦ “OPB ZBT Controller”

• Chapter 6: “Peripheral Cores”

♦ “OPB Interrupt Controller” (v1.00b)

♦ “OPB Interrupt Controller” (v1.00c)

♦ “OPB 16550 UART”

♦ “OPB 16450 UART”

♦ “OPB UART Lite”

♦ “OPB JTAG_UART”

♦ “IIC Bus Interface”

♦ “OPB Serial Peripheral Interface (SPI)”

♦ “OPB IPIF/LogiCore V3 PCI Core Bridge”

♦ “Ethernet Media Access Controller (EMAC)” (v1.00j)

♦ “Ethernet Media Access Controller (EMAC)” (v1.00k)

♦ “OPB Ethernet Lite Media Access Controller”

♦ “OPB Asynchronous Transfer Mode Controller (OPB_ATMC)” (v1.00b)

♦ “OPB Asynchronous Transfer Mode Controller (OPB_ATMC)” (v2.00a)

♦ “OPB HDLC Interface” (single channel v1.00b)

♦ “OPB Timebase WDT”

♦ “OPB Timer/Counter”

♦ “OPB General Purpose Input/Output (GPIO)”

♦ “PLB 1 Gigabit Ethernet Media Access Controller (MAC) with DMA”

http://www.xilinx.com

Processor IP Reference Guide www.xilinx.com vii
January 2003 1-800-255-7778

R

♦ “PLB 16550 UART” (v1.00b)

♦ “PLB 16550 UART” (v1.00c)

♦ “PLB 16450 UART”(v1.00b)

♦ “PLB 16450 UART”(v1.00c)

♦ “PLB Rapid IO LVDS”

♦ “PLB Asynchronous Transfer Mode Controller (PLB_ATMC) (v1.00a)”

♦ “DCR Interrupt Controller Specification” (v1.00a)

♦ “DCR Interrupt Controller Specification” (v1.00b)

“Part II: Software”

• Chapter 7: “Device Driver Programmer Guide”

• Chapter 8: “ML300 Tornado 2.0 BSP User Guide”

• Chapter 9: “Device Driver Summary”

• Chapter 10: “Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support
Packages”

• Chapter 11: , “Insight MDFG456 Tornado 2.0 BSP User’s Guide”

http://www.xilinx.com

viii www.xilinx.com Processor IP Reference Guide
1-800-255-7778 January 2003

R

This page left intentionally blank

http://www.xilinx.com

Processor IP Reference Guide www.xilinx.com 1
January 2003 1-800-255-7778

R

Part I: Embedded Processor IP

This section contains information on the following:

Chapter 1, “OPB Usage in FPGAs”

Chapter 2, “PLB Usage in Xilinx FPGAs”

Chapter 3, “Bus Infrastructure Cores”

Chapter 4, “IPIF”

Chapter 5, “Memory Interface Cores”

Chapter 6, “Peripheral Cores”

http://www.xilinx.com

2 www.xilinx.com Processor IP Reference Guide
1-800-255-7778 January 2003

R

http://www.xilinx.com

January 2003 www.xilinx.com 3
Processor IP Reference Guide 1-800-255-7778

R

Chapter 1

OPB Usage in FPGAs

Overview
This chapter includes the following sections:

Xilinx OPB Usage

Legacy OPB Devices

OPB Usage Notes

OPB Comparison

Revision History

For detailed information on the IBM OPB, refer to IBM’s On-Chip Peripheral Bus,
Architecture Specifications, Version 2.1: OpbBus.pdf

The OPB is one element of IBM’s CoreConnect architecture, and is a general-purpose
synchronous bus designed for easy connection of on-chip peripheral devices. The OPB
includes the following features:

• 32-bit or 64-bit data bus
• Up to 64-bit address
• Supports 8-bit, 16-bit, 32-bit, and 64-bit slaves
• Supports 32-bit and 64-bit masters
• Dynamic bus sizing with byte, halfword, fullword, and doubleword transfers
• Optional Byte Enable support
• Distributed multiplexer bus instead of 3-state drivers
• Single cycle transfers between OPB master and OPB slaves (not including arbitration)
• Support for sequential address protocol
• 16-cycle bus time-out (provided by arbiter)
• Slave time-out suppress capability
• Support for multiple OPB bus masters
• Support for bus parking
• Support for bus locking
• Support for slave-requested retry
• Bus arbitration overlapped with last cycle of bus transfers

The OPB is a full-featured bus architecture with many features that increase bus
performance. You can use most of these features effectively in the FPGA architecture.
However, some features can result in the inefficient use of FPGA resources or can lower
system clock rates. Consequently, Xilinx uses an efficient subset of the OPB for Xilinx-
developed OPB devices. However, because of the flexible nature of FPGAs, you can also
implement systems utilizing OPB devices that are fully OPB V2.1 compliant.

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf

4 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 1: OPB Usage in FPGAs
R

Xilinx OPB Usage

OPB Options

Legacy Devices
Previous to OPB V2.0, there was a single signaling protocol for OPB data transfers. This
protocol (which is also present in OPB V2.0 and later specifications) supports dynamic bus
sizing through the use of transfer qualifiers and acknowledge signals. The transfer
qualifiers denote the size of the transfer initiated by the master, and the acknowledge
signals indicate the size of the transfer from the slave. Devices that support this type of
dynamic bus sizing are called legacy devices.

Byte-enable Devices
Starting with OPB V2.0, IBM introduced an optional, alternate transfer protocol based on
Byte Enables. In the byte-enable architecture, each byte lane of the data bus has an
associated byte enable signal. For each transfer, the byte enable signals indicate which byte
lanes have valid data. This eliminates the need for separate transfer qualifiers that indicate
the transfer size since all size information is contained in the byte enable signals. The byte-
enable architecture does not permit dynamic bus sizing, since there is only one
acknowledge signal for each transfer. The OPB V2.0 specification (and later) allows you to
build systems that are legacy-only, byte-enable only, or mixed. Devices that only support
the byte-enable signaling are called byte-enable devices.

OPB V2.0 Devices
Devices that support both byte-enable signaling and legacy signaling are called OPB V2.0
devices. Systems that have both legacy signaling and byte-enable signaling can perform
dynamic bus sizing. Note that legacy devices do not support byte-enable transfers.

Xilinx OPB Devices
These various transfer protocols have several implications for Xilinx OPB device
implementations.

Conversion Cycles
Dynamic bus sizing (as supported by legacy devices) results in conversion cycles, which are
extra transfer cycles that re-transfer data when the master-initiated transfer is larger than
the slave response. For example, in a legacy system, if a master writes a 32-bit word to a
slave, and the 8-bit device slave responds that it only accepted 8-bits of the transfer, then
the master must perform three additional conversion cycles to transfer all of the data to the
slave. Generating conversion cycles requires more logic, increases the complexity of the
master, and is not an efficient use of FPGA resources. The byte-enable architecture
provides a simple alternative to this problem, and is easier to implement in an FPGA.

Write Mirroring and Read Steering
Another consequence of supporting devices smaller than the bus size is write mirroring and
read steering. In the OPB specification, devices smaller than the bus size are always left-
justified (aligned toward the most significant side of the bus) so that the byte lanes
associated with the smaller devices are easily determined. For example, a byte-wide
peripheral is always located on the most-significant byte of the bus. The peripheral writes
and reads data using this byte-lane. You can simplify the design of OPB masters by using
a byte-enable only, no-write-mirroring architecture. A small degree of added complexity is
required for peripherals that are smaller than the bus size if OPB masters do not mirror
data.

http://www.xilinx.com

January 2003 www.xilinx.com 5
Processor IP Reference Guide 1-800-255-7778

Xilinx OPB Usage
R

Ideal FPGA Implementation of OPB-based System
The ideal FPGA implementation of an OPB-based system has the following features:

• Requires no conversion cycles
• Uses only the byte-enable architecture as specified in the OPB specification
• Does not require masters to mirror write data

These characteristics help determine how Xilinx-developed OPB devices are implemented.
The detailed specifications that describe how the OPB is used in Xilinx intellectual
property are provided in the next section

.

Specifications for OPB Usage in Xilinx-developed OPB Devices
Xilinx-developed OPB devices adhere to the following OPB usage rules:

• The width of the OPB data buses and address buses is 32 bits. Note that some
peripherals may parameterize these widths, but currently only 32-bit buses are
supported. Peripherals that are smaller than 32-bits can be attached to the OPB with a
corresponding restriction in addressing. For example, an 8-bit peripheral at base
address A can be attached to byte lane 0, but can only be addressed at A, A+4, A+8,
and so on.

• All OPB devices (masters and slaves) are byte-enable devices. These devices do not
support the legacy data transfer signals and therefore do not support dynamic bus
sizing. OPB masters do not mirror data to unused byte lanes. See Figure 1-1 for the
byte lane usage for aligned transfers.

• All OPB devices (masters and slaves) are required to output logic zero when they are
inactive. This eliminates the need for the Mn_DBusEn and Sln_DBusEn signals
external to the master or slave. The enable function is still implemented within the
device.

• To obtain better timing in the FPGA implementation of the OPB, the OPB_timeout
signal is registered. This means that all slaves must assert Sl_xferAck or Sl_retry on or
before the rising edge of the 16th clock cycle after the assertion of OPB_select. If an
OPB slave wishes to assert Sl_toutSup, Sl_toutSup must be asserted on or before the
rising edge of the 15th clock after the assertion of OPB_select.

• The byte-enables and the least-significant address bits are driven by all masters and
contain consistent information. Examples of byte lane usage for aligned transfers are

http://www.xilinx.com

6 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 1: OPB Usage in FPGAs
R

shown in the following figure:

• All OPB slave devices that require a continuous address space (use of all byte lanes)
will implement an attachment to the OPB bus that is as wide as the OPB data width,
regardless of device width. This eliminates the need for left justification on the OPB
bus and eliminates the need for masters to mirror write data.

As an example, consider an 8-bit memory device that must be addressed at
consecutive byte addresses being attached to a 32-bit OPB. The 8-bit memory device
must implement a 32-bit wide attachment to the OPB; in the bus attachment, data is
steered from the proper byte lane into the 8-bit device for writes, and from the 8-bit
device onto the proper byte lane for reads.

The simplest way to accomplish this is with a multiplexer for steering the writes, and
a connection from the 8-bit device to all byte lanes (essentially mirroring to all byte
lanes) for reads.

• By convention, registers in all OPB slave devices are aligned to word boundaries
(lowest two address bits are "00"), regardless of the size of the data in the register or
the size of the peripheral.

• Master and Slave I/O: OPB masters adhere to the signal set shown in Table 1-1. OPB
slaves adhere to the signal set shown in Table 1-2. Devices that are both master and
slave adhere to the signal set shown in Table 1-3. Page numbers referenced in the
tables apply to both the OPB V2.0 specification and the OPB V2.1 specification, both
from IBM. All signals shown must be present, except for the one signal shown as
optional (<Master>_DBus[0:31] for devices that are both master and slave). No
additional signals for OPB interconnection may be added. The naming convention is
as follows: <Master> represents a master name or acronym that starts with an upper-
case letter, <Slave> represents a slave name or acronym that starts with an upper-case
letter. <nOPB> represents an OPB identifier (for masters or slaves with more than
OPB attachment) and must start with an uppercase letter and end with upper-case
"OPB". For devices with a single OPB attachment, the <nOPB> identifier should
default to "OPB" (for example, OPB_ABus). All other parts of the signal name must be

Figure 1-1: Byte lane usage for aligned transfers

0:7

8:15

16:23

24:31

Data Bus

n_ABus(30:31) = "00",
Mn_BE = "1111"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0011"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "01",
Mn_BE = "0100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0010"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "11",
Mn_BE = "0001"

word transfer halfword transfer halfword transfer byte transfer

byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

January 2003 www.xilinx.com 7
Processor IP Reference Guide 1-800-255-7778

Xilinx OPB Usage
R

referenced exactly as shown (including case).

Table 1-1: Summary of OPB master-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

Table 1-2: Summary of OPB Slave-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Slave>_DBus[0:31] O Slave data bus OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

<nOPB>_DBus[0:31] I OPB data bus OPB-13

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

http://www.xilinx.com

8 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 1: OPB Usage in FPGAs
R

Additional Notes on Signal Sets
• Xilinx-developed OPB devices do not support dynamic bus sizing and consequently

do not use the following legacy signals: Mn_dwXfer, Mn_fwXfer, Mn_hwXfer,
Sln_dwAck, Sln_fwAck, and Sln_hwAck.

• Since Xilinx-developed OPB devices are byte-enable only, the Mn_beXfer and
Sln_beAck signals are not required and so are not used.

Table 1-3: Summary of OPB Master/Slave Device I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus (optional) OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

<Slave>_DBus[0:31] O Slave data bus (may optionally function as
master write data bus if <Master>_DBus
not present)

OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

http://www.xilinx.com

January 2003 www.xilinx.com 9
Processor IP Reference Guide 1-800-255-7778

Legacy OPB Devices
R

• The signals required for masters and slaves are separate from the signals present in
the OPB interconnect. The OPB interconnect (the OR gates and other logic required to
connect OPB devices) supports the full OPB V2.1 specification (i.e. all signals are
present). Thus the OPB interconnect does not limit a design to byte-enable devices
and supports designs in which a mix of byte-enable, legacy, and OPB V2.0 devices are
present. The bus interconnect does not limit the use of any feature of the V2.1
specification.

Legacy OPB Devices
Although byte-enable devices are the preferred and most efficient OPB devices in Xilinx
devices, some designs may also use legacy OPB devices or fully V2.0 compliant devices.
However, a legacy device cannot communicate directly with a byte-enable device because
they use different signal sets. An interface layer between the byte-enable device and the
legacy device is required. This interface is called the Byte Enable Interface (BEIF) device.

http://www.xilinx.com

10 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 1: OPB Usage in FPGAs
R

Mixed Systems
The system shown in the following figure represents a design with a mix of byte-enable,
legacy, and OPB V2.0 devices. The BEIF device converts the legacy-type signals to byte-
enable-type signals and vice versa.

The BEIF device contains the following logic, not all of which must be used in all
situations:

• Signal translation for byte-enable device to legacy device transfers: <Master>_BE is
translated to the appropriate <Master>_hwXfer, <Master>_fwXfer, and
<Master>_dwXfer. <nOPB>_BE is translated to the appropriate <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer. <Slave>_hwXfer, <Slave>_fwXfer, and
<Slave>_dwXfer are translated to <Slave>_xferAck. <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer are translated to <nOPB>_xferAck. The
correct lower address bits are also generated.

• Signal translation for legacy device to byte-enable device transfers: <Master>_hwXfer,
<Master>_fwXfer, and <Master>_dwXfer are translated to <Master>_BE .
<nOPB>_hwXfer, <nOPB>_fwXfer, and <nOPB>_dwXfer are translated to
<nOPB>_BE . <Slave>_xferAck is translated to <Slave>_hwXfer, <Slave>_fwXfer,
and <Slave>_dwXfer. <nOPB>_xferAck is translated to <nOPB>_hwXfer,
<nOPB>_fwXfer, and <nOPB>_dwXfer.

• Mirroring and steering logic.
• Conversion cycle generator for byte-enable device to legacy device transfers.

With this architecture, systems that do not require full V2.1 features (for example, systems
that contain only Xilinx IP) do not need to instantiate the BEIF and hence optimally use the
available FPGA resources. Systems that require legacy or OPB V2.0 devices must
instantiate the BEIF, although the most costly part of the BEIF (the conversion cycle
generator) only needs to be instantiated if conversion cycles are possible (not all slaves will
cause generation of conversion cycles).

Figure 1-2: OPB Interconnect with Mixed Device Types

OPB V2.0
Slave

OPB V2.0
Master

Legacy
Master

Legacy
Slave

OPB Bus
Monitor or BFM

(test only)

Byte-Enable
Master2

Byte-Enable
Master1

Byte-Enable
Slave1

Byte-Enable
Slave2

PLB-to-OPB
Bridge

OPB Arbiter

BEIF BEIF BEIF BEIF BEIF

OPB

http://www.xilinx.com

January 2003 www.xilinx.com 11
Processor IP Reference Guide 1-800-255-7778

OPB Usage Notes
R

OPB Usage Notes
The following are general notes on OPB usage that apply primarily to mixed systems:

• Conversion cycles are only required when a master generates a transfer request to a
slave that is larger than the slave’s width and the slave is capable of indicating that it
accepted a smaller transfer than the master requested hence requiring with a
conversion cycle.

• Byte-enable masters cannot directly generate conversion cycles. They require a
conversion cycle generator in the Byte Enable Interface (BEIF) device. This is because
byte-enable masters do not receive any size information in the acknowledge from the
slave.

• Byte-enable slaves cannot cause generation of conversion cycles. A consequence of
this is that any master accessing a byte-enable slave can only transfer data up to the
size of the slave. Transfers larger than the slave size will result in either 1) no response
from the slave (time-out), 2) an errAck from the slave, or 3) lost data; the actual result
depends on how the decode and acknowledge logic is implemented in the slave.

• Conversion cycle generator logic in the BEIF is required only for byte-enable device to
legacy/OPB V2.0 device transfers.

• Write mirroring and read steering in the V2.1 specification is based on left-justified
peripherals. A more complex slave attachment can be used instead of left justification.

OPB Comparison
Table 1-4 illustrates the major embedded processor bus architectures used in Xilinx FPGAs
and lists some of their characteristics. Each bus has different capabilities in terms of data
transfer rates, multi-master capability, and data bursting. The use of a particular bus is
dictated by the processor used, the data bandwidth required in the application, and
availability of peripherals. The OPB is a general-purpose peripheral bus that can be
effectively used in many design situations.

PLB - Processor Local Bus (IBM). PLB Reference

OPB - On-chip Peripheral Bus (IBM). OPB Reference

OCM - On-chip Memory interface (IBM). OCM Reference

LMB - Local Memory Bus (Xilinx). MicroBlaze Processor Reference Guide

DCR - Device Control Register bus (IBM). DCR Reference

Table 1-4: Comparison of buses used in Xilinx Embedded Processor Systems

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Processor family PPC405 PPC405,
MicroBlaze

PPC405 PPC405 MicroBlaze

Data bus width 64 32 32 32 32

Address bus width 32 32 10 32 32

Clock rate, MHz (max)1 100 125 125 375 125

Masters (max) 16 16 1 1 1

Masters (typical) 2-8 2-8 1 1 1

Slaves (max) limited only by hardware resources 1 1

Slaves (typical) 2-6 2-8 1-8 1 1

Data rate (peak)2 1600 MB/s 500 MB/s 500 MB/s 500 MB/s 500 MB/s

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D2004A30D6/$file/405_um.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/EA0DB87B2BB3702587256AB30006DD12/$file/DcrBus.pdf

12 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 1: OPB Usage in FPGAs
R

Revision History
The following table shows the revision history for this document.

Data rate (typical)3 533 MB/s4 167 MB/s5 100 MB/s8 333 MB/s6 333 MB/s7

Concurrent read/write Yes No No No No

Address pipelining Yes No No No No

Bus locking Yes Yes No No No

Retry Yes Yes No No No

Timeout Yes Yes No No No

Fixed burst Yes No No No No

Variable burst Yes No No No No

Cache fill Yes No No No No

Target word first Yes No No No No

FPGA resource usage High Medium Low Low Low

Compiler support for load/store Yes Yes No Yes Yes

Notes:
1. Maximum clock rates are estimates and are presented for comparison only. The actual maximum clock rate for each bus

is dependent on device family, device speed grade, design complexity, and other factors.
2. Peak data rate is the maximum theoretical data transfer rate at the clock rate shown for each bus.
3. The typical data rates are intended to illustrate data rates that are representative of actual system configurations. The

typical data is highly dependent on the application software and system hardware configuration.
4. Assumes primarily cache-line fills, minimal read/write concurrency (66.7% bus utilization).
5. Assumes minimal use of sequential address capabilities and 3 clock cycles per OPB transfer.
6. The OCM controller operates at the PPC405 core clock rate, but its data transfer rate is limited by the access time of the

on-chip memory. The typical data rate assumes 66.7% bus utilization.
7. Assumes 66.7% bus utilization.
8. Assumes DCR operates at same clock rate as PLB and each DCR access requires 5 clock cycles. The number of clock

cycles per DCR transfer is dependent on how many DCR devices are present in the system. Each additional DCR
device adds latency to all DCR transfers.

Table 1-4: Comparison of buses used in Xilinx Embedded Processor Systems (Continued)

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Date Version Revision

10/17/01 1.0 Initial Xilinx version.

10/19/01 1.1 Minor editorial changes. Added links to bus references.

12/10/01 1.2 Changed Figure 2 and other minor edits.

3/20/02 1.3 Updated for MDK 2.2

http://www.xilinx.com

January 2003 www.xilinx.com 13
Processor IP Reference Guide 1-800-255-7778

R

Chapter 2

PLB Usage in Xilinx FPGAs

Summary
This chapter describes how to use the IBM Processor Local Bus (PLB) in Xilinx FPGAs, and
provides guidelines and simplifications for efficient FPGA implementations, and the set of
signals used in Xilinx-developed PLB devices.

This chapter includes the following sections:

Xilinx PLB Usage

PLB Comparison

Revision History

Overview
For detailed information on the IBM PLB, refer to IBM’s 64-bit Processor Local Bus,
Architecture Specifications, Version 3.5:

PlbBus.pdf

The PLB is one element of IBM’s CoreConnect architecture, and is a high-performance
synchronous bus designed for connection of processors to high-performance peripheral
devices. The PLB includes the following features (from 64-bit Processor Local Bus,
Architecture Specifications):

• Overlapping of read and write transfers allows two data transfers per clock cycle for
maximum bus utilization.

• Decoupled address and data buses support split-bus transaction capability for
improved bandwidth.

• Address pipelining reduces overall bus latency by allowing the latency associated
with a new request to be overlapped with an ongoing data transfer in the same
direction.

• Late master request abort capability reduces latency associated with aborted requests.
• Hidden (overlapped) bus request/grant protocol reduces arbitration latency.
• Bus architecture supports sixteen masters and any number of slave devices.
• Four levels of request priority for each master allow PLB implementations with

various arbitration schemes.
• Bus arbitration-locking mechanism allows for master-driven atomic operations.
• Support for 16-, 32-, and 64-byte line data transfers.
• Read word address capability allows slave devices to fetch line data in any order (that

is, target word-first or sequential).
• Sequential burst protocol allows byte, halfword, and word burst data transfers in

either direction.

http://www.xilinx.com

14 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 2: PLB Usage in Xilinx FPGAs
R

• Guarded and unguarded memory transfers allow a slave device to enable or disable
the pre-fetching of instructions or data.

The PLB is a full-featured bus architecture with many features that increase bus
performance. Most of these features map well to the FPGA architecture, however, some
can result in the inefficient use of FPGA resources or can lower system clock rates.
Consequently, Xilinx uses an efficient subset of the PLB for Xilinx-developed PLB devices.
However, because of the flexible nature of FPGAs, you can also implement systems
utilizing PLB devices that are fully PLB V3.5 compliant.

Xilinx PLB Usage

Dynamic Bus Sizing
Dynamic bus sizing is a PLB architectural feature that allows a designer to mix 32 and 64-
bit devices on the same 64-bit PLB. A master provides a master size signal,
<Master>_MSize[0:1], that describes the data width of the master initiating a transaction.
Slaves provide a similar signal, Sl_Mn_SSize(0:1), with the address acknowledge that
describes the data width of the slave that is responding to the transaction. While dynamic
bus sizing is a useful architectural feature, its use in FPGAs can result in inefficient
implementations of PLB masters.

Conversion Cycles
Dynamic bus sizing results in conversion cycles, which are extra transfer cycles that re-
transfer data when the master-initiated transfer is larger than the slave response. For
example, if a master writes a 64-bit word to a slave, and the 32-bit device slave responds
with a slave size of 32-bits, then the master must perform an additional conversion cycle to
transfer all of the data to the slave. Generating conversion cycles requires more logic,
increases the complexity of the master, and is typically not an efficient use of FPGA
resources.

Write Mirroring and Read Steering
Another consequence of supporting devices smaller than the bus size is write mirroring and
read steering. In the PLB specification, devices smaller than the bus size are always left-
justified (aligned toward the most significant side of the bus) so that the byte lanes
associated with the smaller devices are easily determined. For example, a word-wide
peripheral is always located on the most-significant word of the 64-bit bus. The peripheral
writes and reads data using only the four most significant byte lanes. You can simplify the
design of PLB masters by using an architecture that requires no write mirroring and
transfers data based on which byte enables are active. A small degree of added complexity
is required in the bus attachment for peripherals that are smaller than the bus size if PLB
masters do not mirror data. This additional logic is built into the parameterizable slave
attachment in each Xilinx peripheral.

Xilinx PLB Devices

Ideal FPGA Implementation of PLB-based System
The ideal FPGA implementation of a PLB-based system has the following features:

• Requires no conversion cycles
• Does not require masters to mirror write data

These characteristics help determine how Xilinx-developed PLB devices are implemented.
The detailed specifications that describe how the PLB is used in Xilinx intellectual property
are provided in the next section.

http://www.xilinx.com

January 2003 www.xilinx.com 15
Processor IP Reference Guide 1-800-255-7778

Xilinx PLB Usage
R

Specifications for PLB Usage in Xilinx-developed PLB Devices
Xilinx-developed PLB devices adhere to the following PLB usage rules:

• The width of the PLB data buses is 64 bits and the width of address buses is 32 bits.
Note that some peripherals may parameterize these widths, but currently only 64-bit
data buses are supported. Peripherals that are smaller than 64-bits can be attached to
the PLB with a corresponding restriction in addressing. For example, a 32-bit
peripheral at base address A can be attached to byte lanes 0 – 4, but word-wide
accesses can only be addressed at A, A+8, A+16, etc.

• PLB masters are not required to support dynamic bus sizing. PLB masters are not
required to mirror data to unused byte lanes. See Figure 2-1 and Figure 2-2 for the
byte lane usage for aligned transfers. PLB Masters are required to correctly drive the
<Master>_MSize[0:1] signals. PLB slaves are required to correctly drive the
<Slave>_SSize[0:1] signals for PLB masters that do provide conversion cycles (such as
the PowerPC 405).

• All PLB slaves are required to output logic zero when they are inactive.
• The byte-enables and the least-significant address bits are driven by all masters and

contain consistent information. Examples of byte lane usage for aligned transfers are
shown in Figure 2-1 and Figure 2-2.

Figure 2-1: Byte lane usage for aligned doubleword, word, and halfword transfers

0:7 0:7 0:7 0:7

32:39

40:47

48:55

56:63

8:15

16:23

24:31

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11111111"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11110000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001111"

doubleword transfer word transfer word transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "11000000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "010",
Mn_BE = "00110000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001100"

Data Bus

Mn_ABus(29:31) = "110",
Mn_BE = "00000011"

halfword transfer halfword transfer halfword transfer halfword transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

16 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 2: PLB Usage in Xilinx FPGAs
R

• All PLB slave devices that require a continuous address space (i.e. use of all byte
lanes) will implement an attachment to the PLB bus that is as wide as the PLB data
width, regardless of device width. This eliminates the need for left justification on the
PLB bus and eliminates the need for masters to mirror write data. As an example,
consider a 32-bit memory device that must be addressed at consecutive byte
addresses being attached to a 64-bit PLB. The 32-bit memory device must implement a
64-bit wide attachment to the PLB; in the bus attachment, data is steered from the
proper byte lanes into the 32-bit device for writes, and from the 32-bit device onto the
proper byte lanes for reads.

• By convention, registers in all PLB slave devices are aligned to word boundaries
(lowest two address bits are "00"), regardless of the size of the data in the register or
the size of the peripheral.

• Master and Slave I/O: PLB masters adhere to the signal set shown in Table 2-1. PLB
slaves adhere to the signal set shown in Table 2-2. Page numbers referenced in the
tables apply to the PLB V3.5 specification from IBM. All signals shown must be
present. No additional signals for PLB interconnection may be added. The naming
convention is as follows: <Master> represents a master name or acronym that starts
with an upper-case letter, <Slave> represents a slave name or acronym that starts with
an upper-case letter. <nPLB> represents an PLB identifier (for masters or slaves with
more than one PLB attachment) and must start with an uppercase letter and end with
upper-case "PLB". For devices with a single PLB attachment, the <nPLB> identifier

Figure 2-2: Byte lane usage for byte transfers

0:7 0:7 0:7 0:7

32:39

40:47

48:55

56:63

8:15

16:23

24:31

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "000",
Mn_BE = "10000000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "001",
Mn_BE = "01000000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "010",
Mn_BE = "00100000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "011",
Mn_BE = "00010000"

byte transfer byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

32:39

40:47

48:55

56:63

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "100",
Mn_BE = "00001000"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "101",
Mn_BE = "00000100"

8:15

16:23

24:31

Data Bus

Mn_ABus(29:31) = "110",
Mn_BE = "00000010"

Data Bus

Mn_ABus(29:31) = "111",
Mn_BE = "00000001"

byte transfer byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

http://www.xilinx.com

January 2003 www.xilinx.com 17
Processor IP Reference Guide 1-800-255-7778

Xilinx PLB Usage
R

should default to "PLB" (for example, PLB_ABus). All other parts of the signal name
must be referenced exactly as shown (including case).

Table 2-1: Summary of PLB Master-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nPLB>_Clk I PLB Clock (SYS_plbClk) PLB-11

<nPLB>_Rst I PLB Reset (SYS_plbReset) PLB-11

<Master>_abort O Master abort bus request indicator PLB-19

<Master>_ABus[0:31] O Master address bus PLB-27

<Master>_BE[0:7] O Master byte enables PLB-21

<Master>_busLock O Master buslock PLB-13

<Master>_compress O Master compressed data transfer
indicator

PLB-25

<Master>_guarded O Master guarded transfer indicator PLB-26

<Master>_lockErr O Master lock error indicator PLB-27

<Master>_MSize[0:1] O Master data bus size PLB-40

<Master>_ordered O Master synchronize transfer
indicator

PLB-26

<Master>_priority[0:1] O Master request priority PLB-12

<Master>_rdBurst O Master burst read transfer
indicator

PLB-34

<Master>_request O Master request PLB-12

<Master>_RNW O Master read/not write PLB-21

<Master>_size[0:3] O Master transfer size PLB-24

<Master>_type[0:2] O Master transfer type PLB-25

<Master>_wrBurst O Master burst write transfer
indicator

PLB-29

<Master>_wrDBus[0:63] O Master write data bus PLB-28

<nPLB>_<Master>_Busy I PLB master slave busy indicator PLB-36

<nPLB>_<Master>_Err I PLB master slave error indicator PLB-37

<nPLB>_<Master>_WrBTerm I PLB master terminate write burst
indicator

PLB-30

<nPLB>_<Master>_WrDAck I PLB master write data
acknowledge

PLB-29

<nPLB>_<Master>AddrAck I PLB master address acknowledge PLB-18

<nPLB>_<Master>RdBTerm I PLB master terminate read burst
indicator

PLB-36

<nPLB>_<Master>RdDAck I PLB master read data
acknowledge

PLB-33

http://www.xilinx.com

18 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 2: PLB Usage in Xilinx FPGAs
R

<nPLB>_<Master>RdDBus[0:63] I PLB master read data bus PLB-31

<nPLB>_<Master>RdWdAddr[0:3] I PLB master read word address PLB-32

<nPLB>_<Master>Rearbitrate I PLB master bus re-arbitrate
indicator

PLB-19

<nPLB>_<Master>SSize[0:1] I PLB slave data bus size PLB-40

Table 2-2: Summary of PLB Slave-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nPLB>_Clk I PLB Clock (SYS_plbClk) PLB-11

<nPLB>_Reset I PLB Reset (SYS_plbReset) PLB-11

<Slave>_addrAck O Slave address acknowledge PLB-18

<Slave>_MBusy[0:3] O Slave busy indicator PLB-36

<Slave>_MErr[0:3] O Slave error indicator PLB-37

<Slave>_rdBTerm O Slave terminate read burst transfer PLB-36

<Slave>_rdComp O Slave read transfer complete
indicator

PLB-34

<Slave>_rdDAck O Slave read data acknowledge PLB-33

<Slave>_rdDBus[0:63] O Slave read data bus PLB-31

<Slave>_rdWdAddr[0:3] O Slave read word address PLB-32

<Slave>_rearbitrate O Slave re-arbitrate bus indicator PLB-19

<Slave>_SSize[0:1] O Slave data bus size PLB-40

<Slave>_wait O Slave wait indicator PLB-18

<Slave>_wrBTerm O Slave terminate write burst transfer PLB-30

<Slave>_wrComp O Slave write transfer complete
indicator

PLB-29

<Slave>_wrDAck O Slave write data acknowledge PLB-29

<nPLB>_abort I PLB abort request indicator PLB-19

<nPLB>_ABus[0:31] I PLB address bus PLB-27

<nPLB>_BE[0:7] I PLB byte enables PLB-21

<nPLB>_busLock I PLB bus lock PLB-13

<nPLB>_compress I PLB compressed data transfer
indicator

PLB-25

<nPLB>_guarded I PLB guarded transfer indicator PLB-26

<nPLB>_lockErr I PLB lock error indicator PLB-27

<nPLB>_masterID[0:1] I PLB current master identifier PLB-20

Table 2-1: Summary of PLB Master-only I/O (Continued)

Signal I/O Description
Page

(in Ref. 1)

http://www.xilinx.com

January 2003 www.xilinx.com 19
Processor IP Reference Guide 1-800-255-7778

PLB Comparison
R

PLB Comparison
Table 2-3 illustrates the major embedded processor bus architectures used in Xilinx FPGAs
and lists some of their characteristics. Each bus has different capabilities in terms of data
transfer rates, multi-master capability, and data bursting. The use of a particular bus is
dictated by the processor used, the data bandwidth required in the application, and
availability of peripherals. The PLB is a high-performance local bus that can be effectively
used in many design situations.

PLB - Processor Local Bus (IBM). PLB Reference

OPB - On-chip Peripheral Bus (IBM). OPB Reference

OCM - On-chip Memory interface (IBM). OCM Reference

DCR - Device Control Register bus (IBM). DCR Reference

<nPLB>_MSize[0:1] I PLB master data bus size PLB-40

<nPLB>_ordered I PLB synchronize transfer indicator PLB-26

<nPLB>_PAValid I PLB primary address valid indicator PLB-13

<nPLB>_pendPri[0:1] I PLB pending request priority PLB-20

<nPLB>_pendReq I PLB pending bus request indicator PLB-20

<nPLB>_rdBurst I PLB burst read transfer indicator PLB-34

<nPLB>_rdPrim I PLB secondary to primary read
request indicator

PLB-36

<nPLB>_reqPri[0:1] I PLB current request priority PLB-20

<nPLB>_RNW I PLB read/not write PLB-21

<nPLB>_SAValid I PLB secondary address valid
indicator

PLB-16

<nPLB>_size[0:3] I PLB transfer size PLB-24

<nPLB>_type[0:2] I PLB transfer type PLB-25

<nPLB>_wrBurst I PLB burst write transfer indicator PLB-29

<nPLB>_wrDBus[0:63] I PLB write data bus PLB-28

<nPLB>_wrPrim I PLB secondary to primary write
request indicator

PLB-31

Table 2-2: Summary of PLB Slave-only I/O (Continued)

Signal I/O Description
Page

(in Ref. 1)

http://www.xilinx.com
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D2004A30D6/$file/405_um.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/EA0DB87B2BB3702587256AB30006DD12/$file/DcrBus.pdf

20 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 2: PLB Usage in Xilinx FPGAs
R

Table 2-3: Comparison of buses used in Xilinx embedded processor systems

Feature
CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Processor family PPC405 PPC405,
MicroBlaze

PPC405 PPC405 MicroBlaze

Data bus width 64 32 32 32 32

Address bus width 32 32 10 32 32

Clock rate, MHz (max)1 100 125 125 375 125

Masters (max) 16 16 1 1 1

Masters (typical) 2-8 2-8 1 1 1

Slaves (max) limited only by hardware resources 1 1

Slaves (typical) 2-6 2-8 1-8 1 1

Data rate (MB/s, peak)2 1600 500 500 500 500

Data rate (MB/s, typical)3 5334 1675 1008 3336 3337

Concurrent read/write Yes No No No No

Address pipelining Yes No No No No

Bus locking Yes Yes No No No

Retry Yes Yes No No No

Timeout Yes Yes No No No

Fixed burst Yes No No No No

Variable burst Yes No No No No

Cache fill Yes No No No No

Target word first Yes No No No No

FPGA resource usage High Medium Low Low Low

Compiler support for load/store Yes Yes No Yes Yes

Notes:
1. Maximum clock rates are estimates and are presented for comparison only. The actual maximum clock rate for each bus is

dependent on device family, device speed grade, design complexity, and other factors.
2. Peak data rate is the maximum theoretical data transfer rate at the clock rate shown for each bus.
3. The typical data rates are intended to illustrate data rates that are representative of actual system configurations. The

typical data is highly dependent on the application software and system hardware configuration.
4. Assumes primarily cache-line fills, minimal read/write concurrency (66.7% bus utilization).
5. Assumes minimal use of sequential address capabilities and 3 clock cycles per OPB transfer.
6. The OCM controller operates at the PPC405 core clock rate, but its data transfer rate is limited by the access time of the on-

chip memory. The typical data rate assumes 66.7% bus utilization.
7. Assumes 66.7% bus utilization.
8. Assumes DCR operates at same clock rate as PLB and each DCR access requires 5 clock cycles. The number of clock cycles

per DCR transfer is dependent on how many DCR devices are present in the system. Each additional DCR device adds
latency to all DCR transfers.

http://www.xilinx.com

January 2003 www.xilinx.com 21
Processor IP Reference Guide 1-800-255-7778

Revision History
R

Revision History
The following table shows the revision history for this document.

Date Version Revision

5/8/02 1.0 Initial Xilinx version.

http://www.xilinx.com

22 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 2: PLB Usage in Xilinx FPGAs
R

http://www.xilinx.com

January 2003 www.xilinx.com 23
Processor IP Reference Guide 1-800-255-7778

R

Chapter 3

Bus Infrastructure Cores

This section of the reference guide contains information on the following bus
infrastructure cores:

On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.00a)

On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10a)

On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10b)

OPB to PLB Bridge (v1.00a)

OPB to PLB Bridge (v1.00b)

OPB to OPB Bridge (Lite Version)

OPB to DCR Bridge Specification

Processor Local Bus (PLB) V3.4

PLB to OPB Bridge (v1.00a)

PLB to OPB Bridge (v1.00b)

Device Control Register Bus (DCR) V2.9

Processor System Reset Module

Local Memory Bus (LMB) V1.0

OPB Arbiter (v1.02c)

http://www.xilinx.com

24 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 3: Bus Infrastructure Cores
R

http://www.xilinx.com

January 2003 www.xilinx.com 25
Processor IP Reference Guide 1-800-255-7778

R

Chapter 4

IPIF

This section of the reference guide contains information on the following:

OPB IPIF Architecture

OPB IPIF Slave Attachment

OPB IPIF Master Attachment

OPB IPIF Address Decode

OPB IPIF Interrupt

OPB IPIF Packet FIFO

Direct Memory Access and Scatter Gather

http://www.xilinx.com

26 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter Chapter 4: IPIF
R

http://www.xilinx.com

January 2003 www.xilinx.com 27
Processor IP Reference Guide 1-800-255-7778

R

Chapter 5

Memory Interface Cores

This section of the reference guide contains information on the following memory interface
cores:

LMB Block RAM (BRAM) Interface Controller

Dual LMB Block RAM (BRAM) Interface Controller

OPB External Memory Controller (EMC) (v1.00d)

OPB External Memory Controller (EMC) (v1.10a)

OPB Synchronous DRAM (SDRAM) Controller

OPB Block RAM (BRAM) Interface Controller

OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller

OPB SYSACE (System Ace) Interface Controller

PLB External Memory Controller (EMC) (v1.00d)

PLB External Memory Controller (EMC) (v1.10a)

PLB Synchronous DRAM (SDRAM) Controller

PLB Block RAM (BRAM) Interface Controller

PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller

Instruction Side OCM Block RAM (ISBRAM) Interface Controller

Data Side OCM Block RAM (DSBRAM) Interface Controller

Block RAM (BRAM) Block

OPB External Memory Controller

OPB ZBT Controller

http://www.xilinx.com

28 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 5: Memory Interface Cores
R

http://www.xilinx.com

January 2003 www.xilinx.com 29
Processor IP Reference Guide 1-800-255-7778

R

Chapter 6

Peripheral Cores

This section of the reference guide contains information on the following peripheral cores:

OPB Interrupt Controller (v1.00b)

OPB Interrupt Controller (v1.00c)

OPB 16550 UART

OPB 16450 UART

OPB UART Lite (v1.00a)

OPB UART Lite (v1.00b)

OPB JTAG_UART

IIC Bus Interface

OPB Serial Peripheral Interface (SPI)

OPB IPIF/LogiCore V3 PCI Core Bridge

Ethernet Media Access Controller (EMAC) (v1.00j)

Ethernet Media Access Controller (EMAC) (v1.00k)

OPB Ethernet Lite Media Access Controller

OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v1.00b)

OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v2.00a)

OPB HDLC Interface (single channel v1.00b)

OPB Timebase WDT

OPB Timer/Counter

OPB General Purpose Input/Output (GPIO)

PLB 1 Gigabit Ethernet Media Access Controller (MAC) with DMA

PLB 16550 UART (v1.00b)

PLB 16550 UART (v1.00c)

PLB 16450 UART (v1.00b)

PLB 16450 UART (v1.00c)

PLB RapidIO LVDS

PLB Asychronous Transfer Mode Controller (PLB_ATMC) (v1.00a)

DCR Interrupt Controller Specification (v1.00a)

DCR Interrupt Controller Specification (v1.00b)

http://www.xilinx.com

30 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 6: Peripheral Cores
R

http://www.xilinx.com

Processor IP Reference Guide www.xilinx.com 31
January 2003 1-800-255-7778

R

Part II: Software

This section contains information on the following:

Chapter 7 , “Device Driver Programmer Guide”

Chapter 8, “ML300 Tornado 2.0 BSP User Guide”

Chapter 9, “Device Driver Summary”

Chapter 10, “Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support
Packages”

Chapter 11, “Insight MDFG456 Tornado 2.0 BSP User’s Guide”

http://www.xilinx.com

32 www.xilinx.com Processor IP Reference Guide
1-800-255-7778 January 2003

R

http://www.xilinx.com

January 2003 www.xilinx.com 33
Processor IP Reference Guide 1-800-255-7778

R

Chapter 7

Device Driver Programmer Guide

Overview
This document describes the Xilinx device driver environment, and includes information
on the following:

• Design and implementation details for using the drivers
• Device driver architecture
• Application Programmer Interface (API) conventions
• Scheme for configuring the drivers to work with reconfigurable hardware devices
• Infrastructure that is common to all device drivers.

Goals and Objectives
The Xilinx device drivers are designed to meet the following goals and objectives:

• Provide maximum portability

The device drivers are provided as ANSI C source code. ANSI C was chosen to
maximize portability across processors and development tools. Source code is
provided both to aid customers in debugging their applications as well as allow
customers to modify or optimize the device driver if necessary.

A layered device driver architecture additionally separates device communication
from processor and Real Time Operating System (RTOS) dependencies, thus
providing portability of core device driver functionality across processors and
operating systems.

• Support FPGA configurability

Since FPGA-based devices can be parameterized to provide varying functionality, the
device drivers must support this varying functionality. The configurability of device
drivers should be supported at compile-time and at run-time. Run-time
configurability provides the flexibility needed for future dynamic system
reconfiguration.

In addition, a device driver supports multiple instances of the device without code
duplication for each instance, while at the same time managing unique characteristics
on a per instance basis.

• Support simple and complex use cases

Device drivers are needed for simple tasks such as board bring-up and testing, as well
as complex embedded system applications. A layered device driver architecture
provides both simple device drivers with minimal memory footprints and more
robust, full-featured device drivers with larger memory footprints.

• Ease of use and maintenance

http://www.xilinx.com

34 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

Xilinx makes use of coding standards and provides well-documented source code in
order to give developers (i.e., customers and internal development) a consistent view
of source code that is easy to understand and maintain. In addition, the API for all
device drivers is consistent to provide customers a similar look and feel between
drivers.

Device Driver Architecture
The architecture of the device drivers is designed as a layered architecture as shown in the
following figure. The layered architecture accommodates the many use cases of device
drivers while at the same time providing portability across operating systems, toolsets,
and processors. The layered architecture provides seamless integration with an RTOS
(Layer 2), high-level device drivers that are full-featured and portable across operating
systems and processors (Layer 1), and low-level drivers for simple use cases (Layer 0). The
following paragraphs describe each of the layers. The user can choose to use any and all
layers.

Figure 7-1: Layered Architecture

Layer 2, RTOS Adaptation
This layer consists of adapters for device drivers. An adapter converts a Layer 1 device
driver interface to an interface that matches the requirements of the device driver scheme
for an RTOS. Unique adapters may be necessary for each RTOS. Adapters typically have
the following characteristics.

• Communicates directly to the RTOS and the Layer 1, high-level driver.
• References functions and identifiers specific to the RTOS. This layer is therefore not

portable across operating systems.
• Can use memory management
• Can use RTOS services such as threading, inter-task communication, etc.
• Can be simple or complex depending on the RTOS interface and requirements for the

device driver

Layer 1, High Level Drivers
This layer consists of high level device drivers . They are implemented as macros and
functions and are designed to allow a developer to utilize all features of a device. These
high-level drivers are independent of operating system and processor, making them
highly portable. They typically have the following characteristics.

• Consistent and high-level (abstract) API that gives the user an "out-of-the-box"
solution

• No RTOS or processor dependencies, making them highly portable

Layer 2, RTOS Adaptation

Layer 1, High Level Drivers

 Layer 0, Low Level Drivers

http://www.xilinx.com

January 2003 www.xilinx.com 35
Processor IP Reference Guide 1-800-255-7778

Device Driver Architecture
R

• Run-time error checking such as assertion of input arguments. Also provides the
ability to compile away asserts.

• Comprehensive support of device features
• Abstract API that isolates the API from hardware device changes
• Supports device configuration parameters to handle FPGA-based parameterization of

hardware devices.
• Supports multiple instances of a device while managing unique characteristics on a

per instance basis.
• Polled and interrupt driven I/O
• Non-blocking function calls to aid complex applications
• May have a large memory footprint
• Typically provides buffer interfaces for data transfers as opposed to byte interfaces.

This makes the API easier to use for complex applications.

• Does not communicate directly to Layer 2 adapters or application software. Utilizes
asynchronous callbacks for upward communication.

Layer 0, Low Level Drivers
This layer consists of low level device drivers. They are implemented as macros and
functions and are designed to allow a developer to create a small system, typically for
internal memory of an FPGA. They typically have the following characteristics.

• Simple, low-level API
• Small memory footprint
• Little to no error checking is performed
• Supports primary device features only
• Minimal abstraction such that the API typically matches the device registers. The API

is therefore less isolated from hardware device changes.
• No support of device configuration parameters
• Supports multiple instances of a device with base address input to the API
• None or minimal state is maintained
• Polled I/O only
• Blocking functions for simple use cases
• Typically provides byte interfaces but can provide buffer interfaces for packet-based

devices.

Object-Oriented Device Drivers
In addition to the layered architecture, it is important that the user understand the
underlying design of the device drivers. The device drivers are designed using an object-
oriented methodology. The methodology is based upon components and is described in
the following paragraphs. This approach pertains particularly to the Layer 1, high-level
device drivers.

Component Definition
A component is a logical partition of the software which provides a functionality similar to
one or more classes in C++. Each component provides a set of functions that operate on the
internal data of the component. In general, components are not allowed access to the data
of other components. A device driver is typically designed as a single component. A
component may consist of one or more files.

http://www.xilinx.com

36 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

Component Implementation
The component contains data variables which define the set of values that instances of that
type can hold and a set of functions that operate on those data variables. Components must
utilize the functions of other components in order to access the data of other components,
rather than accessing component data directly. Components provide data abstraction and
encapsulation by gathering the state of an object and the functions that operate on that
object into a single unit and by denying direct access to its data members.

Component Data Variables
The primary mechanism for implementing a component in C is the structure. The data
variables for a component are grouped in a single structure such that instances of the
component each have their own data. The structure and the prototypes for all component
functions are declared in the header file which is shared between the implementing
component and other components which utilize it. A pointer to this structure, referred to
as the instance pointer, is passed into each function of the component which operates on
the instance data.

Component Interface
Each component has a set of functions which are collectively referred to as the component
interface. Every function of a component which operates on the instance data utilizes a
pointer, named InstancePtr, to an instance of a component as the first argument. This
argument emulates the this pointer in C++ and allows the component function to
manipulate the instance data.

Component Instance
An instance of a component is created when a variable is created using the component data
type. An instance of a component maps to each physical hardware device. Each instance
may have unique characteristics such as it’s memory mapped address and specific device
capabilities.

Component Example
The following code example illustrates a device driver component.

/* the device component data type */

typedef struct
{
 Xuint32 BaseAddress; /* component data variables */
 Xuint32 IsReady;
 Xuint32 IsStarted;
} XDevice;

/* create an instance of a device */

XDevice DeviceInstance;

/* device component interfaces */

XStatus XDevice_Initialize(XDevice *InstancePtr, Xuint16 DeviceId);
XStatus XDevice_Start(XDevice *InstancePtr);

http://www.xilinx.com

January 2003 www.xilinx.com 37
Processor IP Reference Guide 1-800-255-7778

API and Naming Conventions
R

API and Naming Conventions

External Identifiers
External identifiers are defined as those items that are accessible to all other components in
the system (global) and include functions, constants, typedefs, and variables.

An ’X’ is prepended to each Xilinx external so it does not pollute the global name space,
thus reducing the risk of a name conflict with application code. The names of externals are
based upon the component in which they exist. The component name is prepended to each
external name. An underscore character always separates the component name from the
variable or function name.

External Name Pattern:

X<component name>_VariableName;
X<component name>_FunctionName(ArgumentType Argument)
X<component name>_TypeName;

Constants are typically defined as all uppercase and prefixed with an abbreviation of the
component name. For example, a component named XUartLite (for the UART Lite device
driver) would have constants that begin with XUL_, and a component named XEmac (for
the Ethernet 10/100 device driver) would have constants that begin with XEM_. The
abbreviation utilizes the first three uppercase letters of the component name, or the first
three letters if there are only two uppercase letters in the component name.

File Naming Conventions
The file naming convention utilizes long file names and is not limited to 8 characters as
imposed by the older versions of the DOS operating system.

Component Based Source File Names
Source file names are based upon the name of the component implemented within the
source files such that the contents of the source file are obvious from the file name. All file
names must begin with the lowercase letter "x" to differentiate Xilinx source files. File
extensions .h and .c are utilized to distinguish between header source files and
implementation source files.

Implementation Source Files (*.c)
The C source files contain the implementation of a component. A component is typically
contained in multiple source files to allow parts of the component to be user selectable.

Source File Naming Pattern:

x<component name>.c main source file
x<component name>_functionality.c secondary source file

Header Source Files (*.h)
The header files contain the interfaces for a component. There will always be external
interfaces which is what an application that utilizes the component invokes.

• The external interfaces for the high level drivers (Layer 1) are contained in a header
file with the file name format x<component name>.h.

• The external interfaces for the low level drivers (Layer 0) are contained in a header file
with the file name format x<component name>_l.h.

In the case of multiple C source files which implement the class, there may also be a header
file which contains internal interfaces for the class. The internal interfaces allow the
functions within each source file to access functions in the another source file.

• The internal interfaces are contained in a header file with the file name format

http://www.xilinx.com

38 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

x<component name>_i.h.

Device Driver Layers
Layer 1 and Layer 0 device drivers (i.e., high-level and low-level drivers) are typically
bundled together in a directory. The Layer 0 device driver files are named x<component
name>_l.h and x<component name>_l.c. The "_l" indicates low-level driver. Layer 2 RTOS
adapter files include the word "adapter" in the file name, such as x<component
name>_adapter.h and x<component name>_adapter.c. These are typically stored in a different
directory name (e.g., one specific to the RTOS) than the device driver files.

Example File Names
The following source file names illustrates an example which is complex enough to utilize
multiple C source files.

xuartns550.c Main implementation file
xuartns550_intr.c Secondary implementation file for interrupt
handling
xuartns550.h High level external interfaces header file
xuartns550_i.h Internal identifiers header file
xuartns550_l.h Low level external interfaces header file
xuartns550_l.c Low level implementation file
xuartns550_g.c Generated file controlling parameterized
instances

and,

xuartns550_sio_adapter.c VxWorks Serial I/O (SIO) adapter

High Level Device Driver API
High level device drivers are designed to have an API which includes a standard API
together with functions that may be unique to that device. The standard API provides a
consistent interface for Xilinx drivers such that the effort to use multiple device drivers is
minimized. An example API follows.

Standard Device Driver API

Initialize

This function initializes an instance of a device driver. Initialization must be performed
before the instance is used. Initialization includes mapping a device to a memory-mapped
address and initialization of data structures. It maps the instance of the device driver to a
physical hardware device. The user is responsible for allocating an instance variable using
the driver’s data type, and passing a pointer to this variable to this and all other API
functions.

Reset

This function resets the device driver and device with which it is associated. This function
is provided to allow recovery from exception conditions. This function resets the device
and device driver to a state equivalent to after the Initialize() function has been called.

SelfTest

This function performs a self-test on the device driver and device with which it is
associated. The self-test verifies that the device and device driver are functional.

Optional Functions
Each of the following functions may be provided by device drivers.

http://www.xilinx.com

January 2003 www.xilinx.com 39
Processor IP Reference Guide 1-800-255-7778

Configuration Parameters
R

Start

This function is provided to start the device driver. Starting a device driver typically
enables the device and enables interrupts. This function, when provided, must be called
prior to other data or event processing functions.

Stop

This function is provided to stop the device driver. Stopping a device driver typically
disables the device and disables interrupts.

GetStats

This function gets the statistics for the device and/or device driver.

ClearStats

This function clears the statistics for the device and/or device driver.

InterruptHandler

This function is provided for interrupt processing when the device must handle interrupts.
It does not save or restore context. The user is expected to connect this interrupt handler to
their system interrupt controller. Most drivers will also provide hooks, or callbacks, for the
user to be notified of asynchronous events during interrupt processing (e.g., received data
or device errors).

Configuration Parameters
Standard device driver API functions (of Layer 1, high-level drivers) such as Initialize()
and Start() require basic information about the device such as where it exists in the system
memory map or how many instances of the device there are. In addition, the hardware
features of the device may change because of the ability to reconfigure the hardware
within the FPGA. Other parts of the system such as the operating system or application
may need to know which interrupt vector the device is attached to. For each device driver,
this type of information is distributed across two files: xparameters.h and x<component
name>_g.c.

Typically, these files are automatically generated by a system generation tool based on
what the user has included in their system. However, these files can be hand coded to
support internal development and integration activities. Note that the low-level drivers of
Layer 0 do not require or make use of the configuration information defined in these two
files. Other than the memory-mapped location of the device, the low-level drivers are
typically fixed in the hardware features they support.

xparameters.h
This source file centralizes basic configuration constants for all drivers within the system.
Browsing this file gives the user an overall view of the system architecture. The device
drivers and Board Support Package (BSP) utilize the information contained here to
configure the system at runtime. The amount of configuration information varies by
device, but at a minimum the following items should be defined for each device:

- Number of device instances

- Device ID for each instance

A Device ID uniquely identifies each hardware device which maps to a device driver.
A Device ID is used during initialization to perform the mapping of a device driver to
a hardware device. Device IDs are typically assigned either by the user or by a system
generation tool. It is currently defined as a 16-bit unsigned integer.

- Device base address for each instance

- Device interrupt assignment for each instance if interrupts can be generated.

http://www.xilinx.com

40 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

File Format and Naming Conventions
Every device must have the following constant defined indicating how many instances of
that device are present in the system (note that <component name> does not include the
preceding "X"):

XPAR_X<component name>_NUM_INSTANCES

Each device instance will then have multiple, unique constants defined. The names of the
constants typically match the hardware configuration parameters, but can also include
other constants. For example, each device instance has a unique device identifier
(DEVICE_ID), the base address of the device’s registers (BASEADDR), and the end
address of the device’s registers (HIGHADDR).

XPAR_<component name>_<component instance>_DEVICE_ID
XPAR_<component name>_<component instance>_BASEADDR
XPAR_<component name>_<component instance>_HIGHADDR

<component instance> is typically a number between 0 and (XPAR_X<component
name>_NUM_INSTANCES - 1). Note that the system generation tools may create these
constants with a different convention than described here. Other device specific constants
are defined as needed:

XPAR_<component name>_<component instance>_<item description>

When the device specific constant applies to all instances of the device:

XPAR_<component name>_<item description>

For devices that can generate interrupts, a separate section within xparameters.h is used to
store interrupt vector information. While the device driver implementation files do not
utilize this information, their RTOS adapters, BSP files, or user application code will
require them to be defined in order to connect, enable, and disable interrupts from that
device. The naming convention of these constants varies whether an interrupt controller is
part of the system or the device hooks directly into the processor.

For the case where an interrupt controller is considered external and part of the system, the
naming convention is as follows:

XPAR_INTC_<instance>_<component name>_<component instance>_VEC_ID

Where INTC is the name of the interrupt controller component, <instance> is the
component instance of the INTC, <component name> and <component instance> is the
name and instance number of the component connected to the controller. Of course
XPAR_INTC must have the other required constants DEVICE_ID, BASEADDR, etc. This
convention supports single and cascaded interrupt controller architectures.

For the case where an interrupt controller is considered internal to a processor, the naming
convention changes:

XPAR_<proc name>_<component name>_<component instance>_VEC_ID

Where <proc name> is the name of the processor.

x<component name>_g.c
The header file x<component name>.h defines the type of a configuration structure. The type
will contain all of the configuration information necessary for an instance of the device.
The format of the data type is as follows:

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

 /* Other device dependent data attributes */

} X<component name>_Config;

http://www.xilinx.com

January 2003 www.xilinx.com 41
Processor IP Reference Guide 1-800-255-7778

Common Driver Infrastructure
R

The implementation file x<component name>_g.c defines an array of structures of
X<component name>_Config type. Each element of the array represents an instance of the
device, and contains most of the per-instance XPAR constants from xparameters.h.

Example
To help illustrate the relationships between these configuration files, an example is
presented that contains a single interrupt controller whose component name is INTC and
a single UART whose component name is (UART). Only xintc.h and xintc_g.c are
illustrated, but xuart.h and xuart_g.c would be very similar.

xparameters.h

/* Constants for INTC */
XPAR_INTC_NUM_INSTANCES 1
XPAR_INTC_0_DEVICE_ID 21
XPAR_INTC_0_BASEADDR 0xA0000100

/* Interrupt vector assignments for this instance */
XPAR_INTC_0_UART_0_VEC_ID 0

/* Constants for UART */
XPAR_UART_NUM_INSTANCES 1
XPAR_UART_0_DEVICE_ID 2
XPAR_UART_0_BASEADDR 0xB0001000

xintc.h

typedef struct
{
 Xuint16 DeviceID;
 Xuint32 BaseAddress;

} XIntc_Config;

xintc_g.c

static XintcConfig[XPAR_INTC_NUM_INSTANCES] =
{
{

XPAR_INTC_0_DEVICE_ID,
XPAR_INTC_0_BASEADDR,

}
}

Common Driver Infrastructure

Source Code Documentation
The comments in the device driver source code contain doxygen tags for javadoc-style
documentation. Doxygen is a javadoc-like tool that works on C language source code. These
tags typically start with "@" and provide a means to automatically generate HTML-based
documentation for the device drivers. The HTML documentation contains a detailed
description of the API for each device driver.

Driver Versions
Some device drivers may have multiple versions. Device drivers are usually versioned
when the API changes, either due to a significant hardware change or simply restructuring
of the device driver code. The version of a device driver is only indicated within the

http://www.xilinx.com

42 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

comment block of a device driver file. A modification history exists at the top of each file
and contains the version of the driver. An example of a device driver version is "1.00b",
where 1 is the major revision, 00 is the minor revision, and b is a subminor revision. The
hardware device and its device driver must match major and minor revisions in order to
be compatible.

Currently, the user is not allowed to link two versions of the same device driver into their
application. The versions of a device driver use the same function and file names, thereby
preventing them from being linked into the same link image. As multiple versions of
drivers are supported, the version name will be included in the driver file names, as in
x<component>_v1_00_a.c.

Primitive Data Types
The primitive data types provided by C are minimized by the device drivers because they
are not guaranteed to be the same size across processor architectures. Data types which are
size specific are utilized to provide portability and are contained in the header file
xbasic_types.h.

Device I/O
The method by which I/O devices are accessed varies between processor architectures. In
order for the device drivers to be portable, this difference is isolated such that the driver for
a device will work for many microprocessor architectures with minimal changes. A device
I/O component, XIo, in xio.c and xio.h source files, contains functions and/or macros
which provide access to the device I/O and are utilized for portability.

Error Handling
Errors that occur within device drivers are propagated to the application. Errors can be
divided into two classes, synchronous and asynchronous. Synchronous errors are those
that are returned from function calls (either as return status or as a parameter), so
propagation of the error occurs when the function returns. Asynchronous errors are those
that occur during an asynchronous event, such as an interrupt and are handled through
callback functions.

Return Status
In order to indicate an error condition, functions which include error processing return a
status which indicates success or an error condition. Any other return values for such
functions are returned as parameters. Error codes are standardized in a 32-bit word and
the definitions are contained in the file xstatus.h.

Asserts
Asserts are utilized in the device drivers to allow better debugging capabilities. Asserts are
used to test each input argument into a function. Asserts are also used to ensure that the
component instance has been initialized.

Asserts may be turned off by defining the symbol NDEBUG before the inclusion of the
header file xbasic_types.h.

The assert macro is defined in xbasic_types.h and calls the function XAssert when an assert
condition fails. This function is designed to allow a debugger to set breakpoints to check
for assert conditions when the assert macro is not connected to any form of I/O.

The XAssert function calls a user defined function and then enters an endless loop. A user
may change the default behavior of asserts such that an assert condition which fails does
return to the user by changing the initial value of the variable XWaitInAssert to XFALSE in
xbasic_types.c. A user defined function may be defined by initializing the variable
XAssertCallbackRoutine to the function in xbasic_types.c.

http://www.xilinx.com

January 2003 www.xilinx.com 43
Processor IP Reference Guide 1-800-255-7778

Revision History
R

Communication with the Application
Communication from an application to a device driver is implemented utilizing standard
function calls. Asynchronous communication from a device driver to an application is
accomplished with callbacks using C function pointers. It should be noted that callback
functions are called from an interrupt context in many drivers. The application function
called by the asynchronous callback must minimize processing to communicate to the
application thread of control.

Reentrancy and Thread Safety
The device drivers are designed to be reentrant, but may not be thread-safe due to shared
resources.

Interrupt Management
The device drivers use device-specific interrupt management rather than processor-
specific interrupt management.

Multi-threading & Dynamic Memory Management
The device drivers are designed without the use of mult-threading and dynamic memory
management. This is expected to be accomplished by the application or by an RTOS
adapter.

Cache & MMU Management
The device drivers are designed without the use of cache and MMU management. This is
expected to be accomplished by the application or by an RTOS adapter.

Revision History
The following table shows the revision history for this document.

Date Version Revision

06/28/02 1.0 Xilinx initial release.

7/02/02 1.1 Made IP Spec # conditional text and removed ML reference.

http://www.xilinx.com

44 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 7: Device Driver Programmer Guide
R

http://www.xilinx.com

January 2003 www.xilinx.com 45
Processor IP Reference Guide 1-800-255-7778

R

Chapter 8

ML300 Tornado 2.0 BSP User Guide

Overview
The purpose of this document is to provide an introduction to the Tornado 2.0 BSP as
implemented on the ML300 reference board equipped with the Virtex II FPGA.

There are two BSPs associated with the ML300 reference board. The ML300seg BSP was
created during EDK development before it was capable of generating IP bitstreams that
supported all the hardware on the reference board. This BSP will eventually be phased out
as the EDK matures in favor of the ML300 BSP. This document refers to both BSPs
collectively as the ML300 BSP. Specific differences between the two BSPs will be noted.

The addition of the Chip Support Package (CSP) into a Tornado 2.0 BSP is a unique
challenge because of the nature of how easily hardware is added and removed from the
FPGA using System Build Generator and how difficult it is to accommodate this feature
into a Tornado 2.0 BSP. The CSP is a part of the BSP in that it provides the software drivers
for hardware IP utilized by the BSP and application code. The CSP is designed to be
primarily operating system independent so in many respects it is segregated and
independently configured from the BSP.

The reader is expected to understand how Tornado 2 BSPs operate in general.

Requirements

Tornado 2.0.2
The user should have Wind River Tornado 2.0.2 installed on their PC with the PPC405
libraries.

Patches required that can be found at Wind River’s Windsurf technical support web site:

• SPR67953. Cumulative patch
• DosFs 2.0. Dos file system support. This package is required if you wish to use the

SystemACE compact flash device as an external storage device.

SingleStep (XE)
The XE stands for Xilinx Edition. This version of the SingleStep debugger is VirtexII Pro
aware. This debugger works in concert with the VisionProbe debugger pod which
connects to the "CPU Debug" port of the ML300.

http://www.xilinx.com

46 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Installation
Copy the entire ML300 source tree to $WIND_BASE\config\ML300 and perform the
following operations from the DOS command-line:

C:\> make clean
C:\> make release

When this process finishes, a new project is placed at $WIND_BASE\proj\ML300_vx. As
an alternative to this procedure, the Tornado project facility can be used to create a
bootable application using the ML300 as the basis BSP. When creating a project in this way,
the BSP can be located anywhere. See Project Facility documentation from Wind River.

Compact Flash
A compress zipfile is provided in the ace subdirectory. This is a complete image containing
bootrom and sample VxWorks images in ace file format. See the README in the ace
directory for more information.

To install this image, do the following:

1. Make a backup of your microdrive then erase all files from it.

2. Uncompress the ace/compactFlash.zip file to the microdrive.

3. Insert the microdrive into the compact flash slot on the ML300.

4. Connect a serial port cable to the P106 connector on the evaluation board. Default
comm settings are 115200, N, 8, 1.

5. Set the rotary switch on the ML300 to setting 6 and apply power. At this point, the
VxWorks bootrom should be running and writing to the console serial port.

6. Set the bootrom boot line per your requirements. See Bootrom Programming, page 63
for more information.

Setting Ethernet MAC Address
To verify your MAC address is correct perform the following steps:

1. Set the rotary switch associated with the VxWorks bootrom and reboot the ML300.

2. Interrupt the countdown sequence to get the [VxWorks Boot]: prompt.

3. Enter the "N" command (case sensitive). The current MAC will be displayed and you
will be prompted to enter a new MAC. The first three bytes of the MAC should be
000A35.

Press any key to stop auto-boot...

 1

[VxWorks Boot]: N

Current Ethernet Address is: 00:0a:35:00:03:20

Modify only the last 3 bytes (board unique portion) of Ethernet Address.

The first 3 bytes are fixed at manufacturer’s default address block.

00- 00

0a- 0a

35- 35

00-

4. If the MAC is valid, then enter return three times to accept the default. On new boards,
the address may be all FFs. If this is the case, enter the last three bytes that are assigned
to the serial number. If you are not sure of the numbers, then enter return three times.
This will change the MAC to 00:0a:35:FF:FF:FF. This will provide you with a

http://www.xilinx.com

January 2003 www.xilinx.com 47
Processor IP Reference Guide 1-800-255-7778

ML300 vs. ML300seg
R

valid MAC until the correct number is obtained. Boards with a MAC of all FFs will not
be capable of running the network stack. Multiple boards connected to the same
network with the same MAC will not work either.

ML300 vs. ML300seg
As discussed in the overview of this document, there are two distinct BSPs associated with
the ML300 evaluation board. This section will explain differences between them.

The ML300seg BSP is intended to be used with the handcoded IP bitstream developed
before the EDK was released. This bitstream supports all the board HW. The ML300 BSP
uses a bitstream created with the EDK. At the current time, this bitstream does not support
all of the board HW. There are enough differences between the two bitstreams to warrant
two different BSPs. The table below illustrates the differences between the bitstreams.

Even though the ML300seg bitstream includes all HW, its associated BSP does not
necessarily support all of it. See the release notes at the end of this document for supported
devices.

Files & Directories
While the root directory of the BSP can be placed anywhere, it is typically located at
$WIND_BASE/target/config/ML300. The Tornado Project component of the BSP is
located at $WIND_BASE/target/proj/ML300_vx.

The project component of the BSP is required if it will be configured/compiled with the
Tornado Project Facility IDE. Normally, the Project Facility is utilized during application
development and trivial BSP tweaks. The non-project component (also referred to as the
command-line Tornado 1.0.1 BSP) is utilized during BSP development. Note that the
methods of configuring and building the BSP differ greatly between the Project and
command-line methods. See Tornado documentation for more information.

Table 8-1: ML300 vs. ML300seg bitstreams

Component Difference

Supported HW ML300 doesn’t support all board HW while ML300seg does.

Memory map OPB peripheral memory map differs substantially.

DCR ML300 uses true DCR bus while ML300seg uses DCR to OPB
bridge to make DCR registers memory mapped.

GPIO Tristate register use opposite settings on the J10 header.

Interrupt
controller

1) MER register bitmap differences. 2) ML300 uses DCR interrupt
controller while ML300seg uses memory mapped controller.

PLB to OPB Bridge Totally different bridges

EEPROM ML300 uses a GPIO line to prevent writes.

PLB/OPB Bus
Error LEDs

ML300seg’s PLB/OPB bridges control these leds and require no
software control. ML300’s PLB/OPB bridges can turn the LEDs
red but require SW to turn the LEDs back to green.

http://www.xilinx.com

48 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

The CSP adds a directory structure not usually seen with VxWorks BSPs. It has been added
to segregate BSP files from the CSP.

The following directories make up the ML300 BSP:

config/ML300

The traditional directory for Tornado 2.0 BSPs. Contains BSP library source code and the
command-line makefile.

config/ML300/net

Contains Tornado Project "configlette" network source code that overrides configlettes
located at $WIND_BASE/target/config/comps/src/net.

config/ML300/ace

Contains the bitstream and compact flash image which in itself contains the bootrom and
other sample VxWorks ace and elf images.

config/ML300/ip_csp

The base directory for the CSP.

config/ML300/ip_csp/xsrc

Contains source code for the CSP.

proj/ML300_vx

The base directory for a Tornado project. All files here are maintained by the Project
Facility.

proj/ML300_vx/<build spec>

A build specification maintained by the Project Facility. There is typically a "default" build
spec here unless removed by the developer. Other build specifications can be added by the
developer.

CSP Driver Organization
This section briefly discusses how the CSP is compiled and linked and eventually used by
Tornado makefiles to include into the VxWorks image.

CSP drivers are implemented in "C" and can be distributed among several source files
unlike traditional VxWorks drivers which consist of single "C" header and implementation
files. For this reason, we place all CSP files in their own xsrc subdirectory.

There are up to three components for CSP drivers:

• Driver source inclusion.
• OS independent implementation
• OS dependent implementation (optional).

"Driver source inclusion" refers to how CSP drivers are compiled. For every CSP driver,
there is a file named ip_<dev>_<version>.c. This file #include’s each CSP driver
source file(s) (*.c) for the given device.

This process is analogous to how VxWorks’ sysLib.c #include’s source for Wind River
supplied drivers. The reason why CSP files are not simply #include’d in sysLib.c like the
rest of the drivers is due to namespace conflicts and maintainability issues. If all CSP files
were part of a single compilation unit, static functions and data are no longer private. This
places restrictions on the CSP device drivers and would take away from its operating
system independence.

The OS independent part of the driver is designed for use with any operating system or
any processor. It provides an API that utilizes the functionality of the underlying
hardware. The OS dependent part of the driver adapts the driver for use with VxWorks.

http://www.xilinx.com

January 2003 www.xilinx.com 49
Processor IP Reference Guide 1-800-255-7778

Configuration
R

Such examples are SIO drivers for serial ports, or END drivers for ethernet adapters. Not
all drivers require the OS dependent drivers, nor is it required to include the OS dependent
portion of the driver in the CSP build.

Configuration
The ML300 BSP is configured just like any other Tornado 2 BSP. There is not much
configurability to CSP drivers since the IP hardware has been pre-configured in most cases
by System Build Generator. The only configuration available generally is whether the
driver is included in the CSP at all. How to go about including/excluding drivers depends
on whether the Project facility or the command-line method is being used to perform the
configuration activities.

Note that simply by including a CSP device driver does not mean that driver will be
automatically utilized. Most CSP drivers with VxWorks adapters have initialization code.
In some cases the user may be required to add the proper driver initialization function calls
to the BSP.

Command-Line
A set of constants (one for each driver) are defined in config/ML300/ip_config.h and
follow the format:

#define INCLUDE_<XDRIVER>

This file is included near the top of config/ML300/config.h. By default all drivers are
included in the build. To exclude a driver, add the following line in config.h after the
#include "ip_config.h" statement.

#undef INCLUDE_<XDRIVER>

This will prevent the driver from being compiled and linked into the build. To re-instate
the driver, remove the #undef line from config.h. Some care is required for certain
drivers. For example, Ethernet may require that a DMA driver be present. Undefining the
DMA driver will cause the build to fail.

Project Facility
The Project Facility is part of the Tornado IDE. It is a GUI driven environment. To
add/delete CSP drivers, go to the VxWorks pane in the workspace window (see figure
below). Then add/delete driver components under IP_CSP just as you would with any
other VxWorks component.

http://www.xilinx.com

50 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Figure 1: Project Facility GUI Configuration

Note that whatever configuration has been specified in ip_config.h and config.h will
be overridden by the project facility.

Memory Map
Due to the nature of this evaluation board a full memory map is not given in this
document. The user is instead referenced to "C" source code header file xparameters.h.
This source file provides a memory map for all CSP devices. A partial map is given here
that relates directly to BSP operation.

http://www.xilinx.com

January 2003 www.xilinx.com 51
Processor IP Reference Guide 1-800-255-7778

Memory Map
R

* LCD Frame buffer may be added to the ML300 BSP in a later release.

RAM Memory Map (includes DDR and BRAM)
RAM device contains the VxWorks runtime image and heap space. ML300 follows
VxWorks conventions for RAM usage for PowerPC processors. Refer to Appendix F of the
VxWorks 5.4 Programmer’s Guide.

Table 8-2: System Memory Map

Device Start (hex) End (hex) Size (bytes)

PLB DDR 00000000 07DFFFFF 126 MB

PLB DDR (ML300) 07E00000 07FFFFFF 2 MB

PLB LCD Frame
Buffer
(ML300seg)*

07E00000 07FFFFFF 2 MB

OPB Space
(ML300Seg)

60000000 DFFFFFFF 2 GB

OPB Space
(ML300)

60000000 60010000 64 KB

BRAM FFFF8000 FFFFFFFF 32 KB

Table 8-3: RAM Memory Map

Physical Address
Range (hex) Usage

00000000..000000FF (DDR) Unused & undefined

00000100..00002FFF (DDR) Interrupt Vector table

00003000..00010000 (DDR) VxWorks usage. Exception reason message and other
VxWorks constructs are at the bottom of this region. Initial stack
is set at the top of this range and grows downward. Once
VxWorks has switched to multi-tasking mode, this stack is no
longer used.

00010000..00BFFFFF (DDR) RAM_LOW_ADRS. VxWorks image, interrupt stack,
host memory pool, and heap space.

00C00000..07BFFFFF (DDR) RAM_HIGH_ADRS. Two possible uses. (1) VxWorks
bootrom image and heap space. (2) VxWorks heap space.

07C00000..07CFFFFF (DDR) USER_RESERVED_MEM. This 1MB is used for network
data buffers and network DMA descriptor spaces.

07D00000..07DFFFFF (DDR) USER_RESERVED_MEM. This 1 MB is not used by BSP.
Available for application use

FFFF8000..FFFFFFFF (BRAM) Address FFFFFFFC contains reset vector.

http://www.xilinx.com

52 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

NVRAM
NVRAM support is provided by a Microchip Technology 24LC32A EEPROM on the IIC
bus. This device provides 4KB of storage space. BSP source code file 24LC32aNvRam.c is
the driver for this device and provides the API interface required by VxWorks. The
primary BSP related objects stored in NVRAM are the bootline and the Ethernet MAC
address.

When there is no IIC bus support, the BSP will replace the EEPROM driver with
$WIND_BASE/src/drv/mem/nullNvRam.c which provides only function stubs so that
VxWorks will link. When this is the case, the default bootline is used (see config.h) and
the Ethernet MAC address defaults to: 00:0a:35:00:00:00.

Table 8-4: NVRAM Memory Map

* sysNvRamGet and sysNvRamSet are the VxWorks required NVRAM interface
functions. The interface they provide uses offsets relative to the bootline offset. Accessing
part offsets 0000..07FF requires an alternate interface.

Caches
The instruction and data caches are supported by the BSP and managed by VxWorks
proprietary libraries. They are enabled by modifying the following constants in config.h
or by using the Tornado Project facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT - If #define’d, the VxWorks cache libraries are linked
into the image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE - If #define’d, VxWorks will enable the instruction cache
at boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

• USER_D_CACHE_ENABLE - If #define’d, VxWorks will enable the data cache at
boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

The caches are configured by the following constants in ML300.h. These constants map to
the PPC cache control registers of the same name. See PPC405 documentation for further
information on these registers:

• ML300_ICCR_VAL - Initial contents of the ICCR register (instruction cacheability
attribute).

• ML300_DCCR_VAL - Initial contents of the DCCR register (data cacheability attribute).
• ML300_DCWR_VAL - Initial contents of the DCWR register (write back/through

attribute).
• ML300_SGR_VAL - Initial contents of the SGR register (guarded attribute).

Part Offset
Range (hex)

sysNvRamGet/Set
Offset Usage

0000..07FF N/A* Reserved for board level objects such as the
Ethernet MAC address

0800..08FF 0000..00FF Reserved for VxWorks bootline

0900..0FEF 0100..07EF Unused

0FF0..0FFF 07F0..07FF Reserved

http://www.xilinx.com

January 2003 www.xilinx.com 53
Processor IP Reference Guide 1-800-255-7778

MMU
R

Table 8-5: Cache Map

1 This region includes the LCD frame buffer. A data cache flush may be required to write
all data to the buffer.

Without the MMU enabled, the following rules apply to configuring memory access
attributes and caching:

• There is no address translation, all addresses are physical.
• Cache control granularity is 128MB.
• The guarded attribute applies only to speculative instruction fetches on the PPC405.

MMU
If the MMU is enabled, then the cache control discussed in the previous section may not
have any effect. The MMU is managed by VxWorks proprietary libraries but the initial
setup is defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC
should be #define’d in config.h or by using the Project Facility. The constant
USER_D_MMU_ENABLE and USER_I_MMU_ENABLE control whether the instruction
and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. Amongst other things, this table configures memory areas with the
following attributes:

• Whether instruction execution is allowed.
• Whether data writes are allowed
• Instruction & data cacheability attributes.
• Translation offsets used to form virtual addresses.

The PPC405 is capable of other attributes including zone protection, however, Wind River
documentation is poor in this area and it is unclear whether the basic MMU package
supports them. An add-on is available from Wind River (which is enabled by
INCLUDE_MMU_FULL) for advanced MMU operations.

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and
creates page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even
though the processor is capable of representing up to 16MB per PTE) Beware that
specifying large areas of memory uses substantial amounts of RAM to store the PTEs. To
map 4MB of contiguous memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PPC405 processor,
it may be beneficial to not enable the instruction MMU and rely on the cache control
settings in the ICCR register (see ML300_ICCR_VAL in previous section). This strategy can
dramatically reduce the number of page faults while still keeping instructions in cache.

Physical Address
Range (hex)

I
Cache

D
Cache

Write
Back/Through Guarded

00000000..07FFFFFF Y Y1 Back N

F8000000..FFFFFFFF Y N N/A N

everything else N N N/A N

http://www.xilinx.com

54 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Exception Handling
There are two types of exceptions which are of importance to the BSP. The first type are
internal exceptions such as machine check, illegal instruction, etc.. By default, the BSP
configures VxWorks to trap these types of exceptions. When one occurs, the offending task
is suspended and a descriptive message is displayed on the console. If the exception occurs
in interrupt context, VxWorks will reboot itself.

The other type of exception are external asynchronous. The BSP initializes and handles
these exceptions which are the result of an active signal on the external or critical interrupt
pins of the processor.

There are two INTC IP devices within the FPGA, one connected to the processor’s external
interrupt and the other on the critical interrupt. Functions in BSP source code file
sysInterrupt.c are responsible for initializing these two devices with the XIntc
component driver and hooking them into VxWorks.

External Interrupts
Most IP peripherals that can generate interrupts are attached to the INTC component
responsible for asserting the external interrupt processor exception. BSP initialization code
hooks control of this device into the VxWorks intLib library.

External interrupt vectors are defined in xparameters.h. ML300.h may translate these
vectors into SYS_<device>_VEC_ID to limit changes to BSP source code when device
names change. These constants are utilized when invoking the VxWorks intLib functions.
Example:

#include <intLib.h>

void foo(void)
{
 intEnable(SOME_DEVICE_VEC_ID);
}

Critical Interrupts
Since VxWorks does not define a critical interrupt API as it does for external interrupts, the
user must utilize the API defined in sysLibExtra.h. Functions sysIntCritConnect,
sysIntCritEnable, and sysIntCritDisable are designed to work identically to
those for the external interrupt defined by the VxWorks intLib.h library. Example

#include "sysLibExtra.h"

void foo(void)
{
 sysIntCritEnable(SOME_CRITICAL_DEVICE_VEC_ID);
}

Note: PLB/OPB bridges & arbiters are wired to the critical interrupt handler in both the
ML300 and ML300seg bitstreams. If these interrupt sources are enabled and the PPC
machine check interrupt is enabled then VxWorks may reboot when an exception occurs.
This is because the PLB/OPB bridge/arbiter will most likely interrupt when a transaction
cannot complete. At the same time the PPC will detect a bad bus cycle and generate a
machine check exception. This will lead to the VxWorks exception handler being
interrupted. VxWorks architecturally does not allow this and will reboot the system when
it occurs.

It is not recommended to sysIntCritEnable() one of these interrupt sources. Instead,
use the VxWorks excHookAdd() function to use your own function perform custom

http://www.xilinx.com

January 2003 www.xilinx.com 55
Processor IP Reference Guide 1-800-255-7778

IIC
R

exception processing (after VxWorks finishes its own processing). Here, the hook function
can examine the bridges/arbiters and perform whatever task is required for the event.

IIC
There are several devices connected to the IIC bus with hardwired addresses. These
addresses are defined for the BSP in the ML300.h header file. The BSP provides a polled
interface to the IIC bus to access these devices. The interface includes a mutual exclusion
semaphore that can be used to prevent more than one task from accessing the bus at a time.
Before the operating system is up, the semaphore is not available and it is up to boot code
to sequence access to the bus. This should not be an issue since the system is single-
threaded at boot time and the only device accessed should be the NVRAM.

BSP file sysIic.c provides initialization, read/write primitives, and resource allocation
functions.

System ACE
The System ACE controller is a device that provides a way to store multiple FPGA
bitstream loads. These loads are stored on a compact flash (CF) device and downloaded by
the System ACE controller into the FPGA when the system is powered up. Additionally,
these bitstreams can contain a software load that is downloaded to RAM after the FPGA’s
IP cores have been programmed. These bitstream loads are stored in the CF device in a
DOS filesystem. This means regular files can be accessed from the CF as well. Such files
include VxWorks ELF images, application code & data, and text script files.

The BSP utilizes the SystemACE controller in two ways. First as a boot device and second
as an external storage device. Both applications require the following constants be defined
in config.h or by using the Tornado Project facility to change the constants of the same
name:

• SYS_SYSACE_DEV_ID - Should be set to the xparameters.h XPAR constant
associated with the System ACE controller device identifier.

• SYS_SYSACE_BASEADDR - Should be set to the xparameters.h XPAR constant
associated with the System ACE controller base address.

DOS File System
When being used as a file storage device, the BSP will mount the CF as a DOS FAT disk
partition using Wind River’s DosFs2.0 add-on. To get the required VxWorks libraries into
the image, the following packages must be #define’d in config.h or by the Project
Facility:

• INCLUDE_DOSFS_MAIN
• INCLUDE_DOSFS_FAT
• INCLUDE_DISK_CACHE
• INCLUDE_DISK_PART
• INCLUDE_DOSFS_DIR_FIXED
• INCLUDE_DOSFS_DIR_VFAT
• INCLUDE_CBIO

http://www.xilinx.com

56 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Automounting
To automatically mount the System ACE as a file system at boot time,
INCLUDE_XSYSACE_AUTOMOUNT must be defined. In the Project facility, this is defined by
enabling the automount feature in the System ACE folder. When defined, two more
constants are utilized to mount the compact flash device: SYSACE_AUTOMOUNT_POINT
and SYSACE_AUTOMOUNT_PARTITION. In the Project facility, these constants can be set
by editing the System ACE properties folder. This relieves the application from having to
initialize and mount the DOS File system. Note that this works only for Project builds.
Command line builds require that the application invoke sysSystemAceInitFS() and
sysSystemAceMount(). These functions are described in the Board API section below.

Board API
This section will not go over CSP device driver functions. Instead the user is directed to the
appropriate ip_csp/xsrc/<device>.c file for documentation and usage.

There are a handful of "board level" BSP functions not implemented by the CSP device
drivers. Prototypes for these functions are located in config/ML300/sysLibExtra.h.

Standard I/O
The BSP comes with stdin, stdout, and stderr directed through the UART on the P106
connector . The default UART baud rate is set to 115200, no parity, 8 data bits, and 1 stop
bit. The secondary UART on P107 is enabled and ready for application usage. It defaults to
19200 baud, no parity, 8 data bits, and 1 stop bit.

GPIO
Two instances of GPIO can be included in the BSP. The first instance controls the
momentary push button switches and their surrounding LEDs. The second controls the 32
GPIO lines on the J10 connector. Both instances require that INCLUDE_XGPIO constant be
defined. Each instance can be enabled or disabled with constants
INCLUDE_GPIO_LED_SWITCHES and INCLUDE_GPIO_TEST_PORT.

void sysLedOn(UINT32 mask)
Turns on LEDs in the mask. Bits set to one cause the associated LED to be illuminated. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

void sysLedOff(UINT32 mask)
Turns off LEDs in the mask. Bits set to one cause the associated LED to be turned off. The
mask is built using constants GPIO_LED_DSxx defined in ML300.h where xx is the LED
number and DSxx is the LED label on the PCB. This function requires that both
INCLUDE_XGPIO and INCLUDE_GPIO_LED_SWITCHES be defined.

http://www.xilinx.com

January 2003 www.xilinx.com 57
Processor IP Reference Guide 1-800-255-7778

Board API
R

UINT32 sysSwitchReadState(void)
Reads the state of all the push button switches. A mask is returned describing which
switches are closed (i.e. being pushed). The mask is decoded using constants
GPIO_SWITCH_SWxx defined in ML300.h where xx is the switch number and SWxx is the
switch label on the PCB. This function requires that both INCLUDE_XGPIO and
INCLUDE_GPIO_LED_SWITCHES be defined. Usage example:

UINT32 mask = sysSwitchReadState();

if (mask & GPIO_SWITCH_SW06)
{
 // handle switch 6 press
}

void sysGpioBankSetDataDirection(UINT32 mask)
Sets the output enable for the J10 32-bit GPIO header located adjacent to the LCD display.
Bits in the mask set to "1" are inputs, "0" are outputs.

Note for ML300seg: SEG bitstreams reverse the mask, "1" is output, "0" is input. If you are
using an EDK generated bitstream then disregard this note.

void sysGpioBankWriteDiscretes(UINT32 data)
Writes to the 32-bit GPIO J10 header.

UINT32 sysGpioBankReadDiscretes(void)
Reads the state of the pins of the 32-bit GPIO J10 header.

void sysLedBusErrClear(UINT32 ledMask)
(Not available in the ML300seg BSP)

Turns the PLB & OPB bus error LEDs from red (bus error occured) to green. This function
does not clear the error condition. Parameter ledMask is formed from or’ing together
GPIO_LED_BUSERR constants defined in ML300.h.

System ACE
These routines require that the INCLUDE_XSYSACE constant be defined. The command
line BSP will not initialize the DOS file system resident on the compact flash. Application
code will have to make function calls to initialize and mount:

FILE *fp;

sysSystemAceInitFS();
if (sysSystemAceMount("/cf0", 1) != OK)
{
 /* handle error */
}

fp = fopen("/cf0/myfile.dat","r");
 .
 .

http://www.xilinx.com

58 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
Sets the reboot JTAG configuration address. This address is mapped to cfgaddr0..7 as
defined in XILINX.SYS in the root directory of the CF device. If this function is never
invoked, then the default address is used. The default address is the address selected by
the rotary switch. The given address will be rebooted if sysToMonitor() or reset() is
called.

The configAddr parameter range is 0..7 (i.e. cfgaddr0..7) or -1 to select the default
address.

Returns ERROR if configAddr is out of range, OK otherwise.

void sysSystemAceInitFS(void)
Initializes the required Wind River DosFs 2.0 libraries. Application code is not required to
call this function on a BSP built with the Project facility.

STATUS sysSystemAceMount(char* mountPoint, int partition)
Mount the compact flash as DOS file system volume. The mountpoint parameter is an
arbitrary string labeling the device. Once mounted, refer to this mountpoint in all file
accesses. The partition parameter specifies the partition to mount. If "0" is specified
then the boot device is assumed to not contain a partition table (i.e. it is treated like a
floppy disk).

Note: Before calling this routine, be sure to initialize the DOS file system with a call to
sysSystemAceInitFS().

Note: Application code is not required to call this function on a BSP built with the Project
facility with INCLUDE_XSYSACE_AUTOMOUNT defined.

LCD (ML300seg)
These functions perform very basic operations useful for verifying the LCD is working. A
more substantial library will be required if, say, someone wanted to port Quake. Screen
geometry is defined in ML300.h with the constants LCD_COLS, LCD_ROWS, and
LCD_ROW_ALIGNMENT.

These functions are not available in the ML300 BSP.

void sysLcdSetColor(UINT32 rgb)
Set the entire display to the color encoded by the rgb parameter. The rgb parameter is
encoded as follows: 0x00RRGGB where RR is the red component, GG is the green
component, and RR is the red component. A value of 0x00000000 is black, 0x00FFFFFF is
white.

void sysLcdDisplayColorBars(void)
Writes a test display to the LCD screen that includes 8 bars in the top half of the display
and a 256 grey-scale pattern in the lower half of the display.

http://www.xilinx.com

January 2003 www.xilinx.com 59
Processor IP Reference Guide 1-800-255-7778

Board API
R

void sysLcdSetPixels(int row, int col, unsigned numPixels, UINT32 rgb)
Starting at row and column, write the RGB encoded value to consecutive pixels as they
exist in the LCD’s frame buffer. This basically boils down to a horizontal line draw
function. If numPixels is large enough, then the RGB color continues onto the next row.
See sysLcdSetColor described above for information on the rgb parameter.

STATUS sysLcdSetBrightness(unsigned char value)
This routine sets the brightness level of the LCD display. Valid range is 0..255 with 0 being
the dimmest setting. This setting is persistent in that the LCD keeps this setting even
through power cycles.

Returns ERROR if unable to communicate with device, OK otherwise.

STATUS sysLcdGetBrightness(unsigned char *value)
This routine retrieves the brightness level of the LCD display. Valid returned range is
0..255 with 0 being the dimmest setting.

Returns ERROR if unable to communicate with device, OK otherwise.

Power & Temperature Monitor Functions

void sysPowerMonCpuGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)
This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the CPU board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as
SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonIoGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)

This routine reads the two power monitor devices on the IIC bus to determine the current
voltage levels on the IO board. All voltages are returned in units of milli-volts. If the
voltage cannot be read for any reason, then that voltage level is returned as
SYS_MEASUREMENT-_ERROR. Parameters are interpreted as follows: v1_8 = 1.8volt
source, etc..

void sysPowerMonShow(void)
Print the voltages from all power monitor sources to the console. If errors are encountered
while reading the voltage monitors, then "Err" is displayed next to the voltage. This
function requires INCLUDE_POWERMON_SHOW be defined in config.h or in the project
facility under development tool components -> show routines.

void sysTemperatureMonGet(int *cpu, int *ambient)
This routine reads the two temperature sensing devices on the IIC bus to determine the
current temperature. If the temperature cannot be read for whatever reason, then that
temperature is returned as SYS_MEASUREMENT_ERROR. Temperature is returned in units
of deg C.

http://www.xilinx.com

60 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

void sysPowerMonShow(void)
Print the temperature (in deg C) for the CPU and the ambient temperature. If errors are
encountered while reading the temperature monitors, then "Err" is displayed next to the
temperature. INCLUDE_TEMPERATUREMON_SHOW be defined in config.h or in the
project facility under development tool components -> show routines.

Miscellaneous Functions

void sysMsDelay(UINT32 delay)
Delay the specified number of milliseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

void sysUsDelay(UINT32 delay)
Delay the specified number of microseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

This function not accurate for delay times below 20us due to system overhead. The
overhead is more or less constant and can be negated by the use of SYS_US_DELAY_BIAS
defined in config.h. Use this constant to calibrate to your system’s needs. As delivered
with a 300 MHz CPU clock and a bias of -2, this function is accurate within +/-15% for a
20us delay. As the delay time increases, the accuracy increases.

void sysEepromWriteEnable(void)
(Not available in the ML300seg BSP)

Enables writes to the IIC EEPROM.

void sysEepromWriteDisable(void)
(Not available in the ML300seg BSP)

Disable writes to the IIC EEPROM.

ML300 Specific Options
This section discusses ML300 specific configuration options that can be set either in
config.h or in the Project GUI. Unless otherwise stated, these options can be set by

http://www.xilinx.com

January 2003 www.xilinx.com 61
Processor IP Reference Guide 1-800-255-7778

ML300 Specific Options
R

#define’ing or #undef’ing them in config.h or by defining them in the Project GUI in
the project workspace’s macros settings in the build tab.

Table 8-6: Custom BSP Options

Option Description

INCLUDE_XSYSACE_INSTAL
L_-RESET_VEC

Controls whether reset code is placed the processor’s
reset vector address. This reset code will trigger
SystemACE to load the default configuration
bitstream.

INCLUDE_XSYSACE_AUTOM
OUNT

Controls whether the System ACE filesystem is
mounted at boot time using the next two SYSACE_
constants defined in this table. This constant affects
only Project builds.

SYSACE_AUTOMOUNT_POI
NT

Default mount point used when INCLUDE_-
XSYSACE_AUTOMOUNT is defined in Project builds.

SYSACE_AUTOMOUNT_PAR
TITION

Default partition used when INCLUDE_XSYSACE_-
AUTOMOUNT is defined in Project builds.

INCLUDE_GPIO_LED_SWITC
HES

Controls whether GPIO support is present for the
switches on top of the board and the LED in close
proximity to those switches. If support is not included,
then functions sysLedOn, sysLedOff, and
sysSwitchReadState have no effect.

INCLUDE_GPIO_TEST_PORT Controls whether GPIO support is present for the J10
I/O connector port. If support is not included, then
sysGpioBank functions have no effect.

SYS_US_DELAY_BIAS Adds the specified number of microseconds to the
delay parameter in sysUsDelay(). This option can
be used to cancel out overhead.

INCLUDE_LCD_CLEAR_AT_
BOOT

(ML300seg BSP) Clears the LCD display at VxWorks
boot time.

INCLUDE_LCD_BARS_AT_B
OOT

(ML300seg BSP) Displays the color bar test screen on
the LCD at VxWorks boot time. If both
INCLUDE_LCD_BARS_-AT_BOOT and
INCLUDE_LCD_CLEAR_AT_BOOT are defined, the
LCD will first be cleared then the color bars will be
drawn.

INCLUDE_EMAC_PHY_RESE
T_-AT_BOOT

Controls whether the Ethernet PHY is reset at boot
time. In the Project GUI, this is a parameter under the
emac component and can be found under hardware-
>peripherals->IP CSP-> Ethernet Core. Set to TRUE to
enable, FALSE to disable.

INCLUDE_POWERMON_SHO
W

Controls whether function sysPowerMonShow is
compiled into the BSP.

INCLUDE_TEMPERATUREM
ON_-SHOW

Controls whether function sysTemperature-
MonShow is compiled into the BSP.

SYS_GPIO_SWITCH_DEBOU
NCE_TICKS

Sampling interval used by function
sysSwitchReadState() when attempting to
debounce switches. Units are in clock ticks.

http://www.xilinx.com

62 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Building VxWorks
The ML300 BSP follows the standard Tornado conventions when it comes to creating a
VxWorks image. Refer to Tornado documentation on how to make a VxWorks image. This
section discusses extensions made to the build process.

Command-Line BSP Build Extensions
The CSP is compiled/linked with the same toolchain VxWorks is created with. Only very
minor additions are made to the Makefile to support the CSP build such as compiler
directives telling the BSP where to find the CSP files and visa-versa.

Project BSP Build Extensions
There are no extensions to the Project build. The BSP should behave just like any other
normal BSP.

Bootup Sequence
There are many variations of VxWorks images with some based in RAM, some in ROM.
Not all these images are supported on the ML300 board. The following list discusses
various image types:

• Compressed images - Not supported. These images begin execution in ROM and
decompress the image into RAM. SystemACE has no knowledge of the compression
algorithm being used by VxWorks.

• RAM based images - Fully supported.
• ROM based images - Fully supported. These images begin execution in ROM, copy

themselves to RAM then transfer execution to and stay in RAM. System ACE
performs the copy operation, so the BSP has been prepared to short circuit the
VxWorks copy (see romInit.s).

• ROM resident images - Not supported. These images begin execution in ROM, copy
the data section to RAM, and execution remains in ROM. There is no ROM device in
ML300. Theoretically BRAM could be used as a ROM however the current VirtexII
Pro parts being used in ML300s do not have the capacity to store a VxWorks image
which could range in size from 200KB to over 700KB.

vxWorks
This image is meant to be downloaded to the target RAM space. Once downloaded, the PC
should be set to function _sysInit (implemented in sysALib.s). Most of the time, the
device performing the download will do this for you as it can extract the entry point from
the image.

1. _sysInit : Low level initialization. Since this image is copied to RAM, the device that
downloaded the image may have to perform manual system initialization to make
RAM visible. When completed, this function will setup the initial stack and invoke the
first "C" function usrInit().

2. usrInit() : Performs pre-kernel initialization. Invokes sysHwInit() implemented
in sysLib.c to place the HW in a quiescent state. When completed, this function will
call kernelInit() to bring up the VxWorks kernel. This function will in turn invoke
usrRoot() as the first task.

3. usrRoot() : Performs post-kernel initialization. Hooks up the system clock,
initializes the TCP/IP stack, etc. Invokes sysHwInit2() implemented in sysLib.c

http://www.xilinx.com

January 2003 www.xilinx.com 63
Processor IP Reference Guide 1-800-255-7778

Bootrom Programming
R

to attach and enable HW interrupts. When complete, usrRoot() invokes user
application startup code usrAppInit() if so configured in the BSP.

bootrom_uncmp
This image is ROM based but in reality it is linked to execute out of RAM addresses. While
executing from ROM, this image uses relative addressing to perform tasks before jumping
to RAM. This image behaves differently than a traditional bootrom due to the fact it is
already in RAM when control is passed to it (via System ACE).

1. Power on. System ACE loads the bitstream into the FPGA then loads the bootrom
image into RAM and passes control to assembly language function _romInit located
in romInit.s.

2. _romInit : Traditionally this function would perform board level initialization then
call romInit() which would copy the VxWorks image to RAM. Since the image is
already in RAM, this function simply jumps to assembly function _sysInit.

3. Follows steps 1, 2 & 3 of the "vxWorks" bootup sequence.

Difference Between Command-Line & Project BSPs
Functions usrInit(), usrRoot(), and romStart() as explained in the boot sequence
steps above are implemented by Tornado. In command line BSPs, these functions are
defined in source code located at $WIND_BASE/target/config/all. In Project BSPs,
the Project Facility generates this code in the user’s project directory.

Functions _sysInit, _romInit, sysHwInit(), and sysHwInit2() are implemented
by the BSP in config/ML300. These functions are utilized on both the command-line and
project BSPs.

Bootrom Programming
The bootrom is a scaled down VxWorks image that operates in much the same way a PC
BIOS does. Its primary job is to find and boot a full VxWorks image. The full VxWorks
image may reside on disk, in flash memory, or on some host via the Ethernet. The bootrom
must be compiled in such a way that it has the ability to retrieve the full image. If the image
is retrieved on the Ethernet, then the bootrom must have the TCP/IP stack compiled in, if
the image is on disk, then the bootrom must have disk access support compiled in, etc. The
bootroms do little else than retrieve and start the full image and maintain a bootline. The
bootline is a text string that set certain user characteristics such as the target’s IP address if
using Ethernet and the file path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in development and replaced
with the production VxWorks image.

Creating Bootroms
On a command line window, cd to the config/ML300 directory. Issue a "make
bootrom_uncmp". Run the batch file $WIND_BASE\host\x86-win32\bin
\torVars.bat (if using Micro$oft Windows) to setup command line environment
variables before building the bootroms.

The next step is to either test bootrom_uncmp by downloading it with an emulator or
creating an .ace file out of it (combined with the IP core bitstream) for download by
SystemACE. See VirtexII Pro documentation on how to create .ace files

http://www.xilinx.com

64 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Bootrom Display
Upon cycling power, if the bootroms are working correctly, output similar to the following
should be seen on the console serial port:

 VxWorks System Boot

Copyright 1984-1998 Wind River Systems, Inc.

CPU: ML300 VirtexII Pro PPC405 Rev D
Version: 5.4.2
BSP version: 1.2/0
Creation date: July 26 2002, 12:51:32

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing the "help" at this prompt lists the available commands.

Bootline
Non-volatile storage of the bootline requires NVRAM support which in itself requires IIC
support. If NVRAM support is not present or an error occurs reading it, then the
DEFAULT_BOOT_LINE is utilized. If NVRAM is uninitialized (such as it will be in new
systems) then the bootline may be gibberish.

ML300 bootroms support the network interface and System ACE as the boot device. The
bootline tells the bootrom how to find the vxWorks image. The bootline is maintained at
runtime by the bootrom. The bootline can be changed if the auto-boot countdown
sequence is interrupted by entering a character on the console serial port. The "c"
command can then be used to edit the bootline. Enter "p" to view the bootline. On a non-
bootrom image, you can still change the bootrom by entering the bootChange command
at a host or target shell prompt.

The following list goes over the meanings of the bootline fields:

- boot device : Choices are "xemac" or "sysace=x". When set to xemac, the BSP
will boot over the network. When set to "sysace=x", the BSP will boot from a file
resident on the System ACE device. See Booting from SystemACE, page 65 for
further information on how to specify the System ACE boot device. Note that
when changing the bootline, the unit number may be shown appended to this
field ("xemac0" or "sysace=10) when prompting for the new boot device. This
number can be ignored.

- processor number : Always 0.
- host name : Name as needed. Can be arbitrary.
- file name : The VxWorks image to boot. If the boot device is the network

"xemac", then the file must be accessible on the host computer via ftp. See Booting
from SystemACE, page 65 for specifying a System ACE file.

- inet on ethernet (e) : The IP internet address of the target. If there is no
network interface, then this field can be left blank.

- host inet (h) : The IP internet address of the host. If there is no network
interface, then this field can be left blank.

http://www.xilinx.com

January 2003 www.xilinx.com 65
Processor IP Reference Guide 1-800-255-7778

Bootrom Programming
R

- user (u) : Username for host file system access. Pick whatever name suites you.
Your ftp server must be setup to allow this user access to the host file system.

- ftp password (pw) : Password for host file system access. Pick whatever
name suites you. Your ftp server must be setup to allow this user access to the
host file system.

- flags (f) : For a list of options, enter the "help" command at the [VxWorks
Boot]: prompt.

- target name (tn) : Whatever names suites you.
- other (o) : This field is not applicable when "xemac" is specified as the boot

device. When "sysace" is the boot device, then this field should be set to "xemac".
This will signal the VxWorks image specified in the file name field to start the
network on the xemac device. (if network support was included)

- inet on backplane (b) : Leave blank. ML300 is not on a VME or PCI
backplane.

- gateway inet (g) : Enter an IP address here if you have to go through a
gateway to reach the host computer. Otherwise leave blank.

- startup script (s) : Path to a file on the host computer containing shell
commands to execute once bootup is complete. Leave blank if not using a script.
Examples:
 SystemACE resident script: /cf0/vxworks/scripts/myscript.txt
 Host resident script: c:/temp/myscript.txt

Booting from SystemACE
The "boot device" field of the bootline is specified using the following syntax:

 sysace=<partition number>

where <partition number> is the partition to boot from. Some CF devices do not have
a partition table and are formatted as if they were a large floppy drive. In this case, specify
0 as the partition number. Failure to get the partition number correct will lead to errors
being reported by VxWork’s dosFS libraries when the drive is accessed.

The "file name" field of the bootline is set depending on how the System ACE is to boot the
system. There are two boot methods:

1. Boot from a regular file. This is similar to network booting in that the vxWorks image
resides in the SystemACE compact flash storage device instead of the host file system.
The compact flash device is a DOS file system partition. Simply build vxWorks using
the Tornado tools then copy the resulting image file to the compact flash device using
a USB card reader or similar tool. Then specify that file in the "file name" field of the
boot rom.

The "file name" must have the following syntax:

 /cf0/<path/to/vxWorks/Image>

where cf0 is the mount point. <path/to/vxWorks/Image> should provide the
complete path to the VxWorks image to boot. When being specified in this way, the
bootrom will mount the drive as a DOS formatted disk, read the file into memory and
begin execution.

2. Boot from an ace file. The ace file can contain HW only, SW only, HW + SW. When
booting from an ace file with HW, the FPGA is reprogrammed. If the ace file contains
SW, then it is loaded into the correct memory address ranges, the processor’s PC is set
to the entry point and released to begin fetching instructions. This boot method is

http://www.xilinx.com

66 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

flexible in that a totally different HW profile can be "booted" from a VxWorks bootrom.
ace files are created with the Xilinx ISI tools and is beyond the scope of this manual.

The "file name" must have the following syntax:

 cfgaddr[x]

where [X] is a number between 0 and 7 that corresponds to one of the configuration
directories specified in the XILINX.SYS file resident in the root directory of the compact
flash device. If [X] is omitted, then the default configuration is used. The default
configuration is selected by the rotary switch on the ML300 board. The bootrom will
trigger a JTAG download of the ace file pointed to by the specified config address.
There should be only a single file with an .ace extension in the selected configuration
directory.

Bootline Examples
The following example boots from the ethernet using the Xilinx "xemac" as the boot device.
The image booted is on the host file system on drive C.

boot device : xemac
unit number : 0
processor number : 0
host name : host
file name : c:/tornado/target/config/ML300/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

The following example boots from a file resident on the first partition of the SystemACE’s
compact flash device. If the file booted from /cf0/vxworks/images/vxWorks utilizes
the network, then the "xemac" device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : /cf0/vxworks/images/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

The following example boots from an ace file resident on the first partition of the
SystemACE’s compact flash device. The location of the ace file is set by XILINX.SYS
located in the root directory of the compact flash device. If the ace file contains a VxWorks
SW image that utilizes the network, then the "xemac" device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : cfgaddr2

http://www.xilinx.com

January 2003 www.xilinx.com 67
Processor IP Reference Guide 1-800-255-7778

This BSP on Other Boards
R

inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

This BSP on Other Boards
The ML300 BSP can be used directly on other development hardware such as the Xilinx
AFX Evaluation board. Modifications will be required to the BSP to account for a differing
list of CSP peripherals and the amount and type of RAM.

First step is to remove all unsupported peripheral drivers from the BSP. This can be done
by following steps in the section titled Configuration, page 49.

Next step is to change the amount and type of RAM the BSP recognizes. This can be done
by editing the constant LOCAL_MEM_SIZE. If not using the Tornado project facility, this
constant can be modified by editing its definition in config.h. If using the Tornado
Project facility, this constant can be modified by changing its property definition in the
memory folder.

Other areas to watch out for are constants defined by xparameters.h. These constants
must match the VirtexII Pro bitstream. If they do not then all kinds of problems can be
expected such as bus errors. Key constants to watch out for:

• XPAR_CORE_CLOCK_FREQ_HZ
• XPAR_UARTNS550_0_CLOCK_HZ
• XPAR_<device>_BASEADDR
• XPAR_INTC_0_<device>_x_VEC_ID

Deviations
This section sums up the difference between garden variety BSPs and the ML300. The
differences between the two fall roughly into key areas: CSP and System ACE support.

The CSP contains drivers for the Xilinx IP cores (see CSP Driver Organization, page 48).
To keep the BSP buildable while maintaining compatibility with the Tornado Project
facility, a set of files named ip_<driver>_<version>.c populate the BSP directory that
simply #include the source code from the CSP.

The location of the CSP relative to the BSP directory causes problems because command
line and Project facility differ in how BSP files are found during compilation. To address
this issue, a key Project macro (BSP_DIR) is defined in the BSP’s Makefile. Of all
deviations, this one is the most dangerous because future versions of Tornado may cause
builds to fail. The Makefile contains more information about this deviation.

System ACE, being a boot device and a DOS file system, has required that two VxWorks
source code files found in the Tornado distribution be changed. Wind River allows BSP
developers to change some source code files provided they follow set guidelines. The two
files that have been modified from their original version are bootConfig.c and net/
usrNetBoot.c.

usrNetBoot.c, used only by Project Facility builds, required a 1 line of code change to
tell VxWorks that the System ACE device is a disk based system like IDE, SCSI, or floppy
drives. This change allows the BSP to properly process the "other" field of the bootline (see

http://www.xilinx.com

68 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Bootline, page 64) when System ACE is the boot device. The "other" field allows the
selection of a network device when booting from a disk based system.

bootConfig.c, used only by bootroms builds, required extensive modifications to
support SystemACE as a boot device. These mods are bracketed by INCLUDE_XSYSACE
preprocessor ifdefs. Another mod enabled the data cache when ethernet frames are copied
from fifos instead of DMA. This change greatly increases the bootup times for the system
but could cause problems if another device required for booting utilizes DMA or requires
some sort of special cache coherency in the first 128MB of address space.

Limitations
This section goes over what this BSP cannot do and the reasons why. It also goes over
what-if scenarios when key pieces of IP are not part of the FPGA load.

No WARM boots

All boots are cold. There is no distinction between warm, cold, or any other type of boot.
This is because reboots are managed by the System ACE device which resets the processor
whenever it performs an ace download.

This could cause an exception message generated by VxWorks to not be printed to the
console when the system is rebooted due to an exception in an ISR or a kernel panic. See
troubleshooting guide for tips to get at this exception message.

No compressed images

If you compile a compressed image then try to boot it as an ace file, results will be
undetermined. This is because System ACE cannot decompress data as it writes it to ram.

Command line builds cannot initialize the network when System ACE is the boot device

This requires that the application provide code to initialize the network. Project builds can
get around this because a modified net/usrNetBoot.c is provided in the BSP directory
(see Deviations, page 67). The equivalent file for command line builds is located at
$WIND_BASE/target/src/config/usrNetwork.c. The architecture of the command
line build prevents us from overriding this file with a clone in the BSP directory.

Fixing usrNetwork.c requires changing the following code in function usrNetInit():

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

to

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "sysace", 6) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

Edit this code at your own risk.

http://www.xilinx.com

January 2003 www.xilinx.com 69
Processor IP Reference Guide 1-800-255-7778

Trouble Shooting
R

Reset Vector

On the PPC405 processor, the reset vector is at physical address 0xFFFFFFFC. There is a
short time window where the processor will attempt to fetch and execute the instruction at
this address.This window is between the time when System ACE has finished
downloading the HW bit stream and before it begins to download the SW image. All
VxWorks requires here is the following assembly instruction:

FFFFFFFC b .

This is in effect a spin loop. This instruction encodes into 0x48000000. Be sure whoever
writes the HW IP includes this instruction at this address which is typically a BRAM
internal to the FPGA.

Trouble Shooting

Project Creation
Issues seen when creating a Tornado Project based on the ML300 BSP.

"Project Creation Error" Dialog Pop-up
Scroll to the end of the box and if it contains error messages complaining about missing
header files dpartCbio.h and dcacheCbio.h, then you don’t have the DosFS 2.0
libraries installed in your system.

SingleStep
Issues seen when using SingleStep with this BSP.

Source browser not displaying source code at addresses where source code
should be

Try to rebuild everything with the -gdwarf compiler option.

Tornado Crosswind debugger
Issues seen when using Tornado’s IDE debugger with this BSP.

http://www.xilinx.com

70 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Source browser not displaying source code at addresses where source code
should be

Is the -gdwarf option enabled in the compiler? Try to rebuild everything with the -g
compiler option.

Target Shell Issues
Issues seen when using the built-in target shell.

Relocation value does not fit in 24 bits message from Loader
This is seen when a system contains more than 32MB of memory. Recompile your source
code using the -mlongcall compiler option.

Ethernet Issues
Issues seen when integrating/using the XEmac Ethernet adapter

Network interface xemac unknown. Message from console at boot
There are multiple causes to this problem.

1. Did you compile the XEmac component into the BSP? In the Tornado Project facility,
check that both hardware->peripherals->IP CSP->Ethernet EMAC and EMAC END
components are included. On command line BSP builds, is INCLUDE_XEMAC and
INCLUDE_XEMAC_END declared in ip_config.h and not #undef’d anywhere.

2. In the Tornado Project facility, if you remove then later restore network support,
Project fails to restore "END" driver support. Check folder network components-
>network devices and verify that both END attach interface and END interface support
components are included.

BSP Release History

ML300 1.2/0 - September 26, 2002
First pre-release for Tornado 2.0. This is a beta release that does not include support for all
HW. Note that testing has been done on the ML3 evaluation board as opposed to the
ML300. In other words, this version of the BSP has never been run on the ML300 hardware.
The SEG IP bitstream is used for this load.

HW Supported
- 16550 UART on outside edge connector (VxWorks console)
- EMAC Ethernet
- 16MB DDR RAM
- 32KB BRAM
- System ACE
- PPC Instruction cache

http://www.xilinx.com

January 2003 www.xilinx.com 71
Processor IP Reference Guide 1-800-255-7778

BSP Release History
R

HW Not supported
- PPC Data cache
- PPC MMU
- PLB/OPB Bridge register access (no access to BEAR, BESR registers).
- LCD display
- PCI
- GPIO
- Parallel Port
- PS2 Ports

Usage Notes

1. Bootroms: The bootroms are integrated into the FPGA bitstream and downloaded by
System ACE at powerup and reset. There are two different types of bootroms stored in
the ace subdirectory. Each one uses serial port #1 as the console at 38400 baud, N,8,1.

top_vxboot.ace: This bootrom has a hardcoded bootline of
"sysace=1(0,0):/cf0/ vxworks/vxWorks.st". It will mount the compact flash
device using the MPU interface of the System ACE as an external DOS volume. The
given VxWorks image will be loaded and started. If a /vxworks directory is not in
your compact flash device then create one and place your vxWorks.st image there.
This bootrom has no network support.

top_vxbootnet.ace: This bootrom has a hardcoded bootline of
"xemac(0,0)host:c:/tornado/ target/config/ML300/vxWorks
h=192.168.0.1 e=192.168.0.2 u=xemhost pw=slurm". The network is
started and the vxWorks image is downloaded via ftp.

2. When using SystemACE as the boot device for bootroms, make sure macro
INCLUDE_NET_INIT is undefined and any macro that causes it to be defined such as
WDB_COMM_TYPE=WDB_COMM_END.

3. Reset vector issue. The PPC405 reset vector is at physical address FFFFFFFC. With
SystemACE at powerup, the processor will be prevented from executing an
instruction at this address in some cases. With a VxWorks bootrom in the bitstream,
SystemACE will load the FPGA IP cores, then the bootrom, place the PC at the
bootrom entry point romInit and release it to begin fetching instructions. So what
happens when you press the reset button? The answer is the processor will vector to
FFFFFFFC and something had better be there. The BSP can be configured to initialize
this reset vector with code to cause a System ACE jtag reboot. Defining
INCLUDE_XSYSACE_INSTALL_RESET_VEC will install this code but a better solution
would be to place something at the reset vector with Data2Bram in the Xilinx design
flow toolchain.

Errata

1. Since there is no NVRAM support, the bootline is hardcoded in the
DEFAULT_BOOT_LINE macro defined in config.h. The Ethernet MAC address is
hardcoded in sysNet.c.

2. Pressing the CPU reset button will not reset the system and reload the bootrom. Users
must press the System ACE reset button or place code in the BRAM at the end of the
memory map that triggers system ACE to reset itself.

http://www.xilinx.com

72 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

3. Ethernet 100Base-T may have poor performance with some host computers. If this is
the case, then switch your host computer’s ethernet adapter to 10Base-T.

4. When creating a Tornado Project using this BSP as the "basis BSP", ensure the data
cache is disabled. Go to the "enable caches" component of the memory folder and set
USER_D_CACHE_ENABLE to no value.

ML300 1.2/1 - November 13, 2002
The first release using an EDK/platgen generated bitstream.

HW Supported
- 16550 UART on P107 (VxWorks console)
- 16550 UART on P106
- EMAC Ethernet
- 128MB DDR RAM
- 32KB BRAM
- PPC MMU & Instruction & Data caches
- PLB/OPB Bridge
- GPIO (LEDs & Switches)
- IIC including NVRAM, temperature & power monitors.

HW Not supported
- System ACE
- LCD Display
- PCI
- Parallel Port
- PS2 Ports
- USB Ports
- Audio Ports
- SPI

Usage Notes
At the time this document was updated, this BSP is largely untested on a real
EDK/platgen bitstream load.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

http://www.xilinx.com

January 2003 www.xilinx.com 73
Processor IP Reference Guide 1-800-255-7778

BSP Release History
R

ML300 1.2/2 - January 10, 2003
Tested using the EDK/platgen reference design bitstream.

Added support for SystemACE HW.

Usage Notes

1.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

ML300seg 1.2/0 (seg 092402) - November 13, 2002
Written using the ML300 HW as a testbed and the 9/24/02 hand-coded version of the SEG
IP load. This release supports more HW including the data cache, LCD, IIC, GPIO LEDs
and switches.

This is in reality a renamed ML300 1.2/0 BSP with additional HW support and other
refinements. The ML300 1.2/x BSP will be based on EDK/platgen bitstreams.

HW Supported
- 16550 UART on P107 (VxWorks console)
- 16550 UART on P106
- EMAC Ethernet
- 126MB DDR RAM
- 32KB BRAM
- LCD Display
- System ACE
- PPC MMU & Instruction & Data caches
- PLB/OPB Bridge BEAR & BESR register access (seg version)
- GPIO (LEDs & Switches)
- IIC including NVRAM, temperature & power monitors, and LCD brightness.

HW Not supported
The SEG IP load used by this BSP does map control registers for the following devices,
however there is no BSP support for them.

- PCI
- Parallel Port
- PS2 Ports
- USB Ports
- Audio Ports
- SPI

http://www.xilinx.com

74 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: ML300 Tornado 2.0 BSP User Guide
R

Usage Notes
None.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

References
• VxWorks 5.4 Programmer’s Guide
• Tornado 2.0 User’s Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

08/01/02 1.0 Xilinx internal release.

08/21/02 1.1 Added alternate evaluation board usage notes. Minor touch ups.

09/19/02 1.2 Changes to accommodate ML300 vs. ML3. Changed memory map
to 128MB RAM space from 256MB. Added LCD support, config.h
options and annotated mmu description. Documented usage notes
for BSP version 1.2/1 seg 08xx02. This version of the document was
released as part of the world-wide fae training conference held in
October of 2002.

10/22/02 1.3 Added documentation for additional HW support of IIC devices.
More detail of bootrom operations. Updates for ML300seg 1.2/0.

01/10/03 1.4 Updates for ML300 BSP 1.2/2.

http://www.xilinx.com

January 2003 www.xilinx.com 75
Processor IP Reference Guide 1-800-255-7778

R

Chapter 9

Device Driver Summary

Summary
A summary of each device driver is provided with a link to its main header file. In
addition, building block components are described. A hardware-to-software driver cross-
reference table is also provided.

Device Driver Reference

ATM Controller
The Asynchronous Transfer Mode (ATM) Controller driver resides in the atmc
subdirectory. Details of the driver can be found in the xatmc.h header file

Ethernet 10/100 MAC
The Ethernet 10/100 MAC driver resides in the emac subdirectory. Details of the driver can
be found in the xemac.h header file.

Ethernet 10/100 MAC Lite
The Ethernet 10/100 MAC Lite driver resides in the emaclite subdirectory. Details of the
driver can be found in the xemaclite.h header file.

External Memory Controller
The External Memory Controller driver resides in the emc subdirectory. Details of the
driver can be found in the xemc.h header file.

General Purpose I/O
The General Purpose I/O driver resides in the gpio subdirectory. Details of the driver can
be found in the xgpio.h header file.

HDLC
The HDLC driver resides in the hdlc subdirectory. Details of the driver can be found in the
xhdlc.h header file.

Intel StrataFlash
The Intel StrataFlash driver resides in the flash subdirectory. Details of the driver can be
found in the xflash.h header file.

http://www.xilinx.com

76 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 9: Device Driver Summary
R

Inter-Integrated Circuit (IIC)
The IIC driver resides in the iic subdirectory. Details of the driver can be found in the xiic.h
header file.

Interrupt Controller
The Interrupt Controller driver resides in the intc subdirectory. Details of the driver can be
found in the xintc.h header file.

OPB Arbiter
The OPB Arbiter driver resides in the opb_arbiter subdirectory. Details of the driver can be
found in the xopb_arbiter.h header file.

OPB to PLB Bridge
The OPB to PLB bridge driver resides in the opb2plb subdirectory. Details of the driver can
be found in the xopb2plb.h header file.

PLB Arbiter
The PLB arbiter driver resides in the plbarb subdirectory. Details of the driver can be found
in the xplbarb.h header file.

PLB to OPB Bridge
The PLB to OPB bridge driver resides in the plb2opb subdirectory. Details of the driver can
be found in the xplb2opb.h header file.

Rapid I/O
The Rapid I/O driver resides in the rapidio subdirectory. Details of the 0 low leve driver
can be found in the xrapidio_l.h header file

Serial Peripheral Interface (SPI)
The SPI driver resides in the spi subdirectory. Details of the driver can be found in the
xspi.h header file.

System ACE
The System ACE driver resides in the sysace subdirectory. Details of the driver can be
found in the xsysace.h header file.

Timer/Counter
The Timer/Counter driver resides in the tmrctr subdirectory. Details of the driver can be
found in the xtmrctr.h header file.

UART Lite
The UART Lite driver resides in the uartlite subdirectory. Details of the driver can be
found in the UART Lite Driver Datasheet and in the xuartlite.h header file.

UART 16450/16550
The UART 16450/16550 driver resides in the uartns550 subdirectory. Details of the driver
can be found in the xuartns550.h header file.

http://www.xilinx.com

January 2003 www.xilinx.com 77
Processor IP Reference Guide 1-800-255-7778

Building Block Components
R

Watchdog Timer/Timebase
The Watchdog Timer/Timebase driver resides in the wdttb subdirectory. Details of the
driver can be found in the xwdttb.h header file.

Building Block Components

Common
Common components reside in the common subdirectory and comprise a collection of
header files and ".c" files that are commonly used by all device drivers and application
code. Included in this collection are: xstatus.h, which contains the identifiers for Xilinx
status codes; xparameters.h, which contains the identifiers for the driver configurations
and memory map; and xbasic_types.h, which contains identifiers for primitive data types
and commonly used constants.

CPU/CPU_PPC405
CPU components reside in the cpu[_ppc405] subdirectory and comprise I/O functions
specific to a processor. These I/O functions are defined in xio.h. These functions are used
by drivers and are not intended for external use.

IPIF
IPIF components reside in the ipif subdirectory and comprise functions related to the IP
Interface (IPIF) interrupt control logic. Since most devices are built with IPIF, drivers
utilize this common source code to prevent duplication of code within the drivers. These
functions are used by drivers and are not intended for external use.

DMA
DMA components reside in the dma subdirectory and comprise functions used for Direct
Memory Access (DMA). Both simple DMA and scatter-gather DMA are supported.

Packet FIFO
Packet FIFO components reside in the packet_fifo subdirectory and comprise functions
used for packet FIFO control. Packet FIFOs are typically used by devices that process and
potentially retransmit packets, such as Ethernet and ATM. These functions are used by
drivers and are not intended for external use.

Hardware/Software Cross Reference

Table 9-1: Hardware and Software Cross Reference

Hardware Device Software Driver

DCR Bus Structure XIo

DCR Interrupt Controller (INTC) XIntc

OCM Packet Processing Engine

OPB <-> PCI Full Bridge XPci

OPB 10/100M Ethernet Controller XEmac

http://www.xilinx.com

78 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 9: Device Driver Summary
R

OPB 10/100M Ethernet Controller - Lite XEmacLite

OPB 16450 UART Controller XUartNs550

OPB 16550 UART Controller XUartNs550

OPB Arbiter and Bus Structure XOpbArb

OPB ATM Utopia Level 2 Master XAtmc

OPB ATM Utopia Level 2 Slave XAtmc

OPB External Memory Controller (EMC) XEmc

OPB GPIO Controller XGpio

OPB IIC Master and Slave Bus Controller XIic

OPB Interrupt Controller (INTC) XIntc

OPB IPIF XIpIf

OPB JTAG UART XUartLite

OPB PS/2 Controller

OPB Single Channel HDLC Controller XHdlc

OPB SPI Master and Slave Bus Controller XSpi

OPB TimeBase / WatchDog Timer XWdtTb

OPB Timer / Counter XTmrCtr

OPB Touchscreen Controller

OPB UART - Lite XUartLite

OPB2PLB Bridge XOpb2Plb

PLB 1Gb Ethernet Controller

PLB Arbiter and Bus Structure XPlbArb

PLB External Memory Controller (EMC) XEmc

PLB IPIF XIpIf

PLB Packet Processing Engine

PLB TFT VGA LCD Controller

PLB UART-16450 XUartNs550

PLB UART-16550 XUartNs550

PLB2OPB Bridge XPlb2Opb

RAPID IO Xrapidio

Table 9-1: Hardware and Software Cross Reference (Continued)

Hardware Device Software Driver

http://www.xilinx.com

January 2003 www.xilinx.com 79
Processor IP Reference Guide 1-800-255-7778

R

Chapter 10

Automatic Generation of Tornado 2.0
(VxWorks 5.4) Board Support Packages

Overview
One of the key embedded system development activities is the development of the Board
Support Package (BSP). Creation of a BSP can be a lengthy and tedious process that must
be incurred every time the microprocessor complex (processor plus associated
peripherals) changes. While managing these changes applies to any microprocessor-based
project, the changes can come about more rapidly than ever with the advent of
programmable System-on-Chip (SoC) hardware.

This document describes a tool, BSP Generator (BSPgen), which automatically generates a
customized BSP for various microprocessor, peripheral, and RTOS combinations. This tool
enables embedded system designers to:

• Substantially decrease development cycles (decrease time-to-market)
• Save years of development effort
• Create a BSP which matches the application (customized BSP)
• Eliminate BSP design bugs (automatically created based on certified components)
• Allow inclusion of customer-specific device drivers (provides a standard interface)
• Enable application software developers (don't have to wait for BSP development)

BSPgen is currently used in conjunction with the VirtexII-Pro and MicroBlaze system
generation tools. Through these tools, the user can choose to automatically create a BSP
based on embedded system just created. The BSP contains all the necessary support
software for a system, including boot code, device drivers, and RTOS initialization. The
BSP is customized based on the type of operating system, processor, and peripherals
chosen by the user for the FPGA-based embedded system.

The only type of BSP currently supported by BSPgen is for the WindRiver VxWorks 5.4
operating system and Tornado 2.0.2 IDE, in conjunction with the IBM PowerPC 405
microprocessor core.

The system generation tools provide a description of the embedded system to BSPgen.
Using this system description and a set of template files pertaining to the operating system
and processor selected, BSPgen generates a customized BSP.

http://www.xilinx.com

80 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 10: Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support Packages
R

Generating the BSP

User Interface
BSPgen supports a command-line interface and an Application Programmer Interface
(API) using a Java class package. The command-line interface is specifically geared for the
Xilinx Embedded Development Kit (EDK) tools. It requires system description files in the
form of .mss/.mhs files that are output by the EDK tools. The command-line usage syntax
is as follows:

Usage: bspgen -h <mhsfile> -s <mssfile> -p <project_path>

where:

-h <mhsfile>

Specifies the name of the .mhs file created by the MDT toolset. The .mhs file describes
the hardware selected by the user for the embedded system.

-s <mssfile>

Specifies the name of the .mss file created by the MDT toolset. The .mss file describes
the software, or device drivers, selected by the user and corresponding to the system
hardware.

-p <project_path>

The absolute path of the user’s MDT project directory.

BSPgen makes use of the XILINX_EDK environment variable. It should be set to the
installation directory of the EDK.

Note that the end user does not typically invoke BSPgen. Instead, the EDK tools invoke
BSPgen using the appropriate interface.

User Input
When choosing to automatically generate a BSP, the user is required to enter the following
information:

• Type of operating system

The WindRiver VxWorks 5.4 operating system is the only operating system currently
supported. This implies the use of the Tornado 2.0.2 IDE. This section of the user’s
guide pertains only to a VxWorks 5.4/Tornado 2.0.2 Board Support Package.

• Directory location where the BSP will reside

In the Tornado 2.0.2 case, this directory location typically resides in the standard
target/config directory within the Tornado distribution directory tree. However, the
user is free to choose another location for the BSP.

• Name of the BSP

The name chosen by the user to identify the board on which the FPGA-based system
resides. This name will be used throughout the generated BSP source files.

Template-Based Approach
A set of BSP template files will be released with BSPgen. Every operating system supported
will have a corresponding set of template files. These template files are used during
creation of the BSP, making appropriate modifications based on the makeup of the FPGA-
based embedded system.

http://www.xilinx.com

January 2003 www.xilinx.com 81
Processor IP Reference Guide 1-800-255-7778

The Tornado 2.0 BSP
R

If the user chooses not to automatically generate a BSP, these template files could be used
as a reference for building a BSP from scratch.

Device Drivers
A set of device driver source files will be released with the EDK tools and will reside in an
installation directory. During creation of a customized BSP, device driver source code is
copied from this installation directory to the BSP directory. Only the source code
pertaining to the devices built into the FPGA-based embedded system are copied. This
copy provides the user with a self-contained, standalone BSP directory which can be
modified by the user if necessary and/or relocated if necessary. If the user makes changes
to the device driver source code for this BSP and sometime later wishes to back those
changes out, the user can use the EDK tools to regenerate the BSP. Device driver source
files are then recopied from the installation directory to the BSP.

Backups
If the directory location of the BSP contains existing files, these files are copied into a
backup directory before being overwritten. This prevents the inadvertent loss of changes
made by the user to BSP source files. The backup directory will reside within the BSP
directory and will be named backup<timestamp>, where <timestamp> represents the current
date and time.

The Tornado 2.0 BSP
This section assumes the reader is familiar with WindRiver’s Tornado 2.0.2 IDE.

Capabilities and Features

Integration with IDE
The automatically generated BSP is integrated into the Tornado 2.0.2 IDE and Project
facility. The BSP can be compiled from the command-line using the Tornado make tools, or
from the Tornado Project facility (also referred to as the Tornado GUI). Once the BSP has
been generated, the user can simply type make vxWorks from the command-line to compile
a bootable RAM image. This assumes the Tornado environment has been previously set
up. If using the Tornado Project facility, the user can create a project based on the newly
generated BSP, then use the build environment provided through the GUI to compile the
BSP.

The file 50<csp_name>.cdf resides in the BSP directory and is tailored during creation of the
BSP. This file integrates the CSP device drivers into the Tornado GUI. CSPs hook
themselves into the BSP at the hardware/peripherals sub-folder. Below this is a Core
library folder and individual device driver folders. Figure 1 shows the look of the GUI
given the CSP name "IP".

http://www.xilinx.com

82 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 10: Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support Packages
R

Figure 1: Tornado 2.0 Project GUI - VxWorks

The "Files" tab of the Tornado Project GUI will also show a number of new files used to
integrate the CSP device drivers into the Tornado build process. Once again, these files are
automatically created by BSPgen. The user need only be aware of that the files exist. These
files are prefixed with the name of the CSP. Figure 2 shows an example of the CSP build
files.

http://www.xilinx.com

January 2003 www.xilinx.com 83
Processor IP Reference Guide 1-800-255-7778

The Tornado 2.0 BSP
R

Figure 2: Tornado 2.0 Project GUI - Files

Device Integration
Devices in the FPGA-based embedded system have varying degrees of integration with
the VxWorks operating system. The degree of integration is currently fixed, but may be
selectable by the user in the future. Below is a list of currently supported devices and their
level of integration.

• A UART 16450/16550/Lite is integrated into the VxWorks Serial I/O (SIO) interface.
This makes the UART available for file I/O and printf. Only one UART device can be
selected as the console, where standard I/O (stdin, stdout, and stderr) is directed.

• An Ethernet 10/100 MAC is integrated into the VxWorks Enhanced Network Driver
(END) interface. This makes it available to the VxWorks network stack and thus
socket-level applications.

• An Interrupt controller is connected to the VxWorks exception handling and the
PowerPC 405 external non-critical interrupt pin.

http://www.xilinx.com

84 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 10: Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support Packages
R

• All other devices and associated device drivers are not tightly integrated into a
VxWorks interface. Access to these devices is available through direct access to the
associated device drivers.

Device Driver Location and BSP Directory Tree
The automatically generated BSP contains boot code, device driver code, and initialization
code. The BSP resembles most other Tornado BSPs except for the placement of device
driver code. Off-the-shelf device driver code distributed with the Tornado IDE typically
resides in the target/src/drv directory in the Tornado distribution directory. Device driver
code for a BSP that is automatically generated resides in the BSP directory itself. This
minor deviation is due to the dynamic nature of FPGA-based embedded system. Since the
FPGA-based embedded system can be reprogrammed with new or changed IP, the device
driver configuration can change, calling for a more dynamic placement of device driver
source files.

The directory tree for the automatically generated BSP is shown below.

Figure 3: BSP directory tree

The top-level directory is named according to the name of the BSP the user provides. The
customized BSP source files reside in this directory. There is a subdirectory within the BSP
directory named according to the name of the CSP the user provides. The CSP directory
contains two subdirectories. The xsrc subdirectory contains all the device driver related
source files. The out subdirectory is created during the build process and only exists if
building from the command-line. It contains files generated during the compilation or
build process (e.g., the .o files for each driver source file). If building from the Project
facility, the files generated during the build process reside at
$PRJ_DIR/$BUILD_SPEC/<csp_name>_csp.

Limitations
The automatically generated BSP should be considered a good starting point for the user,
but should not be expected to meet all the user’s needs. Due to the potential complexities
of a BSP, the variety of features that can be included in a BSP, and the support necessary for
board devices external to the FPGA, the automatically generated BSP will likely require
enhancements by the user. However, the generated BSP will be compilable and will
contain all the necessary device drivers represented in the FPGA-based embedded system.
Some of the devices are also integrated to some degree with the operating system.

xsrc

out

<csp_name>_csp

<bsp_name>

http://www.xilinx.com

January 2003 www.xilinx.com 85
Processor IP Reference Guide 1-800-255-7778

R

Chapter 8

Insight MDFG456 Tornado 2.0 BSP
User’s Guide

Overview
The purpose of this document is to provide an introduction to the Tornado 2.0 BSP as
implemented on the Insight MDFG456 reference board equipped with the Virtex II-Pro
FPGA.

The addition of the Chip Support Package (CSP) into a Tornado 2.0 BSP is a unique
challenge because of the nature of how easily hardware is added and removed from the
FPGA using System Build Generator and how difficult it is to accommodate this feature
into a Tornado 2.0 BSP. The CSP is a part of the BSP in that it provides the software drivers
for hardware IP utilized by the BSP and application code. The CSP is designed to be
primarily operating system independent so in many respects it is segregated and
independently configured from the BSP.

The reader is expected to understand how Tornado 2 BSPs operate in general.

Requirements

Tornado 2.0.2
The user should have Wind River Tornado 2.0.2 installed on their PC with the PPC405
libraries.

Patches required that can be found at Wind River’s Windsurf technical support web site:

• SPR67953. Cumulative patch
• DosFs 2.0. Dos file system support. This package is required if you wish to use the

SystemACE compact flash device as an external storage device.

SingleStep (XE)
The XE stands for Xilinx Edition. This version of the SingleStep debugger is VirtexII Pro
aware. This debugger works in concert with the VisionProbe debugger pod which
connects to the "CPU Debug" port of the reference board.

Installation
Copy the entire MDFG456 source tree to $WIND_BASE\config\MDFG456 and perform
the following operations from the DOS command-line:

http://www.xilinx.com

86 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

C:\> make clean
C:\> make release

When this process finishes, a new project is placed at $WIND_BASE\proj\MDFG456_vx.
As an alternative to this procedure, the Tornado project facility can be used to create a
bootable application using the MDFG456 as the basis BSP. When creating a project in this
way, the BSP can be located anywhere. See Project Facility documentation from Wind
River.

Compact Flash
A compress zipfile is provided in the ace subdirectory. This is a complete image containing
bootrom and sample VxWorks images in ace file format. See the README in the ace
directory for more information.

To use the compact flash / System ACE solution, the

To install this image, do the following:

1. Make a backup of your microdrive then erase all files from it.

2. Uncompress the ace/compactFlash.zip file to the microdrive.

3. Insert the microdrive into the compact flash slot.

4. Connect a serial port cable to the P106 connector on the evaluation board. Default
comm settings are 19200, N, 8, 1.

5. Set the rotary switch on the system ace adapter board to setting 6 and apply power. At
this point, the VxWorks bootrom should be running and writing to the console serial
port.

6. Set the bootrom boot line per your requirements. See Bootrom Programming,
page 100 for more information.

Setting Ethernet MAC Address
To verify your MAC address is correct, perform the following steps:

1. Set the rotary switch associated with the VxWorks bootrom and reboot the MDFG456.

2. Interrupt the countdown sequence to get the [VxWorks Boot]: prompt.

3. Enter the "N" command (case sensitive). The current MAC will be displayed and you
will be prompted to enter a new MAC. The first three bytes of the MAC should be
000A35.

Press any key to stop auto-boot...

 1

[VxWorks Boot]: N

Current Ethernet Address is: 00:0a:35:00:03:20

Modify only the last 3 bytes (board unique portion) of Ethernet Address.

The first 3 bytes are fixed at manufacturer’s default address block.

00- 00

0a- 0a

35- 35

00-

4. If the MAC is valid, then enter return three times to accept the default. On new boards,
the address may be all FFs. If this is the case, enter the last three bytes that are assigned
to the serial number. If you are not sure of the numbers, then enter return three times.
This will change the MAC to 00:0a:35:FF:FF:FF. This will provide you with a
valid MAC until the correct number is obtained. Boards with a MAC of all FFs will not

http://www.xilinx.com

January 2003 www.xilinx.com 87
Processor IP Reference Guide 1-800-255-7778

Files & Directories
R

be capable of running the network stack. Multiple boards connected to the same
network with the same MAC will not work either.

Files & Directories
While the root directory of the BSP can be placed anywhere, it is typically located at
$WIND_BASE/target/config/MDFG456. The Tornado Project component of the BSP is
located at $WIND_BASE/target/proj/MDFG456_vx.

The project component of the BSP is required if it will be configured/compiled with the
Tornado Project Facility IDE. Normally, the Project Facility is utilized during application
development and trivial BSP tweaks. The non-project component (also referred to as the
command-line Tornado 1.0.1 BSP) is utilized during BSP development. Note that the
methods of configuring and building the BSP differ greatly between the Project and
command-line methods. See Tornado documentation for more information.

The CSP adds a directory structure not usually seen with VxWorks BSPs. It has been added
to segregate BSP files from the CSP.

The following directories make up the MDFG456 BSP:

config/MDFG456

The traditional directory for Tornado 2.0 BSPs. Contains BSP library source code and the
command-line makefile.

config/MDFG456/net

Contains Tornado Project "configlette" network source code that overrides configlettes
located at $WIND_BASE/target/config/comps/src/net.

config/MDFG456/ace

Contains the bitstream and compact flash image which in itself contains the bootrom and
other sample VxWorks ace and elf images.

config/MDFG456/ip_csp

The base directory for the CSP.

config/MDFG456/ip_csp/xsrc

Contains source code for the CSP.

proj/MDFG456_vx

The base directory for a Tornado project. All files here are maintained by the Project
Facility.

proj/MDFG456_vx/<build spec>

A build specification maintained by the Project Facility. There is typically a "default" build
spec here unless removed by the developer. Other build specifications can be added by the
developer.

CSP Driver Organization
This section briefly discusses how the CSP is compiled and linked and eventually used by
Tornado makefiles to include into the VxWorks image.

CSP drivers are implemented in "C" and can be distributed among several source files
unlike traditional VxWorks drivers which consist of single "C" header and implementation
files. For this reason, we place all CSP files in their own xsrc subdirectory.

There are up to three components for CSP drivers:

• Driver source inclusion.
• OS independent implementation

http://www.xilinx.com

88 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

• OS dependent implementation (optional).

"Driver source inclusion" refers to how CSP drivers are compiled. For every CSP driver,
there is a file named ip_<dev>_<version>.c. This file #include’s each CSP driver
source file(s) (*.c) for the given device.

This process is analogous to how VxWorks’ sysLib.c #include’s source for Wind River
supplied drivers. The reason why CSP files are not simply #include’d in sysLib.c like the
rest of the drivers is due to namespace conflicts and maintainability issues. If all CSP files
were part of a single compilation unit, static functions and data are no longer private. This
places restrictions on the CSP device drivers and would take away from its operating
system independence.

The OS independent part of the driver is designed for use with any operating system or
any processor. It provides an API that utilizes the functionality of the underlying
hardware. The OS dependent part of the driver adapts the driver for use with VxWorks.
Such examples are SIO drivers for serial ports, or END drivers for ethernet adapters. Not
all drivers require the OS dependent drivers, nor is it required to include the OS dependent
portion of the driver in the CSP build.

Configuration
This BSP is configured just like any other Tornado 2 BSP. There is not much configurability
to CSP drivers since the IP hardware has been pre-configured in most cases by System
Build Generator. The only configuration available generally is whether the driver is
included in the CSP at all. How to go about including/excluding drivers depends on
whether the Project facility or the command-line method is being used to perform the
configuration activities.

Note that simply by including a CSP device driver does not mean that driver will be
automatically utilized. Most CSP drivers with VxWorks adapters have initialization code.
In some cases the user may be required to add the proper driver initialization function calls
to the BSP.

Command-Line
A set of constants (one for each driver) are defined in config/MDFG456/ip_config.h
and follow the format:

#define INCLUDE_<XDRIVER>

This file is included near the top of config/MDFG456/config.h. By default all drivers
are included in the build. To exclude a driver, add the following line in config.h after the
#include "ip_config.h" statement.

#undef INCLUDE_<XDRIVER>

This will prevent the driver from being compiled and linked into the build. To re-instate
the driver, remove the #undef line from config.h. Some care is required for certain
drivers. For example, Ethernet may require that a DMA driver be present. Undefining the
DMA driver will cause the build to fail.

Project Facility
The Project Facility is part of the Tornado IDE. It is a GUI driven environment. To
add/delete CSP drivers, go to the VxWorks pane in the workspace window (see figure
below). Then add/delete driver components under IP_CSP just as you would with any
other VxWorks component.

http://www.xilinx.com

January 2003 www.xilinx.com 89
Processor IP Reference Guide 1-800-255-7778

Memory Map
R

Figure 1: Project Facility GUI Configuration

Note that whatever configuration has been specified in ip_config.h and config.h will
be overridden by the project facility.

Memory Map
Due to the nature of this evaluation board a full memory map is not given in this
document. The user is instead referenced to "C" source code header file xparameters.h.
This source file provides a memory map for all CSP devices. A partial map is given here
that relates directly to BSP operation.

Table 8-1: System Memory Map

Device Start (hex) End (hex) Size (bytes)

PLB SDRAM 00000000 01FFFFFF 32 MB

OPB Space 40000000 DFFFFFFF 2.5 GB

PLB BRAM FFFF8000 FFFFFFFF 32 KB

http://www.xilinx.com

90 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

RAM Memory Map
RAM device contains the VxWorks runtime image and heap space. MDFG456 follows
VxWorks conventions for RAM usage for PowerPC processors. Refer to Appendix F of the
VxWorks 5.4 Programmer’s Guide.

Flash Memory Map
The P160 communications module contains 8MB of flash memory implemented on two
Toshiba TH50VSF2581 parts. These parts are wired together to form a 32 bit memory
width. The flash blocks are not of uniform size. Smaller "parameter" blocks reside at the
beginning of the addressing range of these parts. The BSP uses the first one of these eight
parameter blocks. The remaining parameter blocks are not used. The "main" blocks can be
used to store a VxWorks image or any other user data. The "hidden" block is not utilized by
this BSP.

Table 8-2: RAM Memory Map

Physical Address
Range (hex) Usage

00000000..000000FF (SDRAM) Unused & undefined

00000100..00002FFF (SDRAM) Interrupt Vector table

00003000..00010000 (SDRAM) VxWorks usage. Exception reason message and other
VxWorks constructs are at the bottom of this region. Initial stack
is set at the top of this range and grows downward. Once
VxWorks has switched to multi-tasking mode, this stack is no
longer used.

00010000..00BFFFFF (SDRAM) RAM_LOW_ADRS. VxWorks image, interrupt stack,
host memory pool, and heap space.

00C00000..01FFFFFF (SDRAM) RAM_HIGH_ADRS. Two possible uses. (1) VxWorks
bootrom image and heap space. (2) VxWorks heap space.

48000000..480FFFFF (SDRAM) This memory is resident on the P160 communications
add-on module and is part of the Toshiba flash memory device.
This memory area is used for network buffers.

FFFF8000..FFFFFFFF (BRAM) Address FFFFFFFC contains reset vector.

Table 8-3: Flash Memory Map

Offset Byte Address
Range (hex) Usage

00000000..00003FFF First parameter block used for NVRAM storage
VxWorks boot line at offset [0..255]
Ethernet mac address at offset [3FFA-3FFF]

00004000..0001FFFF Remaining parameter blocks unused

00020000..007FFFFF VxWorks images or other user data

http://www.xilinx.com

January 2003 www.xilinx.com 91
Processor IP Reference Guide 1-800-255-7778

NVRAM
R

OPB Memory Map
The P160 communications module contains 8MB of flash memory implemented on two
Toshiba TH50VSF2581 parts. These parts are wired together to form a 32 bit memory
width. The flash blocks are not of uniform size. Smaller "parameter" blocks reside at the
beginning of the addressing range of these parts. The BSP uses the first one of these eight
parameter blocks. The remaining parameter blocks are not used. The "main" blocks can be
used to store a VxWorks image or any other user data. The "hidden" block is not utilized by
this BSP.

NVRAM
NVRAM support is provided by the Toshiba flash memory. The first parameter block of
this flash array is reserved for NVRAM. A special NVRAM to flash driver is utilized by the
BSP at $WIND_BASE/src/drv/mem/nvRamToFlash.c. This driver uses functions in
sysFlash.c to read/write parameters to NVRAM.

When there is no flash support, the BSP will replace the NVRAM driver with
$WIND_BASE/src/drv/mem/nullNvRam.c which provides only function stubs so that
VxWorks will link. When this is the case, the default bootline is used (see config.h) and
the Ethernet MAC address defaults to: 00:0a:35:00:00:00.

Caches
The instruction and data caches are supported by the BSP and managed by VxWorks
proprietary libraries. They are enabled by modifying the following constants in config.h
or by using the Tornado Project facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT - If #define’d, the VxWorks cache libraries are linked
into the image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE - If #define’d, VxWorks will enable the instruction cache
at boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

Table 8-4: OPB Memory Map (unused areas not shown)

Physical Address
Range (hex) Usage

48000000..480FFFFF SRAM

5FFFFF00..5FFFFFFF EMC control

60000000..6000FFFF OPB peripherals

DE000000..DE7FFFFF Flash memory

Table 8-5: NVRAM Memory Map

Part Offset
Range (hex)

sysNvRamGet/Set
Offset Usage

0000..00FF 0000..00FF Reserved for VxWorks bootline

0100..3FF9 0100..3FF9 Unused

3FFA..3FFF 3FFA..3FFF Ethernet MAC address

http://www.xilinx.com

92 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

• USER_D_CACHE_ENABLE - If #define’d, VxWorks will enable the data cache at
boottime. Requires INCLUDE_CACHE_SUPPORT be #define’d to have any effect.

The caches are configured by the following constants in MDFG456.h. These constants map
to the PPC cache control registers of the same name. See PPC405 documentation for further
information on these registers:

• MDFG456_ICCR_VAL - Initial contents of the ICCR register (instruction cacheability
attribute).

• MDFG456_DCCR_VAL - Initial contents of the DCCR register (data cacheability
attribute).

• MDFG456_DCWR_VAL - Initial contents of the DCWR register (write back/through
attribute).

• MDFG456_SGR_VAL - Initial contents of the SGR register (guarded attribute).

Without the MMU enabled, the following rules apply to configuring memory access
attributes and caching:

• There is no address translation, all addresses are physical.
• Cache control granularity is 128MB.
• The guarded attribute applies only to speculative instruction fetches on the PPC405.

MMU
If the MMU is enabled, then the cache control discussed in the previous section may not
have any effect. The MMU is managed by VxWorks proprietary libraries but the initial
setup is defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC
should be #define’d in config.h or by using the Project Facility. The constant
USER_D_MMU_ENABLE and USER_I_MMU_ENABLE control whether the instruction
and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. Amongst other things, this table configures memory areas with the
following attributes:

• Whether instruction execution is allowed.
• Whether data writes are allowed
• Instruction & data cacheability attributes.
• Translation offsets used to form virtual addresses.

The PPC405 is capable of other attributes including zone protection, however, Wind River
documentation is poor in this area and it is unclear whether the basic MMU package
supports them. An add-on is available from Wind River (which is enabled by
INCLUDE_MMU_FULL) for advanced MMU operations.

Table 8-6: Cache Map

Physical Address
Range (hex)

I
Cache

D
Cache

Write
Back/Through Guarded

00000000..01FFFFFF Y Y Back N

F8000000..FFFFFFFF Y Y N/A N

everything else N N N/A N

http://www.xilinx.com

January 2003 www.xilinx.com 93
Processor IP Reference Guide 1-800-255-7778

Exception Handling
R

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and
creates page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even
though the processor is capable of representing up to 16MB per PTE) Beware that
specifying large areas of memory uses substantial amounts of RAM to store the PTEs. To
map 4MB of contiguous memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PPC405 processor,
it may be beneficial to not enable the instruction MMU and rely on the cache control
settings in the ICCR register (see MDFG456_ICCR_VAL in previous section). This strategy
can dramatically reduce the number of page faults while still keeping instructions in cache.

Exception Handling
There are two types of exceptions which are of importance to the BSP. The first type are
internal exceptions such as machine check, illegal instruction, etc.. By default, the BSP
configures VxWorks to trap these types of exceptions. When one occurs, the offending task
is suspended and a descriptive message is displayed on the console. If the exception occurs
in interrupt context, VxWorks will reboot itself.

The other type of exception are external asynchronous. The BSP initializes and handles
these exceptions which are the result of an active signal on the external or critical interrupt
pins of the processor.

There are two INTC IP devices within the FPGA, one connected to the processor’s external
interrupt and the other on the critical interrupt. Functions in BSP source code file
sysInterrupt.c are responsible for initializing these two devices with the XIntc
component driver and hooking them into VxWorks.

External Interrupts
Most IP peripherals that can generate interrupts are attached to the INTC component
responsible for asserting the external interrupt processor exception. BSP initialization code
hooks control of this device into the VxWorks intLib library.

External interrupt vectors are defined in xparameters.h. MDFG456.h may translate
these vectors into SYS_<device>_VEC_ID to limit changes to BSP source code when
device names change. These constants are utilized when invoking the VxWorks intLib
functions. Example:

#include <intLib.h>

void foo(void)
{
 intEnable(SOME_DEVICE_VEC_ID);
}

Critical Interrupts
Since VxWorks does not define a critical interrupt API as it does for external interrupts, the
user must utilize the API defined in sysLibExtra.h. Functions sysIntCritConnect,
sysIntCritEnable, and sysIntCritDisable are designed to work identically to
those for the external interrupt defined by the VxWorks intLib.h library. Example

#include "sysLibExtra.h"

void foo(void)
{
 sysIntCritEnable(SOME_CRITICAL_DEVICE_VEC_ID);
}

http://www.xilinx.com

94 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

Note: PLB/OPB bridges & arbiters are wired to the critical interrupt handler. If these
interrupt sources are enabled and the PPC machine check interrupt is enabled then
VxWorks may reboot when an exception occurs. This is because the PLB/OPB
bridge/arbiter will most likely interrupt when a transaction cannot complete. At the same
time the PPC will detect a bad bus cycle and generate a machine check exception. This will
lead to the VxWorks exception handler being interrupted. VxWorks architecturally does
not allow this and will reboot the system when it occurs.

It is not recommended to sysIntCritEnable() one of these interrupt sources. Instead,
use the VxWorks excHookAdd() function to use your own function perform custom
exception processing (after VxWorks finishes its own processing). Here, the hook function
can examine the bridges/arbiters and perform whatever task is required for the event.

System ACE
The System ACE controller is a device that provides a way to store multiple FPGA
bitstream loads. These loads are stored on a compact flash (CF) device and downloaded by
the System ACE controller into the FPGA when the system is powered up. Additionally,
these bitstreams can contain a software load that is downloaded to RAM after the FPGA’s
IP cores have been programmed. These bitstream loads are stored in the CF device in a
DOS filesystem. This means regular files can be accessed from the CF as well. Such files
include VxWorks ELF images, application code & data, and text script files.

The BSP utilizes the SystemACE controller in two ways. First as a boot device and second
as an external storage device. Both applications require the following constants be defined
in config.h or by using the Tornado Project facility to change the constants of the same
name:

• SYS_SYSACE_DEV_ID - Should be set to the xparameters.h XPAR constant
associated with the System ACE controller device identifier.

• SYS_SYSACE_BASEADDR - Should be set to the xparameters.h XPAR constant
associated with the System ACE controller base address.

Note that System ACE is not supported in Rev 0 of the BSP.

DOS File System
When being used as a file storage device, the BSP will mount the CF as a DOS FAT disk
partition using Wind River’s DosFs2.0 add-on. To get the required VxWorks libraries into
the image, the following packages must be #define’d in config.h or by the Project
Facility:

• INCLUDE_DOSFS_MAIN
• INCLUDE_DOSFS_FAT
• INCLUDE_DISK_CACHE
• INCLUDE_DISK_PART
• INCLUDE_DOSFS_DIR_FIXED
• INCLUDE_DOSFS_DIR_VFAT
• INCLUDE_CBIO

Automounting
To automatically mount the System ACE as a file system at boot time,
INCLUDE_XSYSACE_AUTOMOUNT must be defined. In the Project facility, this is defined by

http://www.xilinx.com

January 2003 www.xilinx.com 95
Processor IP Reference Guide 1-800-255-7778

Board API
R

enabling the automount feature in the System ACE folder. When defined, two more
constants are utilized to mount the compact flash device: SYSACE_AUTOMOUNT_POINT
and SYSACE_AUTOMOUNT_PARTITION. In the Project facility, these constants can be set by
editing the System ACE properties folder. This relieves the application from having to
initialize and mount the DOS File system. Note that this works only for Project builds.
Command line builds require that the application invoke sysSystemAceInitFS() and
sysSystemAceMount(). These functions are described in the Board API section below.

Board API
This section will not go over CSP device driver functions. Instead the user is directed to the
appropriate ip_csp/xsrc/<device>.c file for documentation and usage.

There are a handful of "board level" BSP functions not implemented by the CSP device
drivers. Prototypes for these functions are located in
config/MDFG456/sysLibExtra.h.

Standard I/O
The BSP comes with stdin, stdout, and stderr directed through the UART on the P106
connector . The default UART baud rate is set to 115200, no parity, 8 data bits, and 1 stop
bit. The secondary UART on P107 is enabled and ready for application usage. It defaults to
19200 baud, no parity, 8 data bits, and 1 stop bit.

GPIO
Two instances of GPIO can be included in the BSP. The first instance controls the
momentary push button switches, their surrounding LEDs, and the bank of 8 DIP
switches. The second GPIO instance controls the LCD display. Both instances require that
INCLUDE_XGPIO constant be defined.

DIP switches 1-4 are reserved for the bitstream and for the BSP. Application code may use
switches 5-8.

void sysLedOn(UINT32 mask)
Turns on LEDs in the mask. Bits set to one cause the associated LED to be illuminated. The
mask is built using constants GPIO_OUT_LEDx defined in MDFG456.h where x is the LED
number on the PCB. This function requires INCLUDE_XGPIO be defined.

void sysLedOff(UINT32 mask)
Turns off LEDs in the mask. Bits set to one cause the associated LED to be turned off. The
mask is built using constants GPIO_OUT_LEDx defined in MDFG456.h where x is the LED
number on the PCB. This function requires INCLUDE_XGPIO be defined.

UINT32 sysSwitchReadState(void)
Reads the state of all the push button switches. A mask is returned describing which
switches are closed (i.e. being pushed). The mask is decoded using constants
GPIO_IN_PUSHx defined in MDFG456.h where x is the switch on the PCB. This function
requires INCLUDE_XGPIO be defined. Usage example:

UINT32 mask = sysSwitchReadState();

http://www.xilinx.com

96 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

if (mask & GPIO_IN_PUSH3)
{
 // handle switch 3 press
}

UINT32 sysDipReadState(void)
Reads the state of all the DIP switches. A mask is returned describing which switches are in
the "ON" position. The mask is decoded using constants GPIO_IN_DIPx defined in
MDFG456.h where x is the DIP switch position on the PCB. This function requires
INCLUDE_XGPIO be defined. Usage example:

UINT32 mask = sysDipReadState();

if (mask & GPIO_IN_DIP5)
{
 // handle DIP #5 being "on"
}

void sysLcdWriteInstruction(UINT8 data)
This function clocks in an instruction command to the LCD device. Application code can
use this function to perform low level operations to the LCD display.

void sysLcdWriteData(UINT8 data)
This function clocks in data to the LCD device’s internal RAM. This function is typically
used to place a character somewhere in the device’s memory. Application code can use this
function to perform low level operations to the LCD display.

System ACE
These routines require that the INCLUDE_XSYSACE constant be defined. The command
line BSP will not initialize the DOS file system resident on the compact flash. Application
code will have to make function calls to initialize and mount:

FILE *fp;

sysSystemAceInitFS();
if (sysSystemAceMount("/cf0", 1) != OK)
{
 /* handle error */
}

fp = fopen("/cf0/myfile.dat","r");
 .
 .

STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
Sets the reboot JTAG configuration address. This address is mapped to cfgaddr0..7 as
defined in XILINX.SYS in the root directory of the CF device. If this function is never
invoked, then the default address is used. The default address is the address selected by
the rotary switch. The given address will be rebooted if sysToMonitor() or reset() is
called.

http://www.xilinx.com

January 2003 www.xilinx.com 97
Processor IP Reference Guide 1-800-255-7778

Board API
R

The configAddr parameter range is 0..7 (i.e. cfgaddr0..7) or -1 to select the default
address.

Returns ERROR if configAddr is out of range, OK otherwise.

void sysSystemAceInitFS(void)
Initializes the required Wind River DosFs 2.0 libraries. Application code is not required to
call this function on a BSP built with the Project facility.

STATUS sysSystemAceMount(char* mountPoint, int partition)
Mount the compact flash as DOS file system volume. The mountpoint parameter is an
arbitrary string labeling the device. Once mounted, refer to this mountpoint in all file
accesses. The partition parameter specifies the partition to mount. If "0" is specified
then the boot device is assumed to not contain a partition table (i.e. it is treated like a floppy
disk).

Note: Before calling this routine, be sure to initialize the DOS file system with a call to
sysSystemAceInitFS().

Note: Application code is not required to call this function on a BSP built with the Project
facility with INCLUDE_XSYSACE_AUTOMOUNT defined.

LCD
This board contains a LCD character display capable of displaying 1 or 2 lines of
characters. Control of the display is handled using GPIO lines. The BSP sets up the LCD
display for two lines using the 5x8 character matrix with no cursor. This setup provides a
2x16 character window.

Low level functions are available to write instructions and data to the device (see
sysLcdWriteInstruction() and sysLcdWriteData() in section GPIO, page 95).

void sysLcdWriteString(char* string)
This function writes the given string to the LCD display. Before writing, the LCD display is
cleared. The string parameter may truncate in the display if too long. A null string will
clear the display. If string contains the newline character "\n", then characters following it
will be placed in the 2nd line of the display. If more than one newline is present, then the
text following the last newline will be written to the 2nd line of the display.

This function assumes LCD display characteristics have not been changed since
sysLcdInit() was invoked at boot time. If display font or line mode have been changed,
then the string may look scrambled in the display.

Miscellaneous Functions

void sysMsDelay(UINT32 delay)
Delay the specified number of milliseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

http://www.xilinx.com

98 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

void sysUsDelay(UINT32 delay)
Delay the specified number of microseconds. The delay is implemented as a busy loop that
occupies the CPU. The delay can be pre-empted by a higher priority task or interrupts if
tasking/interrupts are enabled causing loss of delay precision.

This function not accurate for delay times below 20us due to system overhead. The
overhead is more or less constant and can be negated by the use of SYS_US_DELAY_BIAS
defined in config.h. Use this constant to calibrate to your system’s needs. As delivered
with a 300 MHz CPU clock and a bias of -2, this function is accurate within +/-15% for a
20us delay. As the delay time increases, the accuracy increases.

Custom Options
This section discusses MDFG456 specific configuration options that can be set either in
config.h or in the Project GUI. Unless otherwise stated, these options can be set by
#define’ing or #undef’ing them in config.h or by defining them in the Project GUI in
the project workspace’s macros settings in the build tab.

Table 8-7: Custom BSP Options

Option Description

INCLUDE_P160_COMM_MO
DULE

Controls whether code used to control peripherals is
eligible to be compiled into the BSP. P160 has an
ethernet controller, flash/SRAM memories, and a
UART amongst other things.

INCLUDE_XSYSACE_INSTAL
L_-RESET_VEC

Controls whether reset code is placed the processor’s
reset vector address. This reset code will trigger
SystemACE to load the default configuration
bitstream.

INCLUDE_XSYSACE_AUTOM
OUNT

Controls whether the System ACE filesystem is
mounted at boot time using the next two SYSACE_
constants defined in this table. This constant affects
only Project builds.

SYSACE_AUTOMOUNT_POI
NT

Default mount point used when INCLUDE_-
XSYSACE_AUTOMOUNT is defined in Project builds.

SYSACE_AUTOMOUNT_PAR
TITION

Default partition used when INCLUDE_XSYSACE_-
AUTOMOUNT is defined in Project builds.

INCLUDE_BOOT_FLASH Sets the BSP up to boot from Flash memory. If not
defined, then SystemACE is assumed to be the
bootstrap device.

SYS_US_DELAY_BIAS Adds the specified number of microseconds to the
delay parameter in sysUsDelay(). This option can
be used to cancel out overhead.

http://www.xilinx.com

January 2003 www.xilinx.com 99
Processor IP Reference Guide 1-800-255-7778

Building VxWorks
R

Building VxWorks
The MDFG456 BSP follows the standard Tornado conventions when it comes to creating a
VxWorks image. Refer to Tornado documentation on how to make a VxWorks image. This
section discusses extensions made to the build process.

Command-Line BSP Build Extensions
The CSP is compiled/linked with the same toolchain VxWorks is created with. Only very
minor additions are made to the Makefile to support the CSP build such as compiler
directives telling the BSP where to find the CSP files and visa-versa.

Project BSP Build Extensions
There are no extensions to the Project build. The BSP should behave just like any other
normal BSP.

Bootup Sequence
There are many variations of VxWorks images with some based in RAM, some in ROM.
Not all these images are supported on the reference board when using System ACE. The
following list discusses various image types:

• Compressed images - Not supported when using System ACE as the bootstrap loader.
These images begin execution in ROM and decompress the image into RAM.
SystemACE has no knowledge of the compression algorithm being used by VxWorks.
Compressed images are allowed if flash memory is the bootstrap device.

• RAM based images - Fully supported.
• ROM based images - Fully supported. These images begin execution in ROM, copy

themselves to RAM then transfer execution to and stay in RAM. System ACE
performs the copy operation, so the BSP has been prepared to short circuit the
VxWorks copy (see romInit.s).

• ROM resident images - Not supported when using System ACE as the loader. These
images begin execution in ROM, copy the data section to RAM, and execution
remains in ROM. Theoretically BRAM could be used as a ROM however the current
VirtexII Pro parts being used in MDFG456s do not have the capacity to store a
VxWorks image which could range in size from 200KB to over 700KB. ROM resident
images are allowed if flash memory is the bootstrap device.

INCLUDE_EMAC_PHY_RESE
T_-AT_BOOT

Controls whether the Ethernet PHY is reset at boot
time. In the Project GUI, this is a parameter under the
emac component and can be found under hardware-
>peripherals->IP CSP-> Ethernet Core. Set to TRUE to
enable, FALSE to disable.

SYS_GPIO_SWITCH_DEBOU
NCE_TICKS

Sampling interval used by function
sysSwitchReadState() when attempting to
debounce switches. Units are in clock ticks.

SYS_LCD_INIT_DISPLAY If this character constant is defined, then it’s value
will be written to the LCD display at boot time.
Requires GPIO support (INCLUDE_XGPIO).

Table 8-7: Custom BSP Options

Option Description

http://www.xilinx.com

100 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

vxWorks
This image is meant to be downloaded to the target RAM space. Once downloaded, the PC
should be set to function _sysInit (implemented in sysALib.s). Most of the time, the
device performing the download will do this for you as it can extract the entry point from
the image.

1. _sysInit : Low level initialization. Since this image is copied to RAM, the device that
downloaded the image may have to perform manual system initialization to make
RAM visible. When completed, this function will setup the initial stack and invoke the
first "C" function usrInit().

2. usrInit() : Performs pre-kernel initialization. Invokes sysHwInit() implemented
in sysLib.c to place the HW in a quiescent state. When completed, this function will
call kernelInit() to bring up the VxWorks kernel. This function will in turn invoke
usrRoot() as the first task.

3. usrRoot() : Performs post-kernel initialization. Hooks up the system clock,
initializes the TCP/IP stack, etc. Invokes sysHwInit2() implemented in sysLib.c
to attach and enable HW interrupts. When complete, usrRoot() invokes user
application startup code usrAppInit() if so configured in the BSP.

bootrom_uncmp
This image is ROM based but in reality it is linked to execute out of RAM addresses. While
executing from ROM, this image uses relative addressing to perform tasks before jumping
to RAM. This image behaves differently than a traditional bootrom due to the fact it is
already in RAM when control is passed to it (via System ACE).

1. Power on. System ACE loads the bitstream into the FPGA then loads the bootrom
image into RAM and passes control to assembly language function _romInit located
in romInit.s.

2. _romInit : Traditionally this function would perform board level initialization then
call romInit() which would copy the VxWorks image to RAM. Since the image is
already in RAM, this function simply jumps to assembly function _sysInit.

3. Follows steps 1, 2 & 3 of the "vxWorks" bootup sequence.

Difference Between Command-Line & Project BSPs
Functions usrInit(), usrRoot(), and romStart() as explained in the boot sequence
steps above are implemented by Tornado. In command line BSPs, these functions are
defined in source code located at $WIND_BASE/target/config/all. In Project BSPs,
the Project Facility generates this code in the user’s project directory.

Functions _sysInit, _romInit, sysHwInit(), and sysHwInit2() are implemented
by the BSP in config/MDFG456. These functions are utilized on both the command-line
and project BSPs.

Bootrom Programming
The bootrom is a scaled down VxWorks image that operates in much the same way a PC
BIOS does. Its primary job is to find and boot a full VxWorks image. The full VxWorks
image may reside on disk, in flash memory, or on some host via the Ethernet. The bootrom
must be compiled in such a way that it has the ability to retrieve the full image. If the image
is retrieved on the Ethernet, then the bootrom must have the TCP/IP stack compiled in, if

http://www.xilinx.com

January 2003 www.xilinx.com 101
Processor IP Reference Guide 1-800-255-7778

Bootrom Programming
R

the image is on disk, then the bootrom must have disk access support compiled in, etc. The
bootroms do little else than retrieve and start the full image and maintain a bootline. The
bootline is a text string that set certain user characteristics such as the target’s IP address if
using Ethernet and the file path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in development and replaced
with the production VxWorks image.

Creating Bootroms
On a command line window, cd to the config/MDFG456 directory. Issue a "make
bootrom_uncmp". Run the batch file $WIND_BASE\host\x86-win32\bin
\torVars.bat (if using Micro$oft Windows) to setup command line environment
variables before building the bootroms.

The next step is to either test bootrom_uncmp by downloading it with an emulator or
creating an .ace file out of it (combined with the IP core bitstream) for download by
SystemACE. See VirtexII Pro documentation on how to create .ace files

Bootrom Display
Upon cycling power, if the bootroms are working correctly, output similar to the following
should be seen on the console serial port:

 VxWorks System Boot

Copyright 1984-1998 Wind River Systems, Inc.

CPU: MDFG456 VirtexII Pro PPC405
Version: 5.4.2
BSP version: 1.2/0
Creation date: January 10 2003, 11:59:00

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing the "help" at this prompt lists the available commands.

Bootline
Non-volatile storage of the bootline requires NVRAM support which in itself requires IIC
support. If NVRAM support is not present or an error occurs reading it, then the
DEFAULT_BOOT_LINE is utilized. If NVRAM is uninitialized (such as it will be in new
systems) then the bootline may be gibberish.

MDFG456 bootroms support the network interface and System ACE as the boot device.
The bootline tells the bootrom how to find the vxWorks image. The bootline is maintained
at runtime by the bootrom. The bootline can be changed if the auto-boot countdown
sequence is interrupted by entering a character on the console serial port. The "c"
command can then be used to edit the bootline. Enter "p" to view the bootline. On a non-
bootrom image, you can still change the bootrom by entering the bootChange command
at a host or target shell prompt.

The following list goes over the meanings of the bootline fields:

http://www.xilinx.com

102 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

- boot device : Choices are "xemac" or "sysace=x". When set to xemac, the BSP
will boot over the network. When set to "sysace=x", the BSP will boot from a file
resident on the System ACE device. See Booting from SystemACE, page 102 for
further information on how to specify the System ACE boot device. Note that
when changing the bootline, the unit number may be shown appended to this
field ("xemac0" or "sysace=10) when prompting for the new boot device. This
number can be ignored.

- processor number : Always 0.
- host name : Name as needed. Can be arbitrary.
- file name : The VxWorks image to boot. If the boot device is the network

"xemac", then the file must be accessible on the host computer via ftp. See Booting
from SystemACE, page 102 for specifying a System ACE file.

- inet on ethernet (e) : The IP internet address of the target. If there is no
network interface, then this field can be left blank.

- host inet (h) : The IP internet address of the host. If there is no network
interface, then this field can be left blank.

- user (u) : Username for host file system access. Pick whatever name suites you.
Your ftp server must be setup to allow this user access to the host file system.

- ftp password (pw) : Password for host file system access. Pick whatever
name suites you. Your ftp server must be setup to allow this user access to the
host file system.

- flags (f) : For a list of options, enter the "help" command at the [VxWorks
Boot]: prompt.

- target name (tn) : Whatever names suites you.
- other (o) : This field is not applicable when "xemac" is specified as the boot

device. When "sysace" is the boot device, then this field should be set to "xemac".
This will signal the VxWorks image specified in the file name field to start the
network on the xemac device. (if network support was included)

- inet on backplane (b) : Leave blank. MDFG456 is not on a VME or PCI
backplane.

- gateway inet (g) : Enter an IP address here if you have to go through a
gateway to reach the host computer. Otherwise leave blank.

- startup script (s) : Path to a file on the host computer containing shell
commands to execute once bootup is complete. Leave blank if not using a script.
Examples:
 SystemACE resident script: /cf0/vxworks/scripts/myscript.txt
 Host resident script: c:/temp/myscript.txt

Booting from SystemACE
The "boot device" field of the bootline is specified using the following syntax:

 sysace=<partition number>

where <partition number> is the partition to boot from. Some CF devices do not have
a partition table and are formatted as if they were a large floppy drive. In this case, specify
0 as the partition number. Failure to get the partition number correct will lead to errors
being reported by VxWork’s dosFS libraries when the drive is accessed.

The "file name" field of the bootline is set depending on how the System ACE is to boot the
system. There are two boot methods:

1. Boot from a regular file. This is similar to network booting in that the vxWorks image
resides in the SystemACE compact flash storage device instead of the host file system.

http://www.xilinx.com

January 2003 www.xilinx.com 103
Processor IP Reference Guide 1-800-255-7778

Bootrom Programming
R

The compact flash device is a DOS file system partition. Simply build vxWorks using
the Tornado tools then copy the resulting image file to the compact flash device using
a USB card reader or similar tool. Then specify that file in the "file name" field of the
boot rom.

The "file name" must have the following syntax:

 /cf0/<path/to/vxWorks/Image>

where cf0 is the mount point. <path/to/vxWorks/Image> should provide the
complete path to the VxWorks image to boot. When being specified in this way, the
bootrom will mount the drive as a DOS formatted disk, read the file into memory and
begin execution.

2. Boot from an ace file. The ace file can contain HW only, SW only, HW + SW. When
booting from an ace file with HW, the FPGA is reprogrammed. If the ace file contains
SW, then it is loaded into the correct memory address ranges, the processor’s PC is set
to the entry point and released to begin fetching instructions. This boot method is
flexible in that a totally different HW profile can be "booted" from a VxWorks bootrom.
ace files are created with the Xilinx ISI tools and is beyond the scope of this manual.

The "file name" must have the following syntax:

 cfgaddr[x]

where [X] is a number between 0 and 7 that corresponds to one of the configuration
directories specified in the XILINX.SYS file resident in the root directory of the compact
flash device. If [X] is omitted, then the default configuration is used. The default
configuration is selected by the rotary switch on the MDFG456 board. The bootrom will
trigger a JTAG download of the ace file pointed to by the specified config address.
There should be only a single file with an .ace extension in the selected configuration
directory.

Bootline Examples
The following example boots from the ethernet using the Xilinx "xemac" as the boot device.
The image booted is on the host file system on drive C.

boot device : xemac
unit number : 0
processor number : 0
host name : host
file name : c:/tornado/target/config/MDFG456/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

The following example boots from a file resident on the first partition of the SystemACE’s
compact flash device. If the file booted from /cf0/vxworks/images/vxWorks utilizes
the network, then the "xemac" device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0

http://www.xilinx.com

104 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

host name : host
file name : /cf0/vxworks/images/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

The following example boots from an ace file resident on the first partition of the
SystemACE’s compact flash device. The location of the ace file is set by XILINX.SYS
located in the root directory of the compact flash device. If the ace file contains a VxWorks
SW image that utilizes the network, then the "xemac" device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : cfgaddr2
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

Deviations
This section sums up the difference between garden variety BSPs and the MDFG456. The
differences between the two fall roughly into key areas: CSP and System ACE support.

The CSP contains drivers for the Xilinx IP cores (see CSP Driver Organization, page 87).
To keep the BSP buildable while maintaining compatibility with the Tornado Project
facility, a set of files named ip_<driver>_<version>.c populate the BSP directory that
simply #include the source code from the CSP.

The location of the CSP relative to the BSP directory causes problems because command
line and Project facility differ in how BSP files are found during compilation. To address
this issue, a key Project macro (BSP_DIR) is defined in the BSP’s Makefile. Of all
deviations, this one is the most dangerous because future versions of Tornado may cause
builds to fail. The Makefile contains more information about this deviation.

System ACE, being a boot device and a DOS file system, has required that two VxWorks
source code files found in the Tornado distribution be changed. Wind River allows BSP
developers to change some source code files provided they follow set guidelines. The two
files that have been modified from their original version are bootConfig.c and net/
usrNetBoot.c.

usrNetBoot.c, used only by Project Facility builds, required a 1 line of code change to
tell VxWorks that the System ACE device is a disk based system like IDE, SCSI, or floppy
drives. This change allows the BSP to properly process the "other" field of the bootline (see
Bootline, page 101) when System ACE is the boot device. The "other" field allows the
selection of a network device when booting from a disk based system.

bootConfig.c, used only by bootroms builds, required extensive modifications to
support SystemACE as a boot device. These mods are bracketed by INCLUDE_XSYSACE
preprocessor ifdefs. Another mod enabled the data cache when ethernet frames are copied

http://www.xilinx.com

January 2003 www.xilinx.com 105
Processor IP Reference Guide 1-800-255-7778

Limitations
R

from fifos instead of DMA. This change greatly increases the bootup times for the system
but could cause problems if another device required for booting utilizes DMA or requires
some sort of special cache coherency in the first 128MB of address space.

Limitations
This section goes over what this BSP cannot do and the reasons why. It also goes over
what-if scenarios when key pieces of IP are not part of the FPGA load.

No WARM boots when System ACE is the bootstrapping device

All boots are cold. There is no distinction between warm, cold, or any other type of boot.
This is because reboots are managed by the System ACE device which resets the processor
whenever it performs an ace download.

This could cause an exception message generated by VxWorks to not be printed to the
console when the system is rebooted due to an exception in an ISR or a kernel panic. See
troubleshooting guide for tips to get at this exception message.

No compressed images when System ACE is the bootstrapping device

If you compile a compressed image then try to boot it as an ace file, results will be
undetermined. This is because System ACE cannot decompress data as it writes it to ram.

Command line builds cannot initialize the network when System ACE is the boot device

This requires that the application provide code to initialize the network. Project builds can
get around this because a modified net/usrNetBoot.c is provided in the BSP directory
(see Deviations, page 104). The equivalent file for command line builds is located at
$WIND_BASE/target/src/config/usrNetwork.c. The architecture of the command
line build prevents us from overriding this file with a clone in the BSP directory.

Fixing usrNetwork.c requires changing the following code in function usrNetInit():

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

to

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "sysace", 6) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

Edit this code at your own risk.

Reset Vector

On the PPC405 processor, the reset vector is at physical address 0xFFFFFFFC. There is a
short time window where the processor will attempt to fetch and execute the instruction at
this address.This window is between the time when System ACE has finished

http://www.xilinx.com

106 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

downloading the HW bit stream and before it begins to download the SW image. All
VxWorks requires here is the following assembly instruction:

FFFFFFFC b .

This is in effect a spin loop. This instruction encodes into 0x48000000. Be sure whoever
writes the HW IP includes this instruction at this address which is typically a BRAM
internal to the FPGA.

Trouble Shooting

Project Creation
Issues seen when creating a Tornado Project based on the MDFG456 BSP.

"Project Creation Error" Dialog Pop-up
Scroll to the end of the box and if it contains error messages complaining about missing
header files dpartCbio.h and dcacheCbio.h, then you don’t have the DosFS 2.0
libraries installed in your system.

SingleStep
Issues seen when using SingleStep with this BSP.

Source browser not displaying source code at addresses where source code
should be

Try to rebuild everything with the -gdwarf compiler option.

Tornado Crosswind debugger
Issues seen when using Tornado’s IDE debugger with this BSP.

Source browser not displaying source code at addresses where source code
should be

Is the -gdwarf option enabled in the compiler? Try to rebuild everything with the -g
compiler option.

http://www.xilinx.com

January 2003 www.xilinx.com 107
Processor IP Reference Guide 1-800-255-7778

BSP Release History
R

Target Shell Issues
Issues seen when using the built-in target shell.

Relocation value does not fit in 24 bits message from Loader
This is seen when a system contains more than 32MB of memory. Recompile your source
code using the -mlongcall compiler option.

Ethernet Issues
Issues seen when integrating/using the XEmac Ethernet adapter

Network interface xemac unknown. Message from console at boot
There are multiple causes to this problem.

1. Did you compile the XEmac component into the BSP? In the Tornado Project facility,
check that both hardware->peripherals->IP CSP->Ethernet EMAC and EMAC END
components are included. On command line BSP builds, is INCLUDE_XEMAC and
INCLUDE_XEMAC_END declared in ip_config.h and not #undef’d anywhere.

2. In the Tornado Project facility, if you remove then later restore network support,
Project fails to restore "END" driver support. Check folder network components-
>network devices and verify that both END attach interface and END interface support
components are included.

BSP Release History

MDFG456 1.2/0 - January 10, 2003
First pre-release for Tornado 2.0. This is a beta release that does not include support for all
HW. Note that testing has been done on the ML3 evaluation board as opposed to the
MDFG456. In other words, this version of the BSP has never been run on the MDFG456
hardware. The SEG IP bitstream is used for this load.

HW Supported
- Main board UART (console). IP core is UartLite.
- Main board SDRAM 32MB
- Main board LEDs (1-4)
- Main board push button switches (1-3)
- Main board DIP switch (1-8)
- Main board LCD display
- P160 daughter board UART. IP core is a UartLite.
- P160 daughter board Flash/SRAM.
- P160 daughter board Ethernet. IP core is a Emac.

http://www.xilinx.com

108 www.xilinx.com January 2003
1-800-255-7778 Processor IP Reference Guide

Chapter 8: Insight MDFG456 Tornado 2.0 BSP User’s Guide
R

HW Not supported
- System ACE daughter board.
- P160 daughter board IIC header
- P160 daughter board SPI header
- P160 daughter board USB port.
- P160 daughter board PS/2 port.

Errata

1. System mode debugging through the END connection does not work.

2. Serial port usage as the WDB target connection does not work. Serial port polling
mode does not seem to work.

3. Rev1 evaluation boards have mis-wired SDRAM that requires all accesses occur in 32
bit divisible quantities. This problem is worked around by enabling the data cache at
bootstrap time and leaving it on. Instruction fetches always occur in 32 bit divisible
quantities.

4. Since System ACE is not supported in this revision (it will be in future revisions), the
only way to get a VxWorks image downloaded into the target is via an emulator.

5. Ethernet links have been iffy on two sample Rev1 boards this BSP has been tested on.
If the link LED on the P160 board does not illuminate after applying power to the
target (assuming there is a cable connected between the RJ45 jack and another network
device), then try reseating the P160, emulator connector, and RS232 connectors. Once
the link is established, it seems to remain that way.

6. Use non null-modem cabling for the RS-232 serial ports.

7. System not tested with MMU enabled.

References
• VxWorks 5.4 Programmer’s Guide
• Tornado 2.0 User’s Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/10/03 1.0 First release.

http://www.xilinx.com

	Processor IP Reference Guide
	About This Manual
	Manual Contents

	Part I: Embedded Processor IP
	OPB Usage in FPGAs
	Overview
	Xilinx OPB Usage
	OPB Options
	Legacy Devices
	Byte-enable Devices
	OPB V2.0 Devices

	Xilinx OPB Devices
	Conversion Cycles
	Write Mirroring and Read Steering
	Ideal FPGA Implementation of OPB-based System

	Specifications for OPB Usage in Xilinx-developed OPB Devices
	Additional Notes on Signal Sets

	Legacy OPB Devices
	Mixed Systems

	OPB Usage Notes
	OPB Comparison
	Revision History

	PLB Usage in Xilinx FPGAs
	Summary
	Overview
	Xilinx PLB Usage
	Dynamic Bus Sizing
	Conversion Cycles
	Write Mirroring and Read Steering

	Xilinx PLB Devices
	Ideal FPGA Implementation of PLB-based System

	Specifications for PLB Usage in Xilinx-developed PLB Devices

	PLB Comparison
	Revision History

	Bus Infrastructure Cores
	On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.00a)
	On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10a)
	On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10b)
	OPB to PLB Bridge (v1.00a)
	OPB to PLB Bridge (v1.00b)
	OPB to OPB Bridge (Lite Version)
	OPB to DCR Bridge Specification
	Processor Local Bus (PLB) V3.4
	PLB to OPB Bridge (v1.00a)
	PLB to OPB Bridge (v1.00b)
	Device Control Register Bus (DCR) V2.9
	Processor System Reset Module
	Local Memory Bus (LMB) V1.0
	OPB Arbiter (v1.02c)

	IPIF
	OPB IPIF Architecture
	OPB IPIF Slave Attachment
	OPB IPIF Master Attachment
	OPB IPIF Address Decode
	OPB IPIF Interrupt
	OPB IPIF Packet FIFO
	Direct Memory Access and Scatter Gather

	Memory Interface Cores
	LMB Block RAM (BRAM) Interface Controller
	Dual LMB Block RAM (BRAM) Interface Controller
	OPB External Memory Controller (EMC) (v1.00d)
	OPB External Memory Controller (EMC) (v1.10a)
	OPB Synchronous DRAM (SDRAM) Controller
	OPB Block RAM (BRAM) Interface Controller
	OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller
	OPB SYSACE (System Ace) Interface Controller
	PLB External Memory Controller (EMC) (v1.00d)
	PLB External Memory Controller (EMC) (v1.10a)
	PLB Synchronous DRAM (SDRAM) Controller
	PLB Block RAM (BRAM) Interface Controller
	PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller
	Instruction Side OCM Block RAM (ISBRAM) Interface Controller
	Data Side OCM Block RAM (DSBRAM) Interface Controller
	Block RAM (BRAM) Block
	OPB External Memory Controller
	OPB ZBT Controller

	Peripheral Cores
	OPB Interrupt Controller (v1.00b)
	OPB Interrupt Controller (v1.00c)
	OPB 16550 UART
	OPB 16450 UART
	OPB UART Lite (v1.00a)
	OPB UART Lite (v1.00b)
	OPB JTAG_UART
	IIC Bus Interface
	OPB Serial Peripheral Interface (SPI)
	OPB IPIF/LogiCore V3 PCI Core Bridge
	Ethernet Media Access Controller (EMAC) (v1.00j)
	Ethernet Media Access Controller (EMAC) (v1.00k)
	OPB Ethernet Lite Media Access Controller
	OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v1.00b)
	OPB Asynchronous Transfer Mode Controller (OPB_ATMC) (v2.00a)
	OPB HDLC Interface (single channel v1.00b)
	OPB Timebase WDT
	OPB Timer/Counter
	OPB General Purpose Input/Output (GPIO)
	PLB 1 Gigabit Ethernet Media Access Controller (MAC) with DMA
	PLB 16550 UART (v1.00b)
	PLB 16550 UART (v1.00c)
	PLB 16450 UART (v1.00b)
	PLB 16450 UART (v1.00c)
	PLB RapidIO LVDS
	PLB Asychronous Transfer Mode Controller (PLB_ATMC) (v1.00a)
	DCR Interrupt Controller Specification (v1.00a)
	DCR Interrupt Controller Specification (v1.00b)

	Part II: Software
	Device Driver Programmer Guide
	Overview
	Goals and Objectives

	Device Driver Architecture
	Layer 2, RTOS Adaptation
	Layer 1, High Level Drivers
	Layer 0, Low Level Drivers
	Object-Oriented Device Drivers
	Component Definition
	Component Implementation
	Component Data Variables
	Component Interface
	Component Instance
	Component Example

	API and Naming Conventions
	External Identifiers
	File Naming Conventions
	Component Based Source File Names
	Implementation Source Files (*.c)
	Header Source Files (*.h)
	Device Driver Layers
	Example File Names

	High Level Device Driver API
	Standard Device Driver API
	Optional Functions

	Configuration Parameters
	xparameters.h
	File Format and Naming Conventions

	x<component name>_g.c
	Example

	Common Driver Infrastructure
	Source Code Documentation
	Driver Versions
	Primitive Data Types
	Device I/O
	Error Handling
	Return Status
	Asserts

	Communication with the Application
	Reentrancy and Thread Safety
	Interrupt Management
	Multi-threading & Dynamic Memory Management
	Cache & MMU Management

	Revision History

	ML300 Tornado 2.0 BSP User Guide
	Overview
	Requirements
	Tornado 2.0.2
	SingleStep (XE)

	Installation
	Compact Flash
	Setting Ethernet MAC Address

	ML300 vs. ML300seg
	Files & Directories
	CSP Driver Organization

	Configuration
	Command-Line
	Project Facility

	Memory Map
	RAM Memory Map (includes DDR and BRAM)

	NVRAM
	Caches
	MMU
	Exception Handling
	External Interrupts
	Critical Interrupts

	IIC
	System ACE
	DOS File System
	Automounting

	Board API
	Standard I/O
	GPIO
	void sysLedOn(UINT32 mask)
	void sysLedOff(UINT32 mask)
	UINT32 sysSwitchReadState(void)
	void sysGpioBankSetDataDirection(UINT32 mask)
	void sysGpioBankWriteDiscretes(UINT32 data)
	UINT32 sysGpioBankReadDiscretes(void)
	void sysLedBusErrClear(UINT32 ledMask)

	System ACE
	STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
	void sysSystemAceInitFS(void)
	STATUS sysSystemAceMount(char* mountPoint, int partition)

	LCD (ML300seg)
	void sysLcdSetColor(UINT32 rgb)
	void sysLcdDisplayColorBars(void)
	void sysLcdSetPixels(int row, int col, unsigned numPixels, UINT32 rgb)
	STATUS sysLcdSetBrightness(unsigned char value)
	STATUS sysLcdGetBrightness(unsigned char *value)

	Power & Temperature Monitor Functions
	void sysPowerMonCpuGet(int *v1_8, int *v2_5, int *v3_3, int *v5, int *v12)
	void sysPowerMonShow(void)
	void sysTemperatureMonGet(int *cpu, int *ambient)
	void sysPowerMonShow(void)

	Miscellaneous Functions
	void sysMsDelay(UINT32 delay)
	void sysUsDelay(UINT32 delay)
	void sysEepromWriteEnable(void)
	void sysEepromWriteDisable(void)

	ML300 Specific Options
	Building VxWorks
	Command-Line BSP Build Extensions
	Project BSP Build Extensions

	Bootup Sequence
	vxWorks
	bootrom_uncmp
	Difference Between Command-Line & Project BSPs

	Bootrom Programming
	Creating Bootroms
	Bootrom Display
	Bootline
	Booting from SystemACE
	Bootline Examples

	This BSP on Other Boards
	Deviations
	Limitations
	Trouble Shooting
	Project Creation
	"Project Creation Error" Dialog Pop-up

	SingleStep
	Source browser not displaying source code at addresses where source code should be

	Tornado Crosswind debugger
	Source browser not displaying source code at addresses where source code should be

	Target Shell Issues
	Relocation value does not fit in 24 bits message from Loader

	Ethernet Issues
	Network interface xemac unknown. Message from console at boot

	BSP Release History
	HW Supported
	HW Not supported
	Usage Notes
	Errata
	HW Supported
	HW Not supported
	Usage Notes
	Errata
	Usage Notes
	Errata
	HW Supported
	HW Not supported
	Usage Notes
	Errata

	References
	Revision History

	Device Driver Summary
	Summary
	Device Driver Reference
	ATM Controller
	Ethernet 10/100 MAC
	Ethernet 10/100 MAC Lite
	External Memory Controller
	General Purpose I/O
	HDLC
	Intel StrataFlash
	Inter-Integrated Circuit (IIC)
	Interrupt Controller
	OPB Arbiter
	OPB to PLB Bridge
	PLB Arbiter
	PLB to OPB Bridge
	Rapid I/O
	Serial Peripheral Interface (SPI)
	System ACE
	Timer/Counter
	UART Lite
	UART 16450/16550
	Watchdog Timer/Timebase

	Building Block Components
	Common
	CPU/CPU_PPC405
	IPIF
	DMA
	Packet FIFO

	Hardware/Software Cross Reference

	Automatic Generation of Tornado 2.0 (VxWorks 5.4) Board Support Packages
	Overview
	Generating the BSP
	User Interface
	User Input
	Template-Based Approach
	Device Drivers
	Backups

	The Tornado 2.0 BSP
	Capabilities and Features
	Integration with IDE
	Device Integration
	Device Driver Location and BSP Directory Tree
	Limitations

	Insight MDFG456 Tornado 2.0 BSP User’s Guide
	Overview
	Requirements
	Tornado 2.0.2
	SingleStep (XE)

	Installation
	Compact Flash
	Setting Ethernet MAC Address

	Files & Directories
	CSP Driver Organization

	Configuration
	Command-Line
	Project Facility

	Memory Map
	RAM Memory Map
	Flash Memory Map
	OPB Memory Map

	NVRAM
	Caches
	MMU
	Exception Handling
	External Interrupts
	Critical Interrupts

	System ACE
	DOS File System
	Automounting

	Board API
	Standard I/O
	GPIO
	void sysLedOn(UINT32 mask)
	void sysLedOff(UINT32 mask)
	UINT32 sysSwitchReadState(void)
	UINT32 sysDipReadState(void)
	void sysLcdWriteInstruction(UINT8 data)
	void sysLcdWriteData(UINT8 data)

	System ACE
	STATUS sysSystemAceSetRebootAddr(unsigned configAddr)
	void sysSystemAceInitFS(void)
	STATUS sysSystemAceMount(char* mountPoint, int partition)

	LCD
	void sysLcdWriteString(char* string)

	Miscellaneous Functions
	void sysMsDelay(UINT32 delay)
	void sysUsDelay(UINT32 delay)

	Custom Options
	Building VxWorks
	Command-Line BSP Build Extensions
	Project BSP Build Extensions

	Bootup Sequence
	vxWorks
	bootrom_uncmp
	Difference Between Command-Line & Project BSPs

	Bootrom Programming
	Creating Bootroms
	Bootrom Display
	Bootline
	Booting from SystemACE
	Bootline Examples

	Deviations
	Limitations
	Trouble Shooting
	Project Creation
	"Project Creation Error" Dialog Pop-up

	SingleStep
	Source browser not displaying source code at addresses where source code should be

	Tornado Crosswind debugger
	Source browser not displaying source code at addresses where source code should be

	Target Shell Issues
	Relocation value does not fit in 24 bits message from Loader

	Ethernet Issues
	Network interface xemac unknown. Message from console at boot

	BSP Release History
	HW Supported
	HW Not supported
	Errata

	References
	Revision History

