
Automatic Speech
Recognition

ASR Tasks and Methods

dr inż. Jakub Gałka, AGH

Types of ASR
● Isolated word (phrase) recognition (“stop”, “one”)
● Concatenated words recognition (“zero zero five”, “start playback”)
● Phrase recognition

○ Grammar rules, limited dictionary, SRGS, ABNF (“pay two hundred to John”)
○ Free grammar, large dictionary, Language Grammar: e.g. N-Gram (“What kind of party is it”)

● LVCSR - Dictation
○ Large vocabulary: 100 000-300 000 words, or more (“Once upon a time…”)
○ Often domain-specific language models

(e.g. medical: “He has had hypertension and hyperlipidemia since 1990”)
○ Lot of different web-APIs (Google Speech API)

● Wake-word / Hot-word detection (“OK Google!”, “Alexa!”)
● Word-spotting, word / phrase search

ASR Performance
● Computational performance

○ latency, < 500ms, <1000ms
○ computational scalability: how many audio streams in real-time on a CPU core or GPGPU (FLOPS)
○ memory usage (RAM)

● Accuracy (%)
○ Word/Phrase Recognition Rate (%), Phone Error Rate (%)
○ Word Error Rate (%), Dictation: WERR < 2%
○ False Positive Rate, False Negative Rate (%) ⇔ False Alarm Rate, Missed Detection Rate

■ e.g False Alarm per Hour (e.g. for some specific noise dB level)
○ Precision, Recall, f-score, ROC, AUC (general detection performance)

● Recognition Confidence: e.g. (0 - 100 %)
○ confidence threshold, e.g. MAP Probability

● Robustness: how noise (e.g. SNR) impacts performance
○ noise: cocktail party, babble noise, street noise, office noise, speech codec noise
○ channel: mic type, transmission channel, sound equalization, reverberation
○ speaker variation

Word Error Rate (%)

ASR - Automatic Speech recognition
problem statement
https://web.stanford.edu/~jurafsky/slp3/

Convert speech audio to text or tokens (not much of NLU)

Which word / character sequence is most likely given the acoustical observations
sequence?

HMM - Hidden Markov Model

Hidden Markov Model - best state sequence
(Viterbi algorithm)

HMM speech modeling
source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf

HMM recognition from hypotheses list
GMM - acoustic model likelihood (observation likelihoods)
HMM - phonetic phrase model (e.g. triphone) (underlying phonetic state model)

By concatenating several HMMs for each word or phrase, we can calculate the probability of
the words given acoustic data and pick the most likely word, or word sequence.

….. Ala

….. Ola
…..

…… Ela

ASR word lattice

N-Best list:
“that sat”: 9.5 “that sit”: 12.0
“that sit”: 7.3 “the cat sat”: 10.2
“the cat sat”: 7.0 === Language Model rescoring ⇒ “the cat sit”: 7.0
“the cat sit”: 4.9 “that sat”: 5.4
“the cat hat”: 4.0 “the cat hat”: 2.8

ASR word lattice

N-Best list:
“that sat”: 9.5 “that sit”: 12.0
“that sit”: 7.3 “the cat sat”: 10.2
“the cat sat”: 7.0 === Language Model rescoring ⇒ “the cat sit”: 7.0
“the cat sit”: 4.9 “that sat”: 5.4
“the cat hat”: 4.0 “the cat hat”: 2.8

Combining Acoustic and Language Models

P(W|X) = p(X|W) * P(W) / P(X)

log P(W|X) = log p(X|W) + log P(W) - log P(X)

N-Best list:
“that sat”: 9.5 “that sit”: 12.0
“that sit”: 7.3 “the cat sat”: 10.2
“the cat sat”: 7.0 === Language Model rescoring ⇒ “the cat sit”: 7.0
“the cat sit”: 4.9 “that sat”: 5.4
“the cat hat”: 4.0 “the cat hat”: 2.8

Language models
Rule-based (FST, grammars, SRGS, BNF)

Statistical (N-gram, bag-of-words)

Deep Learning

- Word2vec (skip-gram), FastText (from FB (Meta))
- BERT - Bidirectional Encoder Representations from Transformers
- GPT-2, GPT-3 (Generative Pre-trained Transformer)

Rule-Based Language modeling (SRGS Example)
Chomsky language classification

● 0 Recursively enumerable grammars –recognizable by a Turing machine
● 1 Context-sensitive grammars –recognizable by the linear bounded automaton
● 2 Context-free grammars - recognizable by the pushdown automaton
● 3 Regular grammars –recognizable by the finite state automaton

“I want a capricciosa and a bottle of water.”

#BNF+EM V2.1;

!grammar ASRENG-US;

!start <main>;

!pronounce “capricciosa” PRONAS “caprikiosa” | PRONAS “caprichioza”;

<main>: <order> | <time_left>;

<time_left>: How (much | many) time (left | remaining) [for (our | my) order];

<order>: <verb> !repeat((a | <number>) (<pizza> | <drinks>) [(and | with) [<verb>]], 1, *);

<verb>: I (want | would like);

<number>: !tag(NUMBER, 1 | 2 | 3);

<pizza>: [pizza] !tag(PIZZA_TYPE, margherita | prosciutto e funghi | capricciosa | vegetariana | calzone);

<drinks>: [!tag(DRINK_FORMAT, glass | bottle) of] !tag(DRINK_TYPE, water | coca | wine | beer);

N-Gram language modeling
P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2)...P(Xn|X1:n−1)

Uni-gram

P(w1w2w3w4) = P(w1)P(w2)P(w3)P(w4)

Bi-gram

P(w1w2w3w4) = P(W4|W3)P(W3|W2)P(W2|W1)P(W1)

Tri-gram

P(w1w2w3) = P(W4|W2W3)P(W3|W1W2)P(W2|W1)P(W1)

Bi-gram model example
use model smoothing to get rid of zeros

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)
 P(food|english)P(</s>|food)
= .25×.33×.0011×0.5×0.68
= .000031

hint: use log_prob for calculations

NN Language Models: e.g. Word2Vec model

● Can be used to predict word likelihood given the preceeding words
● FastText from Meta (Facebook) library
● Word2Vec training:

Deep Architectures for ASR

Good resource for modern ASRs learning: https://web.stanford.edu/~jurafsky/slp3/

ASR Accuracy ASR Benchmarks (2020)

Encoder-Decoder ASR Deep Speech (2014)

CTC - Connectionist Temporal Classification
SOTA models and methods
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf

- Back-end ASR with DNN-HMM LM
- end-to-end, effective with huge datasets

- Transformer with conv layers (Conformer) and CTC CTC (Connectionist Temporal
Classification) / LAS (Listen Attend and Spell)

- Attention models (ResNet + self-attention) and LM rescoring.

- Some ASR Frameworks

wav2letter++ (https://arxiv.org/abs/1812.07625)

Deep Speech (https://github.com/mozilla/DeepSpeech)

Kaldi (http://kaldi-asr.org/)

ASR Datasets
Speech + transcription

- no transcription
- phone-level transcription
- word-level transcription
- phrase-level transcription
- no alignment (for pre-training or forced-alignment required)

https://www.openslr.org/resources.php

https://commonvoice.mozilla.org/

REST, RPC (Google API: https://cloud.google.com/speech-to-text/docs/apis)

API requirements

● synchronous, asynchronous
● confidence measure,
● N-best list with scorings (for rescoring)

API methods (e.g. createRecognizerInstance, getRecognition, setQuality, setLM,
getAlternatives, setLanguageModel, …)

Some APIs: https://medium.com/sciforce/automatic-speech-recognition-asr-systems-compared-6ad5e54fd65f

ASR API

VoiceXML, SRGS (BNF, XML)
https://www.w3.org/Voice/Guide/ https://www.w3.org/TR/speech-grammar/

