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Inertial Motion Sensing Glove for Sign Language
Gesture Acquisition and Recognition

Jakub Gałka, Member, IEEE, Mariusz Mąsior, Mateusz Zaborski, and Katarzyna Barczewska

Abstract— The most popular systems for automatic sign
language recognition are based on vision. They are user-friendly,
but very sensitive to changes in regard to recording conditions.
This paper presents a description of the construction of a more
robust system—an accelerometer glove—as well as its application
in the recognition of sign language gestures. The basic data
regarding inertial motion sensors and the design of the gesture
acquisition system as well as project proposals are presented.
The evaluation of the solution presents the results of the gesture
recognition attempt by using a selected set of sign language
gestures with a described method based on Hidden Markov
Model (HMM) and parallel HMM approaches. The proposed
usage of parallel HMM for sensor-fusion modeling reduced the
equal error rate by more than 60%, while preserving 99.75%
recognition accuracy.

Index Terms— Inertial motion sensors, gesture analysis, sign
language recognition, sensor glove.

I. INTRODUCTION

HAND movement recognition, in its different approaches,
has been a topic of research since the early 90s [1], [2].

Regardless of the passage of time, the topic is still rele-
vant [3]–[7], most likely due to the tons of data provided by
human limb movement (measured by different devices, such
as IoT, CCTV, smart home electronics, etc.).

Researchers are trying to use the human hand as a precise
controller of electronic devices. There are domains where this
method of movement acquisition is in high demand [8]. The
first example concerns medicine. For young interns, the pos-
sibility of surgery simulation, including hand movements,
would be a valuable experience [9]. The second example,
which is directly connected to the topic of this work, is sign
language recognition. Deaf people, in order to maintain their
independence, must be able to communicate with other peo-
ple and interact with consumer devices. An efficient gesture
recognition system, when correctly used, could improve their
quality of life.

The most popular sign language recognition systems use
contactless RGB cameras and image processing, as user
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movement is then not limited by any gear or additional equip-
ment. Vision-based approaches allow for up to 95% correct
recognition of sign language gestures [1], [10]. In the context
of evaluation scenarios and testing conditions, the accuracy is
reasonably high, although it is not enough in cases where a
highly reliable and robust system is needed. Inertial and orien-
tation sensors such as accelerometers, magnetometers, or gyro-
scopes are highly efficient. These devices are not influenced
by environmental conditions such as illumination or the back-
ground, which are usually problematic in vision systems.
Those sensors also allow for relatively easy acquisition of
parameters which are hard to obtain in vision systems, such
as hand shape or forward/backward movement (related to the
image depth axis).

Inertial-based systems also have drawbacks. The sensors
are mounted on the entire upper limb, which often introduces
limitation in hand movement. Additionally, when using a wired
solution, the user’s freedom of movement may be limited.
However, even with such drawbacks, a device based on inertial
sensors could be employed in the first stages of a system
project, e.g. in data acquisition support, gesture training, or as
a validator of vision data. In this case, the use of a hybrid
system should be considered, wherein the inertial sensor
measurements are treated as support for the simultaneously
acquired vision data.

II. INERTIAL MOTION SENSORS

Researchers have developed a multitude of different solu-
tions based on diverse sensors. Some of them are commercial-
ized, but there is no widespread and integrated solution used
in gesture recognition yet. Many solutions employ only flex
sensors, which are used mainly for hand movement or hand
posture acquisition. One of such solutions for hand posture
acquisition is presented in [11], where the sensing glove was
equipped with fiber Bragg gratings sensors, which allowed
for the measurement of finger bending. Another solution
used an accelerometer sensor wristband to capture arm move-
ments [12], [13]. In these works, the detected arm movements
were used as an additional data stream along with the body
joint positions extracted from the depth-image for fusion-
based gesture recognition. This approach, however, used only
one sensor and did not allow for hand and finger posture
analysis required in more complicated sign language gesture
modeling.

A sensor-based solution was employed in the presented
project. The idea of the authors is to create a sensor glove,
which will be used as an additional synchronous input in a
hybrid system along with an RGB camera for sign language
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hand-gesture recognition. The glove tracks the movement of
the entire upper limb due to an additional accelerometer placed
on the arm, as well as the movement of each of the fingers,
allowing for precise hand-gesture modeling and recognition.

As part of the design of the Accelerometer Glove,
the designers want to be able to acquire an exact model of
limb movement. There are several criteria the device must
satisfy. The first one was sufficient number of sensors. Each
sensor requires its own communication line. A significant
amount of sensors requires a significant amount of communi-
cation lines, which creates more connections on printed circuit
boards (PCBs). The second criterion concerns the surface of
the PCBs. It should be as small as possible to avoid limb
movement limitations.

Sign language introduces additional ergonomic require-
ments. A sign language user needs total freedom of movement
in each direction for every joint of their upper limbs. Sign
language gestures are highly dynamic and complex, with the
signer moving their arms and fingers at the same time [14].
This simultaneous, complex movement is especially difficult
to obtain when using solely vision systems [2].

From the user’s point of view, an inertial system set up on
the upper limb is less comfortable than using a contactless
camera-based visual solution. However, in order to obtain
information regarding precise limb movement, only the sensors
placed on the wrist and fingers can be used. These sensors
acquire information regarding the general arm movement and
hand shape dynamics. The hand shape data are considered
crucial information in the case of the more complicated
gestures involving multiple rotations or joint bends, which are
elusive for vision-based systems.

III. THE ARCHITECTURE OF THE SYSTEM

In order to have a mechanically accurate model of an upper
limb, a very complex model should be considered: seven
degrees of freedom should be assumed for three joints in
the upper limb (glenohumeral, elbow, and wrist) [15], and
23 degrees of freedom distal to the wrist [16], which results
in a total of 30 degrees of freedom. To copy such an exact
model, the use of at least 30 sensors should be considered. Not
all information provided by such a big set of sensors would
be needed in the recognition process. There are anatomical
points whose behavior is more distinctive than others, so the
number of sensors could be significantly limited. The glove
made by the authors covers the most important degrees of
freedom, as the arm, wrist, and fingers are all monitored.
Particular parts of the upper limb are connected, which allows
e.g. to estimate the position of the elbow, or the finger’s
proximal interphalangeal joint. The number of sensors used
allows for sufficient hand-posture and gesture modeling, even
for complicated sign-language gestures.

A. Hardware Description
The Accelerometer Glove is a device designed for sign

language users. The device has seven active sensors, with
five located on the fingers (one sensor on each finger), one
on the wrist, and one on the arm (Fig. 1). Each of them
is a 3-axis acceleration sensor. The device has a modular

Fig. 1. Motion sensor placement.

Fig. 2. Acquisition system component configuration.

structure: the designed PCBs have zero insertion force (ZIF)
sockets. The PCBs are connected by using ZIF connectors.
Each sensor is on a separate board. All of the boards are
electrically connected to the educational kit, which contains
a microcontroller. The microcontroller manages measurement
acquisition and streaming. The measurement is then sent
through the universal serial bus (USB) to the PC and received
via a graphical user interface (GUI). The entire acquisition
system configuration is shown in Fig. 2.

Modularity allows for a fast relocation of sensors in case if
a sensor is broken, or if the user wants to test another type of
sensor. It is a rarely occurring solution in glove-type devices:
in most gloves, the positions of the sensors are fixed.

The small sizes of the designed boards and proper attach-
ment to the user’s body cause the glove to not limit the
freedom of movement. This is why sensor glove usage is not
exhausting for the user during longer sessions.
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B. Measurement Resolution

The manufacturer guarantees 10-bit resolution for the accel-
eration sensors, which translates to 1024 recognizable states.
The transmission line length caused by the length of the
human arm results in a high-frequency noise in the system.
The highest values of noise reveal that the actual resolution
is 7-bit (128 recognizable states). Another experiment, which
tested the Signal to Noise Ratio (SNR), proved that the value
of the SNR is 40 dB for most sensors (noise level was
estimated as an average signal, measured with stationary glove
in different positions). Both parameters indicate that the value
of noise is 1/100 the value of the signal. If such reasoning
is followed, then: 1024/100 ∼10 – uncertain states in the
10-bit resolution range. 3 lowest bits: 23 = 8 states. It can
be therefore assumed that in most situations, the 3 lowest bits
contain noise values. This confirms the resolution being 7-bit.

C. Signal Acquisition and Processing
All of the sensors employed in the Accelerometer Glove are

3-axis accelerometers. Each sensor is connected to a micro-
controller by using the Serial Peripheral Interface (SPI) Bus.
Data is acquired from the sensors synchronously. Following
data collection, the entire set is sent to the PC through USB.
The PC recognizes the device as a Serial Port (due to the
Virtual COM Protocol implemented in the microcontroller).
Then, the dataflow is intercepted by the GUI for acquisition
and further processing.

The sensors are connected to a single SPI Bus. The measure-
ments are collected with a frequency of 400 Hz. Each sensor
is queried regarding the data in proper order, and, following a
whole cycle, the measurements are sent to the PC. Due to time
uncertainty, in a worst case scenario the data may be delayed
by 2.5 ms. Such a delay is fully acceptable, because natural
upper limb movement, and even rapid movement, is slow
enough to be recorded by acceleration sensors.

The saved data is later processed by the PC. After calibra-
tion, the data is filtered through a low-pass Hamming-window-
based running average digital filter. The length of the filter is
250 ms. This stage of pre-processing ensures the removal of
the higher noise frequencies from the signal. The feature vector
consists of 3D acceleration measured by each sensor. Prior to
gesture modeling, a standardization procedure is applied to all
of the features, separately for each gesture. The signals for
the gesture “good”, measured on the forefinger, are presented
in Fig. 3.

IV. SIGN LANGUAGE GESTURE RECOGNITION

The authors’ model isolates sign language gestures by using
Parallel Hidden Markov Models (PaHMM), used at first in
Automatic Speech Recognition (ASR) systems and described
by [17] and [18] but also successfully adopted in Automatic
Sign Language Recognition (ASLR) systems, [19]–[21].

Usually, PaHMM is used for the modeling of sign language
gestures in accordance with sign language linguistics, taking
into account the parallelism of elements of articulation indi-
cated e.g. by Stokoe [14]. Each PaHMM channel corresponds
to a group of features which describes different articulatory
elements and is modeled as an independent HMM (Fig. 4).

Fig. 3. Acceleration signals for gesture “good”, measured on forefinger.

Fig. 4. Scheme of Parallel Hidden Markov Model with independent HMMs
for each channel.

In the approach presented in this article, PaHMM channels
correspond to multiple sensors attached to the signer’s hand.
The gesture in each channel is modeled as a sequence of
subunits. After taking into account the results of the conducted
experiments, a joint-feature HMM has also been attached to
PaHMM in a separate channel.

Unlike in [12], where data fusion was performed at fea-
ture level and employed full joint-feature modeling only,
we adopted another approach where the fusion of different
sensor signals is performed at score level. A full joint-feature
model is also included as an additional stream. This solution
increases the robustness of the system significantly when
compared to similar feature-level fusion (joint feature model)
only. A comparison between both approaches is discussed
later, in the evaluation section of the paper.

A. Recognition Architecture
Each gesture is modeled as a sequence of subunits, which

are smaller elements, similar in speech analysis to phonemes.
An isolated gesture can be transcribed as

gesture : sub1sub2 . . . subK . (1)

The simultaneous character of sign language causes that
each independent articulatory element can be described sep-
arately in a parallel model. Independent parallel channels
can correspond to independent parallel events which hap-
pen during signing, as well as to different measurement
devices used in the experiment. Thus, gestures can be also
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Fig. 5. Four-subunit left-to-right HMM gesture model.

transcribed as

gesture :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

channel1 : sub1
1sub1

2 . . . sub1
K1

channel2 : sub2
1sub2

2 . . . sub2
K2

. . .

channel L : subL
1 subL

2 . . . subL
KL

(2)

where L is the number of channels, and KL the number of sub-
units in the L-th channel. In this article, the parallel channels
correspond to different sensors attached to the signer’s hand.

An isolated gesture is represented by a sequence of obser-
vations O, which consists of feature vectors ot observed at
each time frame t

O = o1, o2, . . . , oT (3)

To recognize a gesture, one needs to find such a gesture
model g∗ for which

g∗ = arg max
i

(P (gi |O)) (4)

where P (gi |O) is unknown and can be calculated using the
Bayes rule

P (gi |O) = P (O|gi ) P (gi )

P (O)
. (5)

P (gi) is the prior probability, assumed to be equal for
different gestures, and P (O|gi ) is a generative gesture model
likelihood based on the sequence of observations, the proba-
bility of which, P (O), can be calculated with

P (O) =
∑

i

P (O|gi ) P (gi). (6)

Every subunit in a given channel is modeled as a single-
state HMM with a Gaussian Mixture Model (GMM), denoted
as λ = {μi ,�i , ωi }, which describes the probability of the
observation emission

p (o|λ) =
M∑

i=1

ωi pi (o), (7)

where o is a D-dimensional observed feature vector, ωi are
mixture weights, and M is the number of mixtures. Mean
vector μi and diagonal covariance matrix �i are parameters
of unimodal probability densities pi (o).

For a single PaHMM channel, the feature vector is
D = 3 dimensional, containing acceleration measured in each
dimension by a single sensor. An HMM joint model contains
signals from all sensors, which means that the feature vector
is D = 21 dimensional (7 sensors × 3D acceleration).

To model an entire gesture, the models of subunits
are sequentially connected into a composite left-to-right
HMM (Fig. 5).

B. Gesture Model Training

A gesture model is trained separately in each parallel
channel. Initially, the mixture parameters {μi ,�i , ωi } are
assumed to be global values calculated for the whole training
set and are equal in all composite HMM states (flat start).
At first, GMMs have single components, and their number
is incremented by one in each training step by using mixture
splitting [22]. The parameters of the model are re-estimated in
further training steps by the use of the Baum-Welch algorithm.
In each step, the subunit borders are realigned, taking into
account the best match of the new model to the observations.
The subunits are not synchronized in time between channels,
as the synchronization is done by performing a fusion of
channel responses at the whole-gesture level.

C. Recognition
The recognition for a single l channel is performed by

a token passing algorithm and an analysis of the N-best
list which contains log-likelihood values (scores) obtained by
each gesture model gl,i . For single channels, the test sign is
recognized as the one for which the log-likelihood value is the
highest

g∗ = arg max
i

(
log

(
P

(
gl,i |O

)))
. (8)

To include information from different channels, a fusion of
their responses is performed. To compare different channels,
the scores must be scaled to a similar range by using score
normalization. It is performed separately in each channel l,
and within each tested sign i

scorel,i = log
(
P

(
gl,i |O

)) − μl

σl
(9)

where the mean μl and variance σ 2
l values are estimated,

taking into account all of the sign model scores from the
N-best list, except for the highest one.

Fusion is performed as the weighted sum of normalized
channel responses. The sign is recognized as the one for
which the weighted sum of normalized scores has the highest
value

g∗ = arg max
i

(
L∑

l=1

wlscorel,i

)

. (10)

Weights wl for different channels are proportional to recog-
nition accuracy Accl , independently Accl obtained by a single
channel

wl = Accl

L∑

r=1
Accr

. (11)

V. RECOGNITION EVALUATION

A. Gesture Database

The quality of the entire sign language gesture recognition
system has been verified on a set of specifically collected
gestures, recorded with the designed Accelerometer Glove.

The purpose of creating a database of recordings was
to verify recognition efficiency and the possibilities of the
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interoperability of inertial gesture recognition with a vision
system (based on RGB cameras and infra-red depth sensors).

In the case of a recognition system adapted to the purpose
of a dialogue system, there is no need for a large dictionary.
The cardinality of a dictionary for video gesture recognition
systems is often less than 100 [24], [25].

The dictionary gestures were matched to a dialog system
from the use case of a deaf person booking a visit to a
doctor’s office. This decision has conditioned the type of
gestures and determined their semantic content. The database
contains isolated gestures describing days of the week, months,
basic numerals, and names of medical specialties (pediatrician,
cardiologist, dermatologist, etc.). Finally, 40 of such gestures
were selected, which is an acceptable number for initial
research.

It should also be mentioned that the gestures were chosen
by taking into account the possibility of proper efficiency
verification. The creation of a dictionary ensures that the
gesture database covers and involves the entire space of all
possible centers of articulation for sign language.

The database contains recorded gestures which either dif-
fer in the entire range of movements (shape, direction,
and speed), or differ only in a small part of the total
motion (e.g. the final movement of the hand, the number of
taps or exposed fingers).

This approach to the design of the gesture database allows
for reliable and consistent verification of the operation of
the system and for the determination of its full applicability
for the case of sign language recognition as well as of a
supportive data stream for the development of vision-only
gesture modeling.

Finally, the created recording database contains 10 repeti-
tions of each of the 40 gestures registered for the 5 signers.
This results in a total of 2000 recordings used for the validation
of the solution.

The signers were in a sitting position in order to minimize
the movement of the entire body, just as in vision-based
setups. Each isolated gesture begins and ends in the same
position (both hands rested on knees). Recordings were made
for each person using a single Accelerometer Glove worn on
the dominant hand (Fig. 6).

The gesture recording was divided into several recording
sessions (taking place on different days). Gestures were shown
in different order and with a maximum of 3 repetitions of the
same gesture in a row during the course of a single recording
session. This approach was designed to minimize the effect
of the signers familiarizing themselves with the gesture and
therefore signing it in a similar way.

The recording procedures were designed to proceed as
smoothly as possible. Automatic computer software was cre-
ated for this purpose (Fig. 7). It allows for simultaneous
acquisition of the video representations of gestures (recorded
from the RGB cameras and depth sensor).

B. Evaluation Procedures
The entire evaluation was performed in compliance with all

required practices for the validation of algorithms in pattern
recognition problems.

Fig. 6. Recording of example sign for evaluation corpus.

Fig. 7. User interface of the multisource acquisition application. Sensor glove
data visible in the bottom-left corner of the screen.

TABLE I

CLASSIFICATION RESULTS (IN %) FOR THE ACCELEROMETER DATABASE

As the scheme of 5-fold cross-validation was adopted,
the gesture records were divided into training and test sets
in the ratio of 80% – 20% in each validation. This division
was made ensuring that the training and test sets consisted
of gestures made during different recording sessions and with
different people.

C. Evaluation Results
An experiment was conducted in accordance with the

described evaluation procedure, training, and recognition sce-
narios. The recognition performance is presented in Table I.
It contains recognition accuracy (Acc), equal error rate (EER),
F1 score, precision, and recall. The results also present the
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TABLE II

CLASSIFICATION RESULTS (IN %) FOR THE VIDEO DATABASE

TABLE III

CLASSIFICATION RESULTS (IN %) OBTAINED FOR SEPARATE

SENSORS COMPARED TO PaHMM AND JOINT-FEATURE

HMM APPROACHES (SENSOR NUMBERS AS IN FIG. 1)

recognition evaluation for the joint-feature HMM as a refer-
ence for the effectiveness of the PaHMM.

Recognition accuracy, precision, and recall are very high,
while the EER is very small, which demonstrates the effec-
tiveness of an accelerometer-based system for the recognition
of isolated sign language gestures.

Using the PaHMM approach leads to an even lower value of
EER in comparison to the joint-feature HMM, which achieves
the same recognition accuracy. Low EER is particularly impor-
tant for end-user applications with low false acceptance and
false rejection rates. For comparison, the results obtained for a
similar database, containing less gestures (31), but created for
video-based recognition methods, are presented in Table II.

As can be observed, all of the parameters of the vision-
based method are worse: lower accuracy, precision, and recall,
and higher EER, even though less gestures were used in the
experiment.

Because of the very high efficiency of recognition per-
formed with fractures from all accelerometer sensors, the pos-
sibility of recognition of individual sensors in relation to the
overall processing structure is worth taking into consideration.
Table III presents the recognition performance achieved by
separate sensors in comparison to the PaHMM and the joint-
feature HMM.

The results obtained for the inertial features of separate
sensors are worse than the results for the PaHMM and HMM
approaches, which is also illustrated in the Detection Error
Trade-off and precision-recall plots in Fig. 8 and Fig. 9 respec-
tively. However, it can be observed that the best single sensors
in terms of accuracy (Sensor 3 – middle finger) and in terms
of EER (Sensor 6 – wrist) achieve significantly better results
than by using the vision-based method.

Fig. 8. DET plot for accelerometer features for joint-feature HMM, PaHMM,
and recognition for separate sensors (Sensor numbers as in Fig. 1).

Fig. 9. Precision-recall plot for accelerometer joint-feature HMM, PaHMM,
and recognition for separate sensors (Sensor numbers as in Fig. 1).

VI. CONCLUSION

The evaluation results of the described acquisition system
and sign language gesture recognition, using accelerometer
sensors, clearly shows that such an approach can result in
an extremely high efficiency of recognition. The efficiency is
much higher than in systems based solely on video sensors.

The very high stability and resistance to different conditions
and variances of recording gestures, as well as the differences
caused by recording different people (EER of 0.5%), leads to
the conclusion that using inertial motion sensors may result
in very high recognition confidence and robustness to data
variability.

It would obviously be quite difficult and inconvenient to
use this approach (the Accelerometer Glove) with dialog
systems for deaf people. The vision system, as a contactless
approach, is more convenient, and does not require any special
sensors or devices for acquisition, except for an RGB camera.
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The presented system can be used to improve the
effectiveness of vision systems – e.g. at the stage of gesture
model training. Temporal models (such as the HMM) can be
assumed to be better suited to the variability of movement
due to the high efficiency of recognition in the case of inertial
movement parameters. For this reason, such a model (or even
the time division of the gesture into segments) could be used
as input information for model training for a system based
on RGB cameras or depth sensors. This issue needs further
investigation.

Some of the results (Table III, Fig. 8 and Fig. 9) allow
for optimism in regards to the ability of using a single inertial
sensor for gesture recognition (autonomously or in cooperation
with another system). It could be quite efficient and ergonomic
to use smartphones or smartwatches in the future.
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