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Abstract. Typical parameterization schemes utilize lineaedpstion or mel-
scaled filter-banks, which are classic windowed Df&@sed methods. In this
paper a new optimized adaptive wavelet paramet&rizacheme is presented.
A novel extension of the Best Basis algorithm is usedvavelet-packet cosine
transform (WPCT) instead of typical filter bank. @ined features are tested
using Polish language HMM phone-classifier.
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1 Introduction

Almost all speech recognition systems transfornuatio waveforms into vectors that
represent important features of the speech sigias process is called the feature
extraction or parameterization, and has been gslufie a long time. Its aim
is to reduce redundancy of the representationsifraal without losing its content.
Mel-frequency cepstral coefficients (MFCC) and eptoal linear prediction
(PLP) are the most popular and the most often asedng other methods. These
methods are based on algorithms developed from omied discrete Fourier
transform (DFT). Its main disadvantage is causedamyequal window size applied
to each of various analyzed frequencies. The sameresolution is used to measure
different frequencies (too high or too low). It igadvisable and may lead
to noticeable border effect propagation for someqdencies, followed by time-
resolution loss for others, also when psychoacousél-scale had been applied.
Wavelet transform performs analysis of various deatries (related to wavelet
scales) using various and adequate windows lenghesefore above-mentioned
disadvantages can be reduced. Classic discretemgp@sition schemes: dyadic
(DWT), and packet wavelet (WP), do not fulfill @bsential conditions required for
direct use in parameterization. DWT do not provaddficient number of frequency
bands for effective speech analysis; however ifigood approximation of the
perceptual frequency division [1], [2]. Wavelet gats do provide enough frequency
bands, however they do not respect the non-lineguéncy perception phenomena

3], [4]. [5].



Various decomposition schemes for an efficient spgmrameterization had been
presented [6]. Most of works present approximatbperceptual frequency division
with an arbitrary or empirically chosen decompasitsubtree [7], [8], [9], [10], [11],
[12]. These papers do not provide description af Bubtree selection method.
In some works wavelet filters have been warped avelet a-scale has been properly
chosen to obtain mel-frequency scale in a wavedesform [13].

Wickerhouser’s best wavelet basis selection (BBjropy-based algorithm [14]
has been used by Datta and Long [6] to obtain te&t decomposition schemes
of single phonemes. Other works mention use ofdlgsrithm in a parameterization
of plosive consonants [15].

Unfortunately, the well known Best Basis and J@est Basis (JBB) algorithms
can not be used for sets of variable length datahis paper, a new method of best
wavelet basis selection is presented. It is apiplicao sets of a non-uniform data,
like various-length phoneme samples.

2 MEAN BEST BASISDECOMPOSITION

2.1 Wavelet Packet Cosine Transform (WPCT)

Multi-level wavelet packets producé’ 2vavelet coefficient vectors, whehé stands
for the number of decomposition levels. Waveleffiicient vectors
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represent uniformly distributed frequency bankscdaposition process may be
represented by a full binary tree
WPT _ WP . WPT
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with a sample of speech signdf, (single frame of speech) related to its root,
and wavelet coefficientd,; related to its nodes and leafs (whasM) [16], [17].

For a better spectral entropy extraction from theesh signal we applied
the discrete cosine transform
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to each of the WP tree nodes to obtain the Wawuedmket Cosine Transform
(WPCT). It eliminates the problem of time-shifttime entropy measure of the signal
and takes account of more important spectral coriterfurther Best Basis selection.
This is a very important step since the speechimme-spectral phenomenon [3], [4].



2.2 Best BasisAlgorithm

The best wavelet basis subti€” may be defined as a 3&f of tree nodes
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which minimizes its total entropy and generates cathhogonal decomposition
base [14], where the node split cost function
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is the Shannon entropy of the Wavelet-Packet CoSiransform coefficients
(WPCT).

Best Basis algorithm may be applied to a singlaaigvhen it is needed. However,
finding the best decomposition scheme for a seigfals can not be done using this
method. When a set of signals is given, Joint Bestis algorithm may be used [18],
[19]. It utilizes a tree of signal variances

W =argmin >
WU

m,j !
e (6)

: ®)

to select an optimized subtree. Unfortunately, cetaon of variance requires
each signal to be of equal length and normalizetkims of energy and amplitude,
what is even more important, when energy dependsitfunction is used [14]. This
is a serious limitation, since in practice signafmy be of various lengths.
Next section presents the solution of this probleyncalculation of mean entropy
values instead of signals’ variances.

2.3 Mean Best Basis Algorithm

The set of speech signals used in this work cansifpphoneme samples extracted
from Polish speech databaSerpora Phonemes are of various lengths, depending
on the phoneme class and case. Each pattern elgatnique. Under this conditions
the use of variance-based JBB algorithm is impdssibhe tree of variances cannot
be fairly computed when signals are of various teagnd energies [18].

The above-mentioned problem may be solved whemadedinition of the optimal
tree for a set of different signals is introduc&tie best decomposition tree in such
case is a subtree

AJOpt — . —
W =argmin Y Fmi

S oW

()



of a full binary treeW” of nodes’ entropy mean valies} over all signals

in the set, for which its entire value is minimdhving a tree of mean entropy values,
one can find an optimal Mean Best Basis (MBB) situsing the Best Basis
algorithm over mean entropy tree. The algorithmségis of the following steps:

« For each element of sed}{ of signals calculate full WPCT tree

WPCT _ WPCTY . WPCT
WYPST =W et whtel d (®)
« Find entropy value
sy =5 A ©

for each node of all previously calculated WPCEs$re
e For each of the obtained tre\ﬁi” normalize entropy values within the whole
tree according to its root entropy value
i
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It makes the cost-function (entropy) independentdidferent signal energy
values. After this step, every signal from thew#itbe equally important in the
basis selection process.

e Calculate
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the general tree of mean entropy values overigiiads with all entropy values

normalized.
e Find the best subtree using the Wickerhouser's Hestis algorithm with

a mean-entropy tredV/ ~ .

The wavelet decomposition scheme obtained depemdbeoentropy and spectral
properties of all signals used in the computatidgfrequency bands containing more
spectral variations among all signals in the setrepresented in the optimized wavelet
spectrum with a higher spectral resolution.

In Fig. 1 a wavelet decomposition tree, obtaineddib of the phones of Polish
language with a Daubechie’s” 6order wavelet and Mean Best Basis algorithm
is presented. The order of tree branches is najuémcy-based because of the
disordering effect of multilevel decimation / filieg present in the decomposition
process [20]. In Fig. 1 one can also notice a highsolution of the spectrum in the
frequency ranges related to tHéahd the ¥ formant. The spectrum has been generated
using the tree presented in the left plot. Bandshan spectrum plot are frequency-
ordered.
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Fig. 1. Optimized MBB wavelet decomposition tree for polsgieech database Corpora, using
Daubechie wavelet and Shannon entrogplid lines, left plgt Utterance Agn’jeSk&d
(SAMPA notationtop) and its MBB optimized spectrumight).
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Fig. 2. Optimized MBB wavelet decomposition tree for Poliabwels, using Daubechies
wavelet and Shannon entroggff). MBB vowels-optimized wavelet spectrum of the phoee
/el (right).



2.4 Feature Extraction

When the optimized decomposition trdd " is known, it may be used for an
efficient spectral analysis and feature extracf8jnin presented experiment, energy

X(k) = z DptHde’Jk
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of wavelet coefficient in each leaf was computebitained values form a vectar
of a length equal to the optimized tree’s leaf difan Normalization and DCT
decorelation of the vector is then applied to uiségth an HMM phone recognizer.

3 PHONEME RECOGNITION

New decomposition schemes were tested using Pspisbch databaggorpora Phone
recognition task had been performed using 361 &pett All phoneme patterns were
used in the mean best basis selection. ObtainezhgExsition subtree had been used
for speech feature extraction. In this case 27l&&fs produced 27 features.

Its efficacy was measured with typical Hidden Markdodel tri-phone classifier
with no higher-level language context knowledge].[2farious noise conditions
(AWGN) had been applied to measure the robustrfabe deatures.

Results of this task are presented in Fig. 3. tRergiven feature quantity (27),
phone recognition and phone accuracy rates ardirep80% and 72% respectively
on clean speech. Introduction of 10dB SNR noiselt®én the recognition decrease
by only 10% points which proves robustness of hsumomposed wavelet
parameterization scheme. Similar recognition tagk on the vowels set with only
17 feature components resulted in 90% phone retogniaccuracy for clean
conditions with similar HMM setup.
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Fig. 3. Phoneme recognition results for the MBB-optimizedapeterization scheme.



4 Conclusions

A new method of choosing the best wavelet decontipasscheme for a set of signals
has been presented. It is based on the well knovickaMouser's Best Basis
algorithm, but extends it with the possibility oélecting the decomposition tree
for differentiated multi-length data. The use ofM#CT - Wavelet Packet Cosine
Transform, provides high robustness of the entregdye to a time-shift and focuses
on the spectral properties of the signal. Decontismsschemes obtained for the real
speech data and phone recognition results confienntethod’s efficacy. Presented
algorithm may be used with other types of sigralg. image data.

Future works will focus on finding the better, aamiented cost function (in place
of entropy) used in a tree selection process.
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