

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Chemistry of Coal

Physical chemistry of carbonaceous materials

Faculty of Energy and Fuels

Krakow, 2012

Carbon

- 4-th place in diffusion in space
- 14-th element in the view of currency in the earth's crust
- content in biotic world (living world) is 100 time bigger than in abiotic (non-living) but non in global values
- a) atom weight 1.992 * 10⁻²³ g/atom
 b) atomic mass 12 a.m.u.
- molar mass 12.01 (98.9% isotope ¹²C and 1.1% isotope ¹³C in the earth crust, ¹⁴C 1 pbb)
- carbon is unsoluble in water, acids and bases but is soluble in metals and alloys (e.g. in iron – making a solid state solution called steel)
- 1/12 of isotope ¹²C mass is set up as an atomic mass unit (a.m.u.) standard

Wodór

Hel

Żelazo

Krzem

Carbon

- specific properties of carbon:
 - C-C bound H= 348 kJ/mol
 - Si-Si bound H= 226 kJ/mol
 - N-N bound H= 160 kJ/mol
 - O-O bound H= 147 kJ/mol

Carbon - allotropes

Carbon – allotropes - diamond

Carbon – allotropes - graphite

Carbon – allotropes - graphite

Modified graphite

• expanded

after immersing natural flake graphite in a bath of chromic acid, then concentrated sulfuric acid, which forces the crystal lattice planes apart

improves fireproofing – foundry, fire-stoping doors, fireproof paints (lacquers), fire-proof gaskets, fuel cells

intercalated

introducing of some metals or small molecules (Ca, Sr, Li, K, Rb, Cs, carbon fluorides, graphite bisulfate and graphite perchlorate and others)

H Carbon - allotropes

 Fullerens (from the name Buckminster Fuller – BuckyBalls) atoms are arranged in a space, spherical-like shape depend on number of carbon atoms in structure atoms distance 0.144 nm (C60 fullerene)
 Density: 1.72 g/cm³
 bulk modulus: 14 Gpa thermal and electrical rather insulating

Carbon – allotropes - nanotubes

 Nanotubes – single walled (some sais subcathegory of fullerenes) atoms are arranged in a space shape depend on number of carbon atoms in structure atoms distance 0.142 nm, opposite atoms 0.283 nm Density:

Zigzag	1.33 g/cm ³
Armchair	1.34 g/cm ³
Chiral	1.40 g/cm ³

Carbon – allotropes - graphene

Graphene – one-atom planar sheets of sp²-bonded carbon atoms lattice, looks like honeycomb atoms distance 0.142 nm, tensile strength: 1 Tpa (more strength material known) heat transfer: 5000 Wm⁻¹K⁻¹ electricaly: semi-metal – semi-conductors opticaly: one-atom layer absorbs 2,3% of light Use: room temperature alcohol distilation, single molecule gas detection, FET transistors (integrated circuits), optical modulators, transparent conducting electrodes, solar cells, supercapacitors, graphene oxide paper (insulator, conductor) and semiconductor)

Carbon – occurence in nature

Carbon content [bilion to	nns] from	living or
A.E.Fersman living organisms earth peat lignites hard coals anthracites sedimentary rocks	700 400 1 200 2 100 3 200 600 4 576 000 184 000	element oxygen carbon hydrogen nitrogen calcium phosphor K, S, Cl, Na
atmosphere	2 200	Mg, Fe

living organisms		earth crust	
element	%	element	%
oxygen	65	oxygen	49.5
carbon	18	silicon	25.5
hydrogen	10	aluminium	7.5
nitrogen	3	iron	5
calcium	2	calcium	3.4
phosphor	1	sodium	2.6
K, S, Cl, Na,		hydrogen	0.8
Mg, Fe	0.9	Ti, Cl, P	0.6

Carbon – natural occurence methane clathrate

Methane clathrate, methane hydrate, methane ice

- gas hydrate a solid clathrate compound in which a methane is trapped within a crystal structure of water, forming a solid similar to ice
- 1 mole of methane for 5.75 moles of water
- natural deposites shallow lithosphere < 2000 m depth
- appears in less than 0°C and 300 m of water layer

An atlas of pollution: the world in carbon dioxide emissions

Carbon cycle

Calvin Cycle

Calvin cycle, C3 cycle or

Calvin-Benson-Bassham (CBB)

- series of biochemical redox reactions that take place in the in photosynthetic organisms
- reductive pentose phosphate cycle
- two stage:
 - light-dependent energy storage ATP and NADPH
 - light-independent energy use for water and organic organic compound production from CO2

Krebs Cycle

citric acid cycle, tricarboxylic acid cycle (TCA cycle),

Krebs cycle,

Szent-Györgyi-Krebs cycle

- series of chemical reactions used by all aerobic organisms to generate energy through the oxidization of acetate derived from carbohydrates, fats and proteins into carbon dioxide and water
- provides precursors for the biosynthesis of compounds used in numerous bio-reaction

