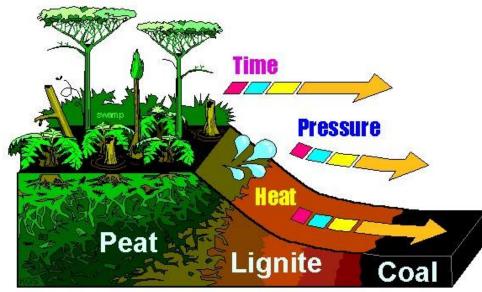


Carbon Materials - Fuels



e.g. peat, lignites, hard coals, anthracite

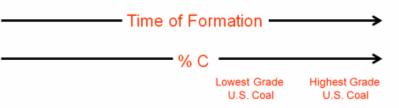
• graphit (natural)

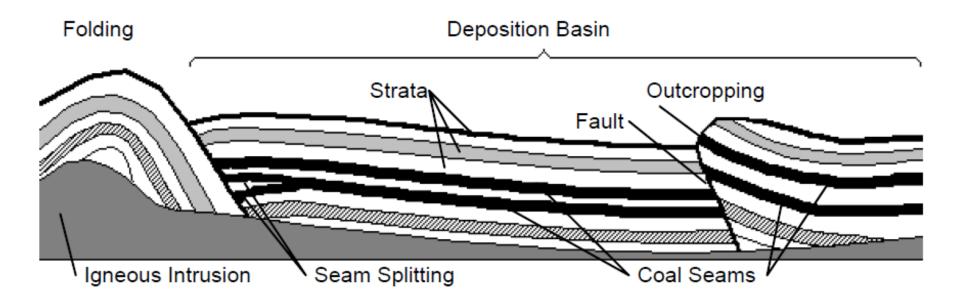
Source: Modified from Kentucky Geological Survey, University of Kentucky, http://uky.edu/KGS/coal/

Ranks of Coal

Lignite Subbituminous Bituminous Anthracite 7000 BTU/lb

9,000 BTU/lb




15,000 BTU/Ib

Formation Conditions Low T, P

High T, P

Periods in coal origination

Period one: Carboniferous and Permian

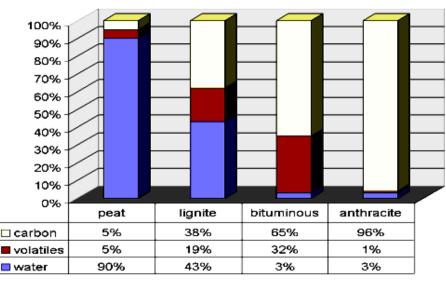
- earliest period of coal formation
- tropical to sub-tropical climate with mild temperature, high humidity and heavy rainfall
 - Coal swamps in the low latitude areas in early Carboniferous period
 - Late Carboniferous, belt of coal swamps formed and extended from the mid-western US through Europe and Africa

Period two: Upper Cretaceous to Miocene

- Cretaceous and Tertiary formation in the western North America, northeastern Russia and Siberia.
- Cretaceous coals were formed in areas where annual rainfall exceeded evaporation

Period three: Quaternary Period

- peat deposits around the world!
- coal bearing formations consist of sedimentary strata



Coal is formed by the physical and chemical alteration of peat

- bacterial decay (biochemical period)
 - aerobic decay first few inches of peat aerobic bacteria reduce volume by 50%
 - anaerobic decay anaerobic bacteria still reduce volume of material
- compaction under pressure of overburden
- heat, pressure and time (geochemical period)

Factors affecting coal formation:

- Transformation of plant debris to peat
- Nature and chemical composition of source plants
- Climate
- Paleogeography
- Depositional environment
- Tectonics
- Time

Lithotypes

macroscopically distinguishable component:

- clarain characterized by alternating bright and dull black laminae. The brightest layers are composed chiefly of the maceral vitrinite and the duller layers of the other maceral groups exinite and inertinite
- **durain** characterized by a hard, granular texture and composed of the maceral groups exinite and inertinite as well as relatively large amounts of inorganic minerals
- **fusain** commonly found in silvery-black layers only a few millimetres thick and occasionally in thicker lenses. It is extremely soft and crumbles readily into a fine, sootlike powder. Fusain is composed mainly of fusinite (carbonized woody plant tissue) and semifusinite from the maceral inertinite (high carbon, highly reflective) group
- **vitrain** characterized by a brilliant black, glossy lustre and composed primarily of the maceral group vitrinite, derived from the bark tissue of large plants. Vitrain was probably formed under drier surface conditions than the lithotypes clarain and durain.

Macerals

- In the petrographic approach coal is a composition of macerals with distingtive set of chemical and physical properties
- First time the name of "macerals" was used by Marie Stopes
- Macerals are defined by both their color/reflectance and morphology
- Macerals cannot really be separated
- Macerals are assembled in to the groups

"Macerals are phytogenetic organic substances or optically homogeneous aggregates of phytogenetic substances possessing distinctive chemical and physical properties." William Spackman*

Macerals groups

- 3 major maceral groups:
 - Liptinite
 - Vitrinite
 - Inertinite
- Origine of organic matter:
 - tree tissue and cork vitrinite, fusinite
 - plant matter different from tree tissue (resines or waxes) resinite
 - non-identified plant tissues micrinite
 - spores sporinite
 - algae alginite
 - lipids (waxes, oils etc.) liptinite
 - leaf epithelium cutinite

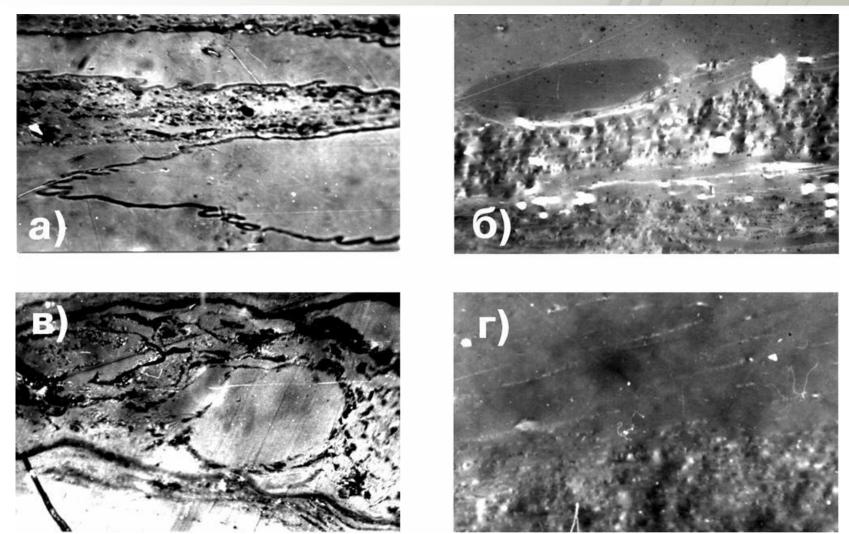
Macerals groups

maceral group	defined by level of reflectance
maceral subgroup	defined by degree of destruction
maceral	defined by morphology and/or degree of gelification

ICCP – International Committee for Coal and Organic Petrology: www.iccop.org

Vitrinite group

Lignites

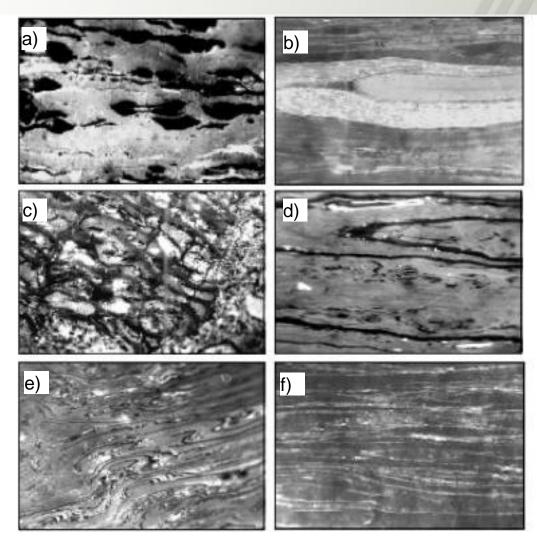

	Telohuminite	Textinite (ungelified cell walls)		
	(botanical structure are visible)	Ulminite (cell walls of gelified tissues)		
NITE	Detrohuminite	Attrinite (fine huminitic particles, spongy ungelified amorphous huminitric substances)		
HUMINIT	(fine humic fragments <10 μm)	Densinite (fine huminitic particles cemented by dense huminitric substances)		
P	Gelohuminite	Corpohuminite (cell fillings)		
	(comes from amorphous humic matter)	Gelinite (huminitic structureless or porous substance)		

Bituminous and Anthracites

	Telovitrinite	Telinite (clearly recognizable cell walls)	
	(botanical structure poor visible)	Collotelinite (homogenized vitrinite layers)	
	Detrovitrinite	Vitrodetrinite (discrete small vitrinic fragments)	
	(finely fragmented plant remains)	Collodetrinite (mottled vitrinic ground mass)	
	Gelovitrinite	Corpogelinite (homogenous, discrete bodies of cell infillings	
>	(colloidal fillings in former voids)	Gelinite (homogenous, structureless infillings of cracks and voids)	

Vitrinite group

Мала гірнича енциклопедія: В 3-х т. / За ред. В. С. Білецького. — Донецьк: Донбас, 2004. ISBN 966-7804-14-3

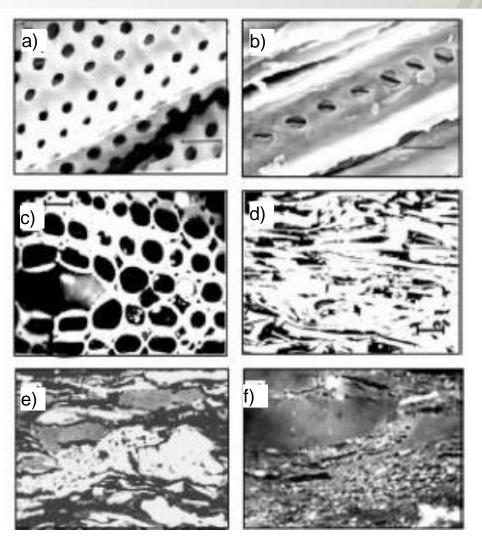


Liptinite (Exinite) group

- **Sporinite** waxy coatings of fossil spores
- **Cutinite** waxy outer coating of leaves, roots and stems
- **Resinite** plant resins
- Alginite algae
- Liptodetrinite discreet small liptinite fragments
- **Suberinite** cork cell walls
- Chlorophyllinite chlorophyl-derived material (not present in above subbituminous coals)
- Exsudatinite secondary maceral filling cracks after oil generation
- Fluorinite semiglobular fluorescing droplets (oil precursors)

Liptinite group

- a) Sporinite
- b) Liptodentrinite
- c) Suberinite
- d) Cutinite
- e) Suberinite
- f) Cutinite



Inertinite group

- Micrinite very small rounded grains of high reflectance, orginate from liptinites after coalification
- Macrinite amorphous matrix or discrete, structureless bodies from flocculated humic matrix
- Fusinite highly reflecting, cellular structure from lignocellulosic cell walls
- Semifusinite intermediate reflectance, partialy visible cellular structure from stems or leaves (cellulose and lignin)
- Secretinite bodies without plant structure, oxidation product of resins or humic gels
- Fuginite high reflecting fungal spores etc., fungal remains
- **Inertodetrinite** disrete small inertinite fragments varying in shape

Inertinite group

- a) Fusinite
- b) Fusinite
- c) Fusinite
- d) Fusinite (highly gelified)
- e) Inertodetrinite
- f) Micrinite

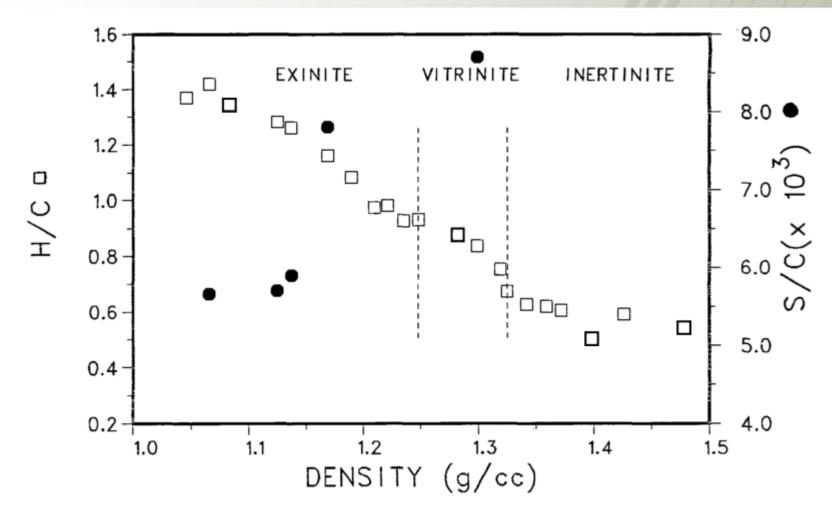
Мала гірнича енциклопедія: В 3-х т. / За ред. В. С. Білецького. — Донецьк: Донбас, 2004. ISBN 966-7804-14-3

Macerals in hard coals

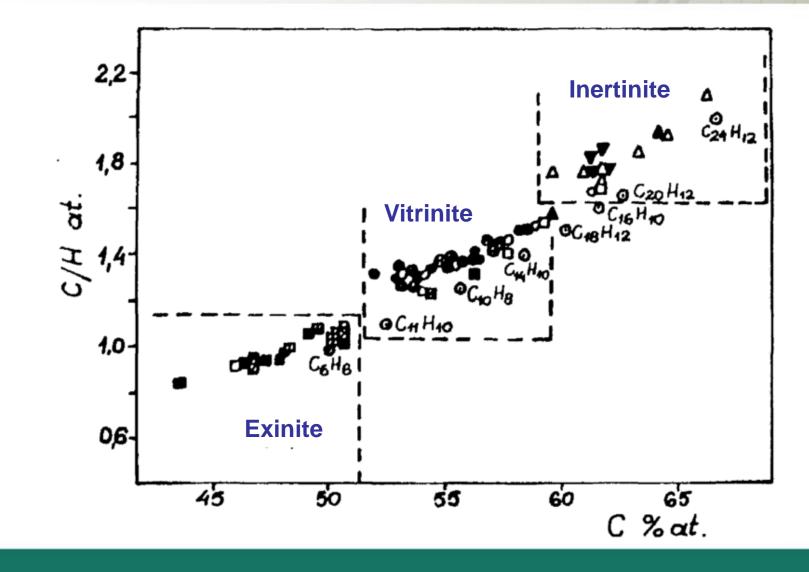
Flame coal	Vitrinite, Exinite, Micrinite fraction, Fusinite
Gas-coking coal	Vitrinite, Exinite, Micrinite fraction, Fusinite
Coking coal	Vitrinite, Fusinite
Semi-coking coal	Vitrinite, Fusinite
Anthracite	Vitrinite, Fusinite

Macerals groups and coking

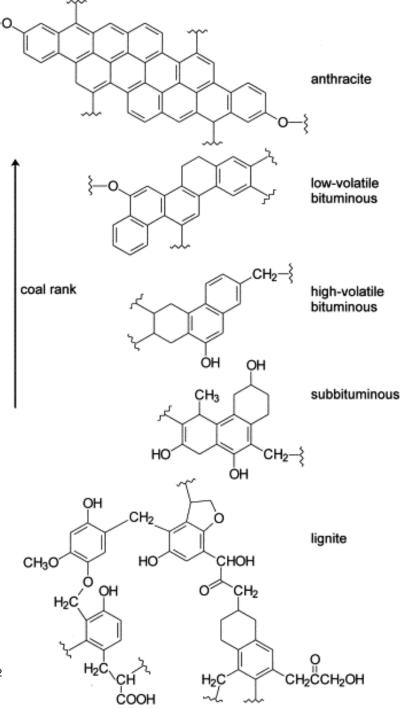
- Coke production:
 - Vitrinite (V^{daf}>18%) shows high coke-making properties because of plasticability and bulgingability
 - Exinite (V^{daf}>25%) gives the biggest value of liquid and gaseous products, it sinters, gives with vitrinite the biggest dilatation
 - Sporinite, Cutinite and Resinite makes Vitrinite more plastically. Resinite do not produce of coke it self
 - Inertinite group shows the lack of coke-production properties



Macerals - properties

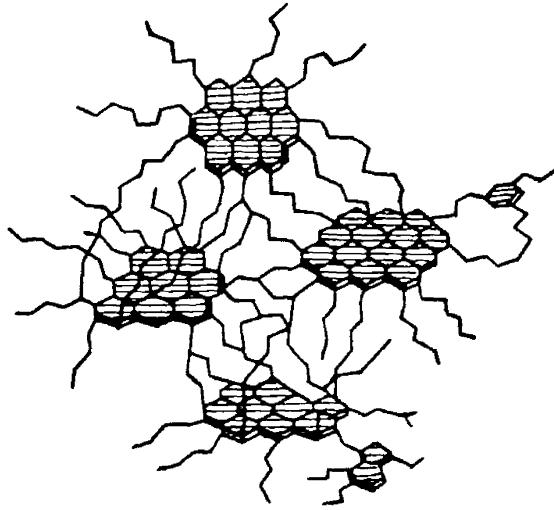

- Floatability of coals is better for gelified elements (Vitrain) than that ones of fibrous structure (Fusain)
- Hardness:
 - Fusinite is the most hard maceral
 - Exinite and Vitrinite hardness is comparable
 - Cleavage decrease the hardness of coal, cleavage is higher in lustrous than in mat coals
- Oxygen reactive groups decrease Vitrinite \rightarrow micrinite \rightarrow exinite \rightarrow fusinite

Macerals - properties

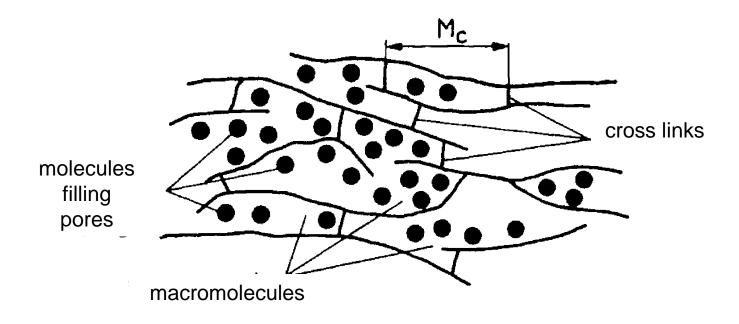


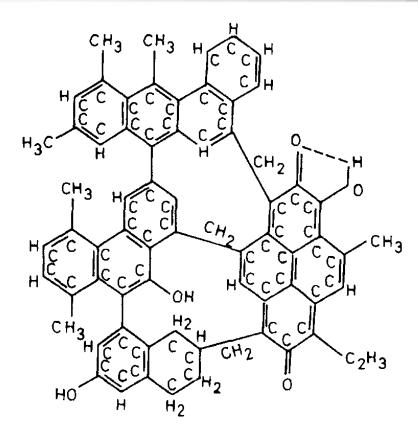
Models of coal structure

- Chemical explaining chemical properties of coal matter
- Physical explaining behavior of carbonaceous substance in different natural and technological

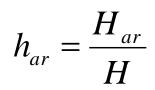


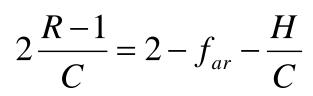
It is indicated that base cell of call change with degree of coalification (metamorphism)


E.Dorrestijn et all., Journal of Analytical and Applied Pyrolysis, Vol. 54, Issues 1–2, March 2000, Pages 153–192

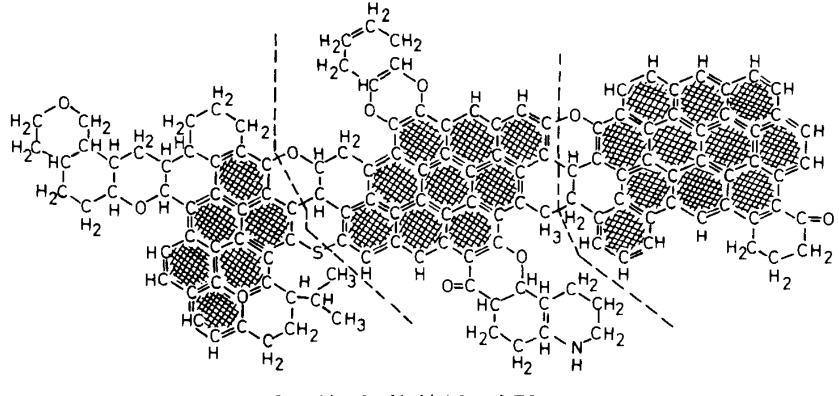

Kasatochkin

Graphic – statistic method


	C _{ar/C}	R _{ar} /R	H _{ar} /H
Fuchs	0.58	0.65	0.72
Gillet	0.76		
Storch	0.78		
Dryden	0.66	0.79	0.85
Huck and Karweil	0.54	0.645	0.76

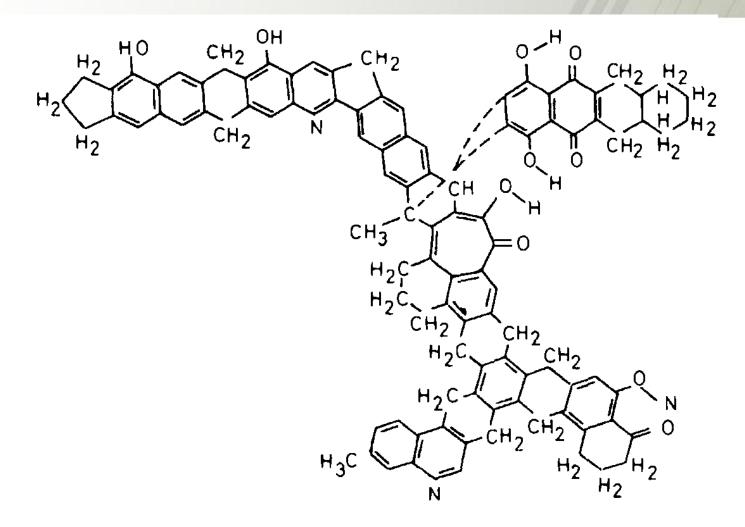

Graphic – statistic method

• aromaticity:

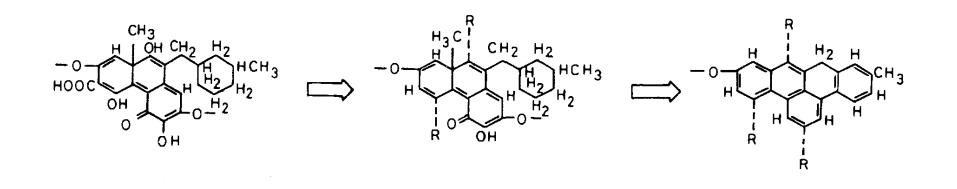


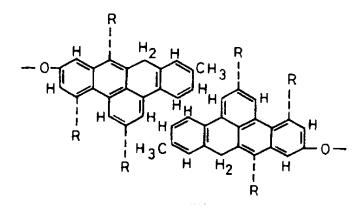
• coefficient of ring condensation:

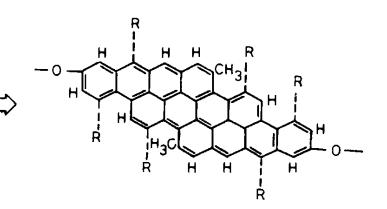
• other factors: H/C, O/C, rings aromaticity R_{ar}/R



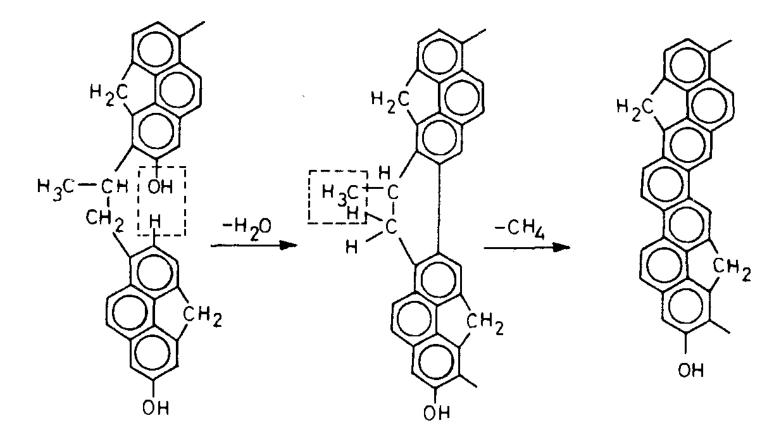
 $C_{135}H_{96}O_9N_9H/C=0.72$

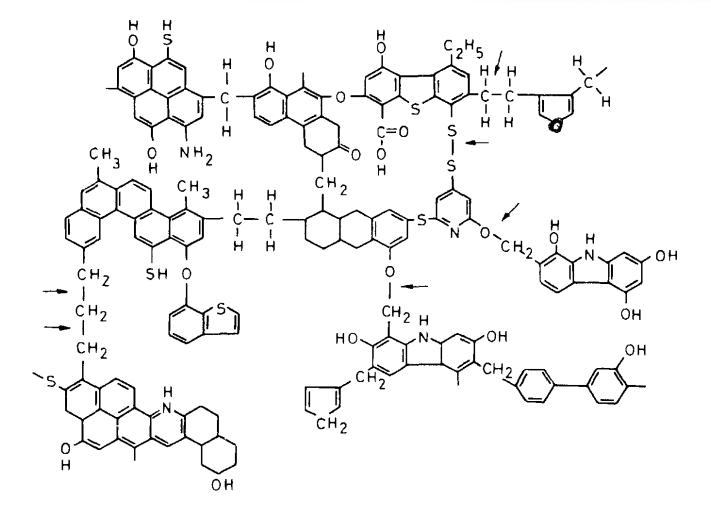

Fuchs, modified by van Krevelen et all.

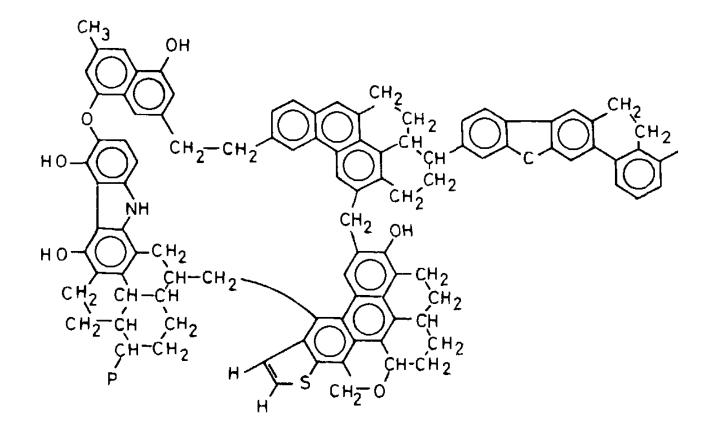


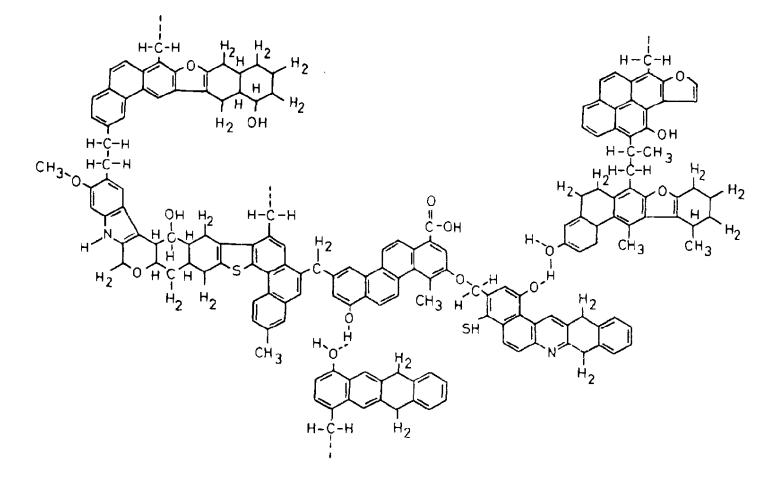


Given

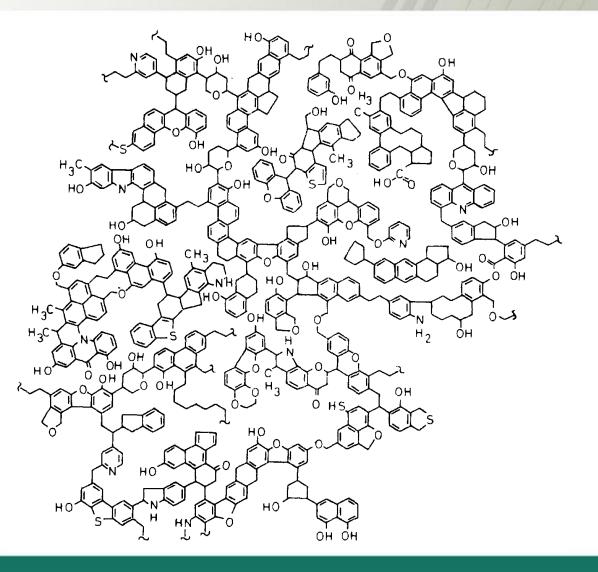



Mazumdar et all.


van Krevelen

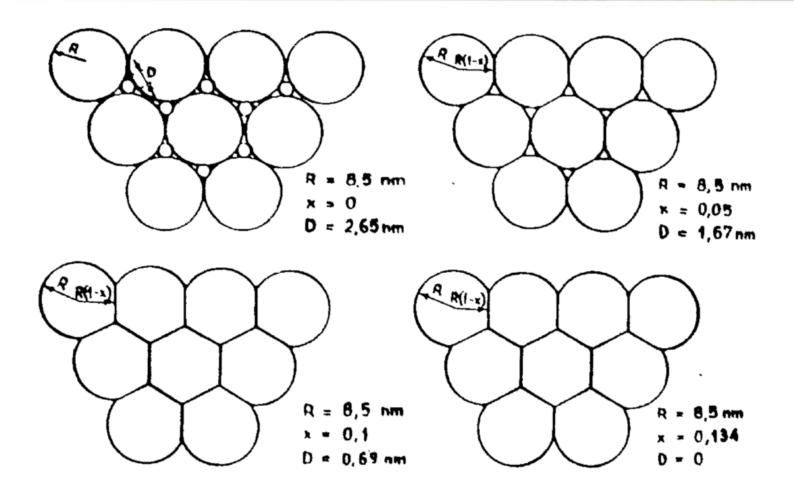

Wiser

Heredy and Wender



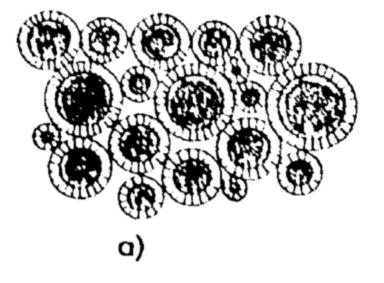
Solomon

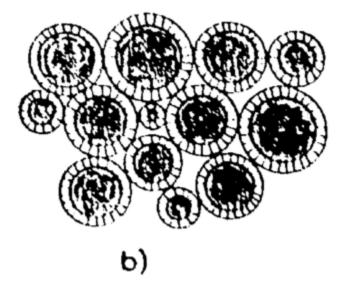
Polymeric model of coal structure



Polymeric model of coal structure

- Cosky and Spiro 3D modelling
- Marzec, Milewska-Duda copolymeric model of coal structure
 - macromolecular phase
 - arene domains
 - crosslinked chains
 - molecular phase
 - non-crosslinked chains
 - mineral admixtures
 - pore structure (sub-micro-pores)


Coloidal model of coal structure

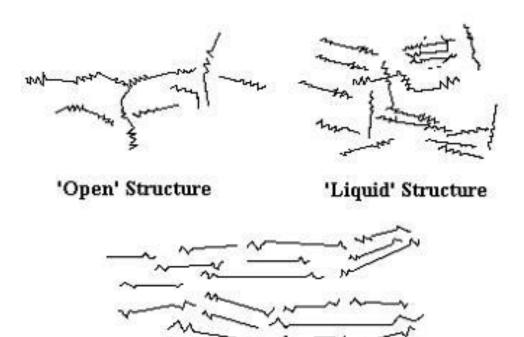


Bangham

Coloidal model of coal structure

Kreulen

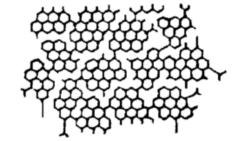
Lamelar - turbostratic model of Coal

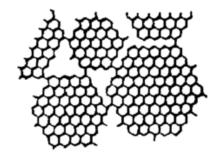


Riley

Lamelar - turbostratic model of Coal

'Anthracitic' Structure

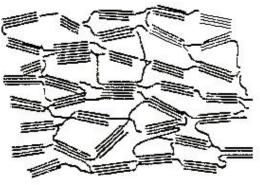

Lamelar model of Vitrain

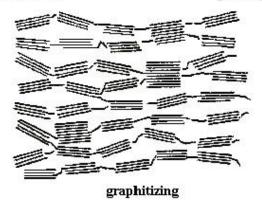

V^{daf}~35%

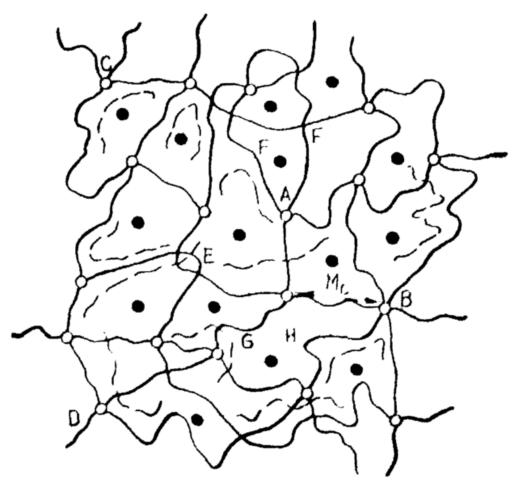
V^{daf}~22%

V^{daf}~5%

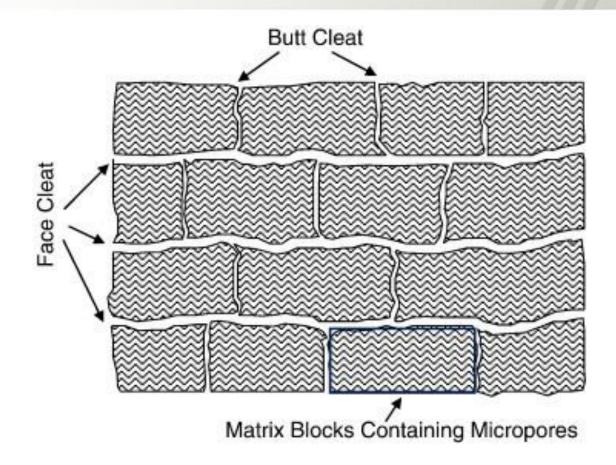





Model of Coal structure by Franklin


non-graphitizing

partially graphitizing


Simplified model of coal

Lucht and Peppas

Permeability of coal bed

Coal Classification

There are a number ways to classify coals.

One way is to **Rank** the coal. It indicates the degree or extent of maturation.

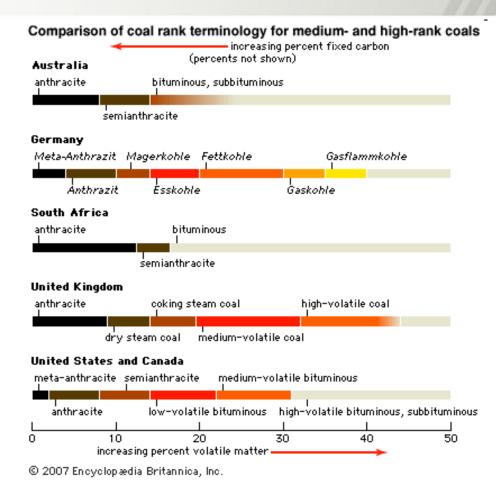
It is a qualitative measure of carbon content.

- Thus lignites and sub-bituminous are low rank coals
- While bituminous and anthracite are high rank coals.
- Rank is not synonymous with grade which implies quality.
- Low rank coals may not be suitable for some applications as the higher ranked ones
- Although they may be superior to them in other applications

Rank of Coal - assumption

With increasing Rank, the following characteristics are noticed:

- 1. Age of coal is increased. This increases with increase in depth of deposit.
- 2. A progressive loss of oxygen, hydrogen and in some cases sulfur, with a corresponding increase in carbon.
- 3. A progressive decrease in equilibrium moisture content.
- 4. A progressive loss of volatile matter.
- 5. Generally, a progressive increase in calorific value.
- 6. In some cases, a progressive increase of ash content.


Coal types - terminology

Coal classification by ICCP

Name	Volatiles %	C Carbon %	H Hydrogen %	O Oxygen %	S Sulfur %	Heat content kJ/kg
Lignite	45-65	60-75	6.0-5.8	34-17	0.5-3	<28470
Flame coal	40-45	75-82	6.0-5.8	>9.8	>9.8 ~1	
Gas flame coal	35-40	82-85	5.8-5.6	9.8-7.3	~1	<33910
Gas coal	28-35	85-87.5	5.6-5.0	7.3-4.5	~1	<34960
Fat coal	19-28	87.5-89.5	5.0-4.5	4.5-3.2	~1	<35380
Forge coal	14-19	89.5-90.5	4.5-4.0	3.2-2.8	~1	<35380
Non baking coal	10-14	90.5-91.5	4.0-3.75	2.8-3.5	~1	35380
Anthracite	7-12	>91.5	<3.75	<2.5	~1	<35300

Coal types - occurence

Proximate Analysis of some typical Lignites

Class and group	Fixed Carbon, %	Volatile Matter, %	Age in million years	Calorific Value kJ/kg
Lignite A	58-64	36-42	1	36050
Lignite B	51-57	42-49	То	35000
Lignite C	41-51	49-59	40	-do-

Proximate Analysis of some typical sub-bituminous coals

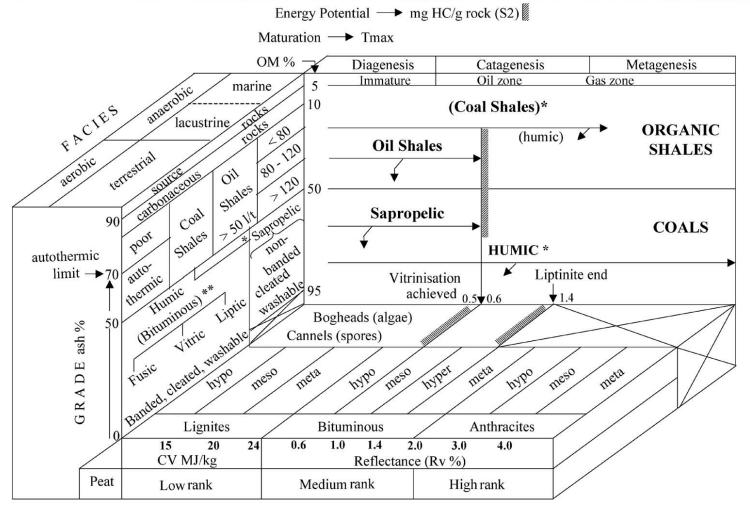
Class and group	Fixed Carbon, %	Volatile Matter, %	Age in million years	Calorific Value kJ/kg
Sub-bituminous A	69-72	28-31	40	36050
Sub-bituminous B	64-69	31-36	То	35000
Sub-bituminous C	<64	>36	100	-do-

Proximate Analysis of some typical bituminous coals

Class and group	Fixed Carbon, %	Volatile Matter, %	Age in million years	Calorific Value kJ/kg
Low volatile	78-86	14-22	100	36520
Medium volatile	69-78	22-31	То	-do-
High volatile: A,B,C	<69	>31	180	-do-

Proximate Analysis of some typical anthracite coals

Class and group	Fixed Carbon %	Volatile Matter %	Age in million years	Cal. value kJ/kg
Meta-anthracite	>98	<2	180	35820
Anthracite	92-98	2-8	- (300)	40700
Semi-anthracite	86-92	6-14	250	36750


Problematic classification

The border between lignites and hard (stone) coals is unprecisely stated

IEA	BROWN COAL (Lignite + Subbituminous)					
USA	LIGNITE + SUBBITUMINOUS ($B + A$) ($C + B + A$)					
Former USSR	BROWN COAL (1 + 2 + 3)					
China	BROWN COAL (1+2)					
Australia	<u>BROWN + SUBBITUMINOUS</u> SOFTCOAL					
Germany	BROWN COALS (soft + matt + bright)					
UN / ECE	LIGNITE (ortho+meta) + SUBBITUMINOUS or/and LOW RANK C + B + A					
Alpern and Lemos de Sousa (1991)	LIGNITE hypo + meso + meta					
	1 LOW RANK COAL 1+2+3 or $A+B+C$					
OTHER SOLUTIONS	2 PEAT INCLUDED moisture>OM OM>moisture					
(N°2 IS THE	Hypolignite Mesolignite Metalignite*					
PROPOSED ONE)	PEAT LIGNITE ± BROWN BLACK(reddish) *only partly equivalent to Subbituminous					

Problematic classification, cont...

NB:* Coal Shales and Humic coals lines correspond in terms of coalification to the left part of the chart.

** Petrographic composition, banding and cleating are mainly restricted to Bituminous coals.

Coal classification – parameters and factors

Name	unit	symbol
Volatile matter content	%	V
Roga Index	-	RI
Dillatation	%	b
Free swelling index	-	FSI
Gross calorific value	kJ/kg	GCV
Net calofific value	kJ/kg	NCV
Ash content	%	A
Total sulphur content	%	S _t
Total moisture content	%	W _t

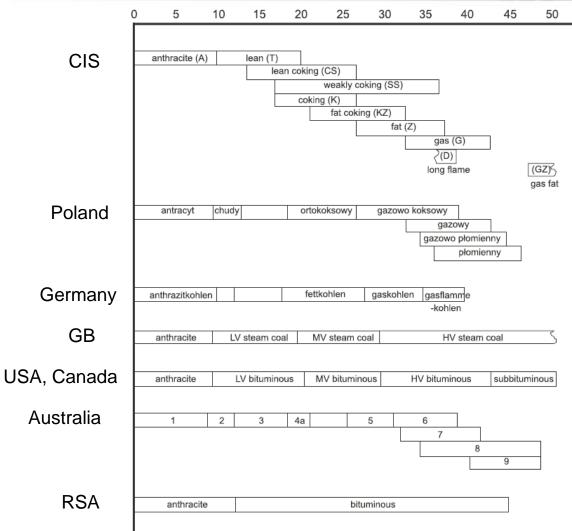
AR – as received

AD – air-dried

index:

- af ash free
- d dry
- ex external
- h hygroscopic

 $S_o^{daf} = W_{AR}^{ex}$



Coal types - international

	Coal Types and Peat			Total Water Content	Energy Content	Volatiles d.a.f.**	Vitrinite Reflection	
UNECE	USA (ASTM)	Germany (DIN)			(%)	a.f.* (kJ/kg)	(%)	in oil (%)
Peat	Peat	Torf			75	6;700		
Ortho-Lignite	Lignite	Weichbraunkohle				16,500		0.3
Meta-Lignite		Mattbraunkohle				19;000		0:45
Sub-bituminous Coal	Sub-bituminous Coal	Glanzbraunkohle				25;000		
		Flammkohle					40	
	High Volatile Bituminous Coal	Gasflammkohle		e				
Bituminous Coal	Medium Volatile	Gaskohle	Steinkohle	Hartkoh e		00.000	35	
	Bituminous Coal	Fettkohle	Stein	-	Hard Cok	king Coal	19	
	Bituminous Coal	Eßkohle					14	
Anthrasita	Semi-Anthracite	Magerkohle			3	36,000	10	2.2
Anthracite	Anthracite	Anthrazit						

Coal types - international

Coal types - Poland

Coal type		Classification parameters						
		V	RI	GCV	b	FSI		
Name	Symbol	%		kJ/kg	%			
Flame	31.1	>28	<5	≤31,000				
	31.2	/20		>31,000				
Flame-Gas	32.1	>28	5÷20		N.A.			
	32.2		20÷40					
Gas	33	>28	40÷55			N.A.		
	34.1				<0			
Gas-Coke		>28	>55	N.A.		-		
	34.2				~ 0			
	35.1	26÷31			>30			
Ortho-coking	35.2A	20.20	>45		>0	>7.5		
	35.2B	20÷26				<7.5		

Coal types - Poland

Coal type		Classification parameters						
		V	RI	GCV	b	FSI		
Name	Symbol	%		kJ/kg				
Meta-coking	36	14÷20	>45		0	N.A.		
Semi-coking	37.1	20÷28	≥5	N.A.	N.A.			
	37.2	14÷20						
Lean	38	14÷28	<5					
Anthracite coal	41	10÷14						
Anthracite	42	3÷10	N.A.					
Metaantracite	43	<3						

Economical Classification by IEA

Classification used by IEA for production and trade statistics

Brown coal; <23.9	Lignite Subbituminous	<17.4 17.4–23.9
Hard coal; >23.9; <i>R</i> >0.6	Coking coal	
	Steam coal	all non-coking coals + recovered slurries, middlings + subbituminous (only in 22 countries)

Values in MJ/kg; R = reflectivity.

Remark: In this chart, brown coals include lignite and subbituminous coals, but subbituminous are also comprised in steam (hard) coal!

Production (Mtce)			Trade (Mtce)				
	1980	1998	1980		1998		
			Import	Export	Import	Export	
Hard coal	955	1102.39	195.14	154.48			
Coking	259.41	211.22	117.79	115.29			
Steam	695.59	891.17	77.35	39.19			
Brown coal/lignite	180.57	166.57	1.51	0.14			
Peat	2.53	2.15	_	_	_	0.01	
			CP ^a 19.7	18.66	15	6.75	
Total	1138.09	1271.10	216.34	173.29	314.90	270.32	

International classification of hard coals

GROUPS determined by caking properties				CODE NUMBER										SUB-GROUPS determined by coking properties			
Group	Alternative group parameter			The first figure of the code number indicates the class of coal determined by volatile matter content up to 33% V.M and by calorific parameter above 33% V.M.										Sub- group	Alternative sub-group parameters		
number		Swelling Roga number index		The second figure indicates the group of coal determined by caking properties.										number	Dilatometer	Gray-King	
	nume	ber i	Index	The mira	The third figures indicates the sub-group, determined by coking properties.									-	- 140	. 68	
	1					[]		435	535	635	[]	()		5	>140	>G8	
3	>4	.	>45				334	434	534	634				4	>50-140	G5-G8	
							333	433	533	633	733			3	>0-50	G1-G4	
	I						332a 332b	432	532	632	732	832		2	≤ 0	E-G	
2	1						323	423	523	623	723	823		3	>0-50	G1-G4	
	21/2-4	4 >	>20-45				322	422	522	622	722	822		2	≤ 0	E-G	
	I						321	421	521	621	721	821		1	Contraction only	B-D	
						212	312	412	512	612	712	812		2	≤ 0	E-G	
1	1-2		>5-20			211	311	411	511	611	711	811		1	Contraction only	B-D	
0	0-1/2	2	0-5		100 A B	200	300	400	500	600	700	800	900	0	Non-softening	A	
Class Number			0	1	2	3	4	5	6	7	8	9	As an indication, the following classes				
Class	is	Volatile matter (d.a.f)		0-3	>3-10 >3- 6.5 10	>10-14	>14-20	>20-28	>28-33	>33	>33	>33	>33		approximate volatile matter content of: Class 6		
parame	eter	ter Calorific parameter ^a		-	-	-	-	-	-	>7750	>7200 - 7750	>6100 - 7200	>5700 - 6100	Class 7			
					Determin	ed by volat	tile matter	-	CLASSES V.M and by	y calorific	e parameter	above 33%	6 V.M -				