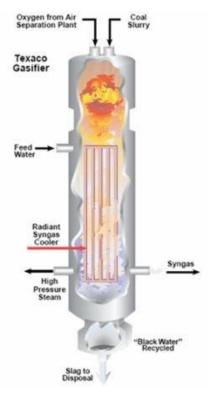


AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Coal Gasification

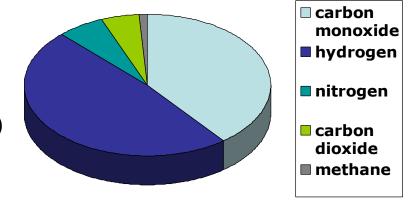
Outgasing of Coal


Faculty of Energy and Fuels, AGH - UST Krakow, 2012

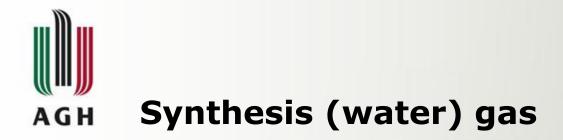
Coal Gasification

Coal gasification is the process of producing coal gas, a type of syngas from coal

Alternatively, the coal gas can be converted into transportation fuels such as gasoline and diesel through additional treatment, e.g. in the Fischer-Tropsch process.


Synthesis (water) gas

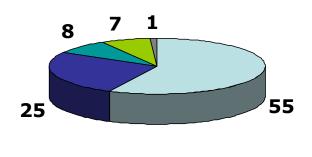
Water gas is a synthesis gas ("town gas"), containing carbon monoxide and hydrogen. It is a useful product but requires careful handling because of the risk of carbon monoxide poisoning. The gas is made by passing steam over a red-hot carbon fuel such as coke:

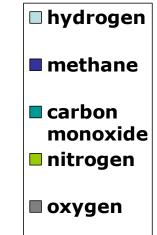

 $H_2O + C \rightarrow H_2 + CO (\Delta H = +131 \text{ kJ/mol})$

mixture of:

- carbon oxide (II) (ca. 39%)
- hydrogen (ca. 48%)
- nitrogen (ca. 6%)
- carbon dioxide (IV) (ca. 5%)
- methane (ca. 1%)

heating value – 10.9 MJ/m³.




Refination over iron oxides:

$$3C + O_2 + H_2O \rightarrow H_2 + 3CO$$

"Town Gas"

heating value $\sim 17,5 \text{ MJ/m}^3$

Water-Gas Shift Rection

The water-gas shift reaction (WGS) is a chemical reaction in which carbon monoxide reacts with water vapor to form carbon dioxide and hydrogen:

$$\mathrm{CO}_{(g)} + \mathrm{H}_2\mathrm{O}_{(v)} \to \mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)}$$

catalyst

- Fe₃O₄ (magnetite)
- other transition metals and transition metal oxides
- Raney copper catalyst

Generator Gas

Generator gas is a gaseous fuel obtained by a specific process of solid fuel gasification (coal, tars, biomas). Composition of gas depend on construction of generator, source material and gasifing agent.

Generally contains hydrogen, carbon monoxide, methane, water vapor, carbon dioxide and nitrogen.

heating value \sim 4-5.5 MJ/m³

Wood Gas (Holzgas)

Wood gas is a syngas fuel which can be used as a fuel for furnaces, stoves and vehicles in place of petrol, diesel or other fuels.

During the production process biomass or other carboncontaining materials are gasified within the oxygen-limited environment of a wood gas generator to produce hydrogen and carbon monoxide.

Composition:

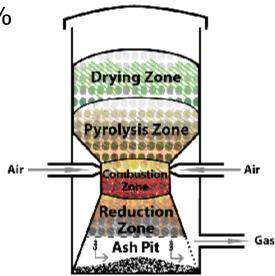
- Nitrogen N2: 50.9%
- Carbon monoxide CO: 27.0%
- Hydrogen H2: 14.0%
- Carbon dioxide CO2: 4.5%
- Methane CH4: 3.0%
- Oxygen O2: 0.6%

heating value 15-18 MJ/kg

Generator Gas (coal and coke)

Generator gas is a syngas fuel which can be used as a fuel for furnaces, stoves. Was used in the public gas network for heating and cooking purpose.

Generator gas was produced in the gas producers in cooprocess of low temperature carbonization and gasification in the mixture of air and steam.


Composition from coke (coal):

- Nitrogen N2: 55.3 (52.0)%
- Carbon monoxide CO: 29.0 (26.5)%
- Hydrogen H2: 11.0 (13.5)%
- Carbon dioxide CO2: 3.8 (5.0)%
- Methane CH4: 0.7 (2.5)%
- Oxygen O2: 0.2 (0.2)%

heating value 5.1 (5.9) MJ/m³

Downdraft Gasifier

Nozzle and constriction (Imbert)

Coke Gas

Coke gas is a fuel which can be used as a fuel for blast furnaces (metal production) or heating of coking cells. Raw coke gas contains many admixtures. After purification its composition is:

- hydrogen H_2 : 53–60
- methane CH₄: 23–28
- heavy hydrocarbons C_nH_m : 2–4
- carbon monoxide CO: 6–10
- nitrogen N₂: 3-8
- oxygen O_2 : <1

heating value ~ 17 MJ/m^3

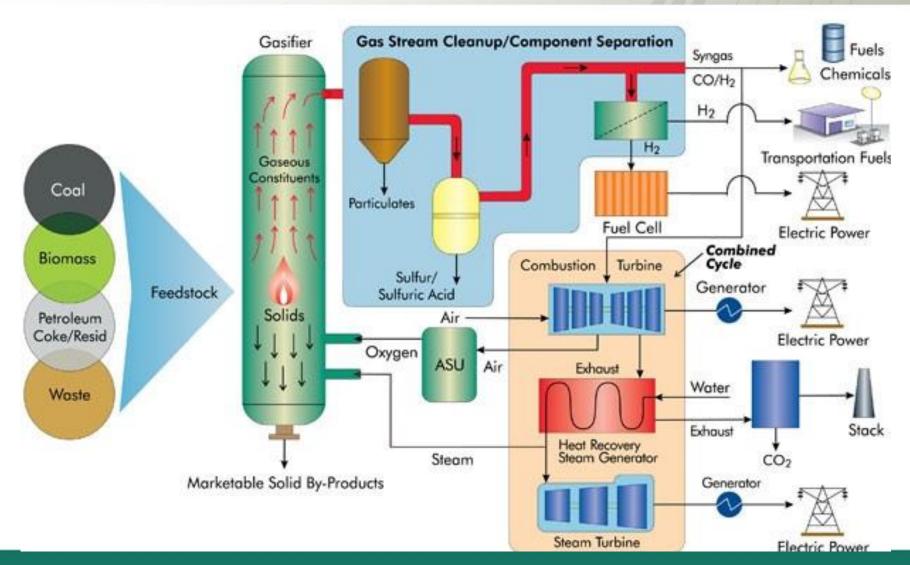
Blast Furnace Gas

Blast furnace gas is a waste gas from metallurgy process which can be used as a fuel for energy purpose: heat and wet steam production.

Raw coke gas contains many admixtures. After purification its composition is:

- hydrogen H₂: 2%
- methane CH₄: 0.3%
- carbon monoxide CO: 28.5-32.0%
- carbon dioxide CO_2 : 7.5-11.0%
- nitrogen N₂: 58.0%
- oxygen O₂: 0.2 %

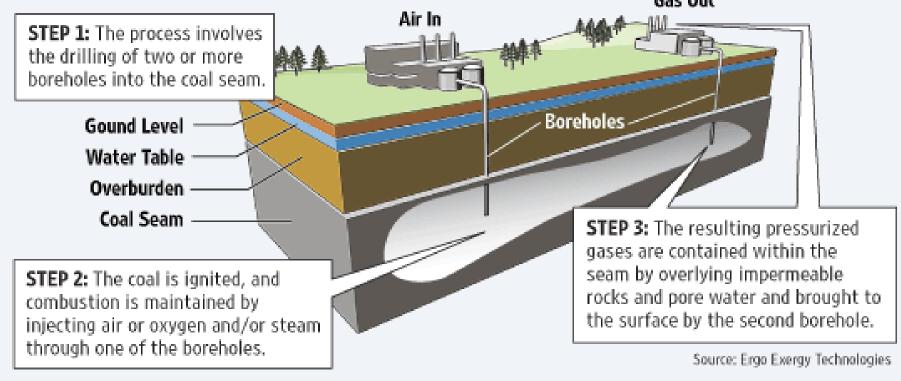
heating value ~ 4.3 MJ/m^3


Syngas production

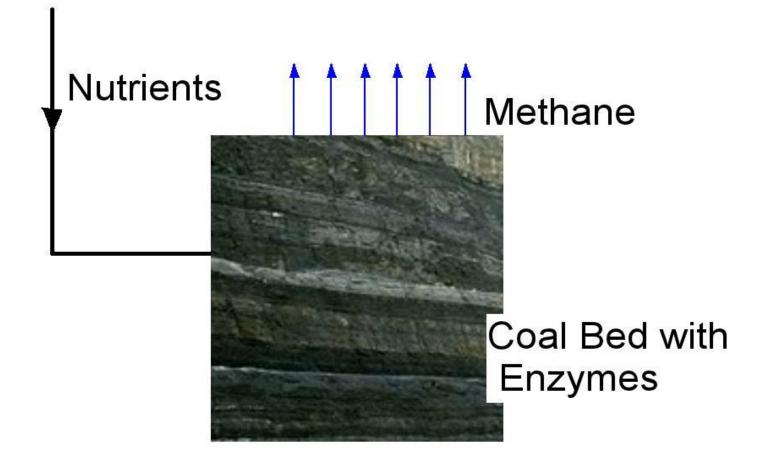
Process comparison

Source→	Coal		Oil remains		Natural gas
Process gasification			gasification		
	Koppers- Totzek	Lurgi	Shell	Техасо	water vapor conversion
Pressure	0.105	2-3	5.4	8.5	2-35
Content:					
H ₂	28.7	40.2	45.9	63.0	76.0
СО	57.0	20.6	48.6	1.8	13.0
CH ₄	0.1	10.7	0.5	0.3	2.0
C ₂ +	-	1.0	-	-	-
N ₂	1.4	0.3	0.2	0.1	-
CO ₂	12.6	26.9	4.0	34.2	9.0
H ₂ S	0.2	0.3	0.8	0.6	-
H ₂ /CO	0.5	1.95	0.94		5.85

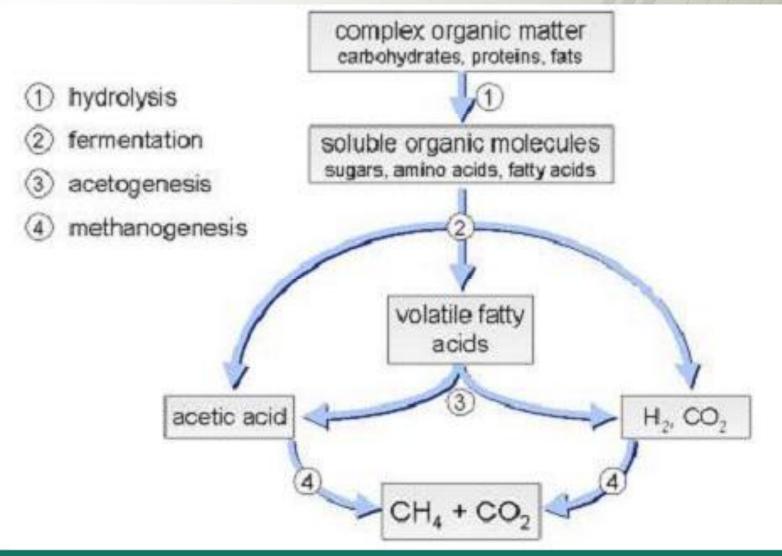
Concept of gasification



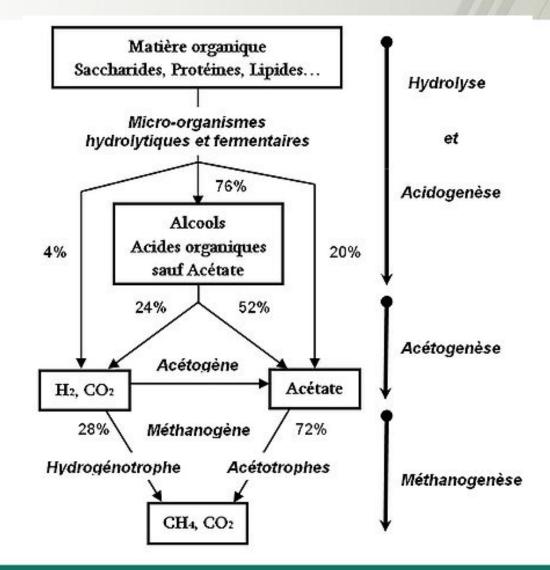
Underground coal gasification


Below the Surface

Underground coal gasification had been largely abandoned in recent decades because increasing reserves of oil and natural gas provided cheaper alternatives. Now, though, it's making a comeback because of higher oil and gas prices. Here's how it works. Gas Out



Undergroud coal sludge utilisation

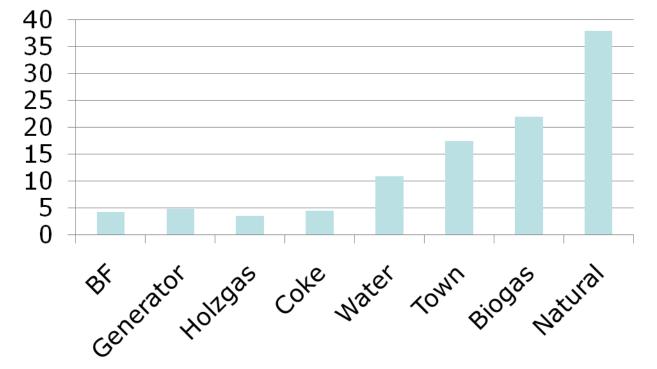


Biogas production

Different pathways of methane production

Biogas composition

Biogas is a mixture of gases that is composed of: methane (CH4): 40 - 70 vol.% carbon dioxide (CO2): 30 - 60 vol.% other gases: 1 - 5 vol.% including: hydrogen (H2): 0 - 1 vol.% hydrogen sulfide (H2S): 0 - 3 vol.%


heating value: 17-27 MJ/m³

Gaseous fuels

Gases

