
Flow length and size distributions in campus Internet traffic

Piotr Jurkiewicz∗, Grzegorz Rzym, Piotr Bory lo

Department of Telecommunications, AGH University of Science and Technology, Kraków, Poland

Abstract

The efficiency of flow-based networking mechanisms strongly depends on traffic characteristics and should thus be
assessed using accurate flow models. For example, in the case of algorithms based on the distinction between elephant
and mice flows, it is extremely important to ensure realistic flows’ length and size distributions. Credible models or data
are not available in literature. Numerous works contain only plots roughly presenting empirical distribution of selected
flow parameters, without providing distribution mixture models or any reusable numerical data. This paper aims to fill
that gap and provide reusable models of flow length and size derived from real traffic traces. Traces were collected at the
Internet-facing interface of the university campus network and comprise four billion layer-4 flow (275 TB). These models
can be used to assess a variety of flow-oriented solutions under the assumption of realistic conditions. Additionally, this
paper provides a tutorial on constructing network flow models from traffic traces. The proposed methodology is universal
and can be applied to traffic traces gathered in any network. We also provide an open source software framework to
analyze flow traces and fit general mixture models to them.

Keywords: flow distributions, network traffic model, elephant flows, mice flows, SDN

1. Introduction

Flow-based switching and routing has been gaining the
attention of researchers for a quite some time [1]. It can
be advantageous in comparison to per-packet switching,
especially with regard to traffic engineering [2], quality of
service (QoS) [3] or security [4]. For example, flow rout-
ing enables multipath and adaptive approaches, which are
impossible to achieve in per-packet routing due to routing
loops and route-flapping constraints, respectively [5].

The efficiency of numerous flow-based solutions strongly
depends on traffic characteristics, and thus, should be as-
sessed based on realistic and accurate flow models. An ex-
ample of such solutions are traffic engineering mechanisms
exploiting the heavy-tailed nature of IP flows. To the best
of our knowledge, the first paper exploring such a possibil-
ity is [6], in which the authors proposed heuristic that dif-
ferentiates traffic into elephant and mice flows. Then, as-
suming that elephant flows have a more significant impact
on network performance, this type of traffic is routed adap-
tively to the current network load, while flows classified as
mice are handled using the shortest paths. Recently, the
heavy-tailed nature of IP flows is being exploited to re-
duce management overheads in software-defined network-
ing (SDN). For example, in work [7], the authors employed
a reinforcement learning approach to detect elephant flows
in advance to limit the number of flow entries in forwarding
tables.

∗Corresponding author
Email address: jurkiew@agh.edu.pl (Piotr Jurkiewicz)

To reliably evaluate such ideas, realistic distributions
of flows’ length and size must be ensured. Unfortunately,
such a data is not available in the literature. For exam-
ple, the authors of [6] used distributions extracted from
their own traffic measurements, but they did not provide
any reusable data and their trace was limited to only one
week. By contrast, the authors of [7] assumed a 1:9 con-
stant ratio between elephant and mice layer-4 flows and
fixed flow sizes of 25.6 MB and 256 KB, respectively. Such
assumptions are not only arbitrary, they also often do not
correspond to reality, as we show in this work.

The lack of realistic models negatively impacts on the
credibility of results presented in numerous papers. More-
over, different and arbitrary assumptions in various works
exclude the possibility to effectively compare different so-
lutions. As we show in related works, all the papers at-
tempting address this issue provide plots presenting em-
pirical probability density functions (PDFs) or cumulative
distribution functions (CDFs) of selected flow parameters
at best. None of these papers provide distribution mixture
models or even reusable numerical data of any kind.

This paper’s goal is to provide accurate flow statistics
and reusable distribution mixture models of flow’s length
and size for any researchers who may need such a data.
We believe that these models can be considered as general
models of typical Internet traffic, and thus, widely used in
numerous applications, including AI and Big Data. Exam-
ples of such the applications are summarized in Table 1.
Furthermore, we provide a tutorial and software for build-
ing similar models based on data gathered in any network.

Preprint submitted to Computer Communications December 26, 2020



Table 1: Examples of research areas where the proposed model can be used

Research area Usage example

AI-based networking Learning and evaluation of novel AI-based routing algorithms

Big Data driven networking Generating large amounts of flow records for analysis

Traffic engineering Evaluation of flow-based traffic engineering methods

SDN management Selecting elephant detection thresholds for reduction of flow table size requirements

Algorithms & protocols performance evaluation Assessment of novel algorithms and protocols in realistic conditions

Equipment performance evaluation Performance evaluation of new hardware/chips at realistic flow rate

The structure of this paper is as follows. First, we
present the methodology with a tutorial covering the fol-
lowing steps:

� collecting flow records,

� cleaning the data,

� merging split flow records,

� data binning and plotting,

� fitting mixture models to data,

� generating realistic traffic based on these models.

For each step, we provide tips and highlight caveats
and possible pitfalls. In addition to the methodology and
tutorial, we provide an open source software framework
comprising tools aimed at performing these steps. The
framework is designed with big data analysis capabilities
in mind. Specifically, it supports out-of-core computing,
making possible to analyze data which exceeds available
memory. Moreover, most processing steps can be scaled
horizontally using the well-established map-reduce tech-
nique. Therefore, provided implementation is not limited
in terms of the number of processed flow records. To-
gether, the provided methodology and framework create
an opportunity for any interested parties to extract traffic
characteristics from their networks and validate any poten-
tial mechanisms before applying them in the production
environment.

Then, we use the framework to apply the methodol-
ogy to the real traffic traces in order to extract models of
flow length and size. Traces cover a thirty-day period of
layer-4 flows (four billion flows, defined by 5-tuple, 275 TB
of transmitted data) and were collected on the Internet-
facing interface of a large wired university network. This is
several orders of magnitude more than in previous analy-
ses which mostly comprised tens of millions of flows. Flows
number, and total sum of packet and octet distributions
are extracted, analyzed and modeled as functions of both
flow length (in packets) and flow size (in bytes). In pre-
vious works, only selected distributions were presented,
without any models or reusable numerical parameters (see
Section 2: Related works).

Finally, along with the framework source code, we make
the data publicly available. This makes our results reusable
and fully reproducible, increasing the value of the tutorial
part of this work:

https://github.com/piotrjurkiewicz/flow-models

2. Related works

To our knowledge, no other paper jointly provides tu-
torial style methodology to extract accurate flow charac-
teristics. Furthermore, we are unaware of either any soft-
ware framework able to determine such characteristics or
any previous work providing reusable flow model reflecting
general Internet traffic. Some works provide only selected
traffic properties, without trying to fit accurate mixture
models. Such works are briefly introduced below.

The contribution of paper [8] is the most similar to our
work. The authors also calculate flow statistics based on
the traces originating from NetFlow protocol. The out-
put of the performed analyses are empirical CDFs of flow
length, size and duration. What distinguishes work [8]
is that the authors also fit particular distributions to the
data and provide complete descriptive parameters. How-
ever, the achieved accuracy is much worse than our work.
This is mainly due to the fact that single distributions are
considered instead of distribution mixtures utilized in our
models. Furthermore, a very important difference is that
the authors in [8] examine only selected transport layer
ports, representing applications like peer-to-peer (P2P),
web and TCP-big. Therefore, the proposed models can-
not be used to represent general Internet traffic.

Plots presenting empirical CDFs of flow length, size
and duration are also presented in [9]. However, source
data is outdated (originates from traces collected in 2004)
and instead of fitting distributions, the authors only pro-
vided values of functions at selected subsets of points.

Papers [14] and [15] are also widely cited; both provide
graphical representations of flow size, duration and rate
distributions, but lack numerical data. Contrastingly, in
[23] the authors focused solely on the flow duration.

Articles [10] [11] [12] [13] [16] [17] [18] [24] show selected
distribution plots, but without providing any data, what
makes them hardly useful in further research. The last

2

https://github.com/piotrjurkiewicz/flow-models


Table 2: Distribution plots presented in related works

Distribution of flows in function of flow’s length: [6] [8] [9] [10] [11] [12] [13]

Distribution of packets in function of flow’s length: [6]

Distribution of flows in function of flow’s size: [8] [9] [10] [11] [14] [15] [16] [17] [18] [19] [20] [21] [22]

Distribution of octets in function of flow’s size: [21]

Table 3: Comparison with most significant related works

Work/Property [6] [8] [21] This work

Collection point Access point of the AT&T
WorldNet network

University of Ljubljana cam-
pus WAN port

CAIDA traces and Budapest
University (BME) campus
WAN port

AGH University of Science
and Technology WAN port

Date June 1997 June 2007 December 2012 June 2015

Period 1 week 24 hours 4 minutes (CAIDA) and 6
minutes (BME)

30 days

Number of flows 795 thousand 50 million 4 million (CAIDA) and 264
thousand (BME)

4 billion

Main contribution Proportion of packets in long
flows

Fitted (single) distributions CDF plots, packet interar-
rival time analysis

Fitted precise distribution
mixtures, reusable CDF nu-
merical data, reproducible

Crucial assumptions Inactive timeout equal to
60 s, flows truncated to
1000 s

Inactive timeout unknown,
flows truncated to 65535 s

Inactive timeout unknown,
flows truncated to 4 and 6
minutes

Inactive timeout equal to
15 s, flows not truncated

Significant limitations No models/reusable numeri-
cal data

Only selected applications
analyzed

CDF presented only graphi-
cally

Focused only on flow length
and size

article, in addition to the CDFs mentioned in the table,
provides CDF of active flows, flow interarrival times and
packets interarrival times.

In articles [19] and [20] in addition to the classification
according to the table, there are figures where rate vs. size
and bandwidth vs. duration presented.

More recent data was used in [21], where the authors
analyzed traffic traces collected in 2012 and originating
from the CAIDA1 and Budapest University campus Inter-
net facing port. However, the provided output is limited
solely to the graphical presentation of CDFs of overall,
flow and packet sizes. Additional contributions concern
to some analyses of packet inter-arrival times and consid-
erations about the contribution of elephant flows to the
overall traffic.

The output of traffic analyses is even more limited in
[25], where the authors provide only CDFs of flows and to-
tal bytes in function of flow duration. However, the paper
is worth mentioning due to its valuable contribution re-
garding methodology aimed at merging flow records based
on packet headers. Finally, no distributions are presented
in [26], where authors focused on other important aspects.
They provided a plot presenting the contribution of dif-
ferent flows to the overall traffic. Such analyses can be

1http://www.caida.org

especially useful to evaluate mechanisms based on the dis-
tinction between mice and elephant flows. Unfortunately,
the work does not provide any reusable numerical data.

Finally, there is a large group of work on traffic dis-
tributions of a single network service (e.g. HTTP, video
streaming, or voice over IP (VoIP)): [27] [28] [29] [30] [31]
[32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] There-
fore, these works cannot be considered as universal enough
to be representative for the general Internet load.

In addition, there is a series of works that refer to ex-
tracting the distribution of flows from packet samples: [22],
[44], [45] and [46]. These papers are orthogonal to our
work as their main focus is on the estimation of distribu-
tions from sampled traffic (incomplete data), which was
out of consideration of this work.

Examples of works that take advantage of heavy-tailed
nature of IP flows in SDN are [47], [48] or [49]. DevoFlow
[47] is a complete TE system based on modified OpenFlow
switches, which key feature is the reduction of OpenFlow
overhead by focusing on significant flows. The paper [48]
proposes the ZOOM algorithm based on packet counters
for lightweight elephant detection in SDN networks for ef-
ficient flow based traffic management. On the other hand,
the authors of [49] model the problem of flow table oc-
cupancy reduction by focusing on elephant flows as the
knapsack problem.

3

http://www.caida.org


None of the works provide parameters of distribution
mixture models fitted to the network traffic that can be
considered as an approximation of the general Internet
load. Furthermore, only selected works provide numeri-
cal values of distributions at selected points, while most of
them are limited to graphical presentation of CDFs plots.
Moreover, none of these papers provide any software. We
summarize presented distributions by paper in Table 2.
We also provide a comparison of our paper with the most
prominent other works in Table 3.

3. Methodology

This section covers steps aimed at collecting and ana-
lyzing flow traces from the network, as well as constructing
flow models that accurately describe the traffic. For each
stage, numerous tips and possible pitfalls are provided to
reveal all the lessons learned during the research.

The overall data pipeline is as follows. First, all flow
records have to be collected. Next, before any further pro-
cessing, the data need to be cleaned and filtered. Since
long lasting flows may be reported multiple times due to
triggering procedures in the exporters, such flow records
have to be found and merged back. The next step is re-
duction of data passed to the modeling by binning it. Fit-
ting of a general mixture model, approximating the col-
lected data, follows afterwards. Fitted model can be used
to mimic real traffic in simulators or traffic generators.
Schema of the whole pipeline is presented on Figure 1.

3.1. Flow definition

The most universal definition of traffic flow in packet
network is a sequence of packets which share a common
property. Depending on the purpose, flows can be de-
fined at various layers and levels of granularity: layer 4
(five-tuple) or layer 3 (source-destination address pair or
destination address/prefix). Any network operator have
to decide which fields to consider and this decision usually
depends on the operator’s scope of operation and traffic
engineering purposes. One extreme example are Tier 1
operators which may operate on autonomous system level
without even considering IP addresses. However, the most
common approach is to determine flow properties based on
the packet header fields and to consider source and destina-
tion addresses, not exclusively, in different network layers,
e.g. data, network, or transport.

In our research, flow is defined as a unidirectional se-
quence of packets that share the same five-tuple: IP source
address, IP destination address, source port, destination
port, and transport layer protocol type. All these fields
are placed on fixed positions in IP packets and are directly
accessible without using deep-packet inspection. Such an
approach follows the NetFlow/IPFIX flow concept [50]
and enables application-oriented approach traffic analy-
sis. However, as such a flow definition may not be valid
for all networks, our contribution can be adjusted to other
definitions and operator needs.

merge

hist

fit

generate

nfdump

Raw flow dumps
(nfcapd format)

Filtered flow dumps
(nfcapd format) 

Merged flow records
(binary format)

Binned histogram of
a selected flow feature
(CSV format) 

Fitted distribution mixtures
modeling the selected feature
(JSON format) 

Generated flow records
according to the model
(CSV format)

Traffic generator

Collector

IPFIXNetFlow

Packets

Exporters

Figure 1: The schema of data processing pipeline.

3.2. Collecting of flow records

The collecting of flow records is the starting point for
constructing a network flow model. This step is crucial for
obtaining accurate flow feature histograms and resulting
mixture models. In this paper we assume that flow records
are collected by the network equipment (hardware or soft-
ware). The well known solutions allowing this are Cisco
NetFlow, IPFIX and sFlow. The most common architec-
ture of such concepts consist of two main components: an
exporter that is responsible for creation of flow records
from observed traffic and a collector that collects and pro-
cesses flow records generated by the exporter. Collector is
usually a software running on a commodity server.

4



Most importantly, packets must not be sampled by the
exporter. Packet sampling techniques introduce bias to
the collected data, which must be compensated for. The
estimation of flows features histograms from sampled data
was extensively studied in [44], [45], [22] and [46], and
falls outside scope of this paper. NetFlow and IPFIX ex-
porters usually can operate in non-sampling mode. This
is not always the case for sFlow, which sometimes imposes
mandatory sampling. Therefore, before starting data col-
lection, hardware or software must be configured to work
in a non-sampling mode.

The software framework developed by us is designed
to be used primarily on the top of the nfdump toolset2.
nfdump is an open-source framework used to collect and
process flow records, created by Peter Haag. It supported
preliminarily NetFlow data only, but extensions for pro-
cessing other flow record formats were implemented after-
wards. It stores flow records in nfcapd binary file format,
which is the input format of our framework. This means
that our framework can be used to analyze flow records
collected in all formats supported by nfdump, which cur-
rently are: NetFlow v1, v5/v7, v9, IPFIX and sFlow (both
IPv4 and IPv6).

Other important configuration parameters regarding
the exporter are timeouts. In the case of NetFlow, these
are:

� inactive timeout,

� active timeout.

Inactive timeout is the time, after which the particu-
lar flow record is exported under the condition that the
exporting process does not collect any packet belonging
to that flow. This means that packets with the same flow-
defining key values, collected before reaching inactive time-
out since the last packet will be considered as a single flow,
and those collected after the timeout will be treated as a
part of a new flow. The value of this timeout is a mat-
ter of flow definition and is crucial. For example, in the
case of flowlet research, one would set this parameter to
some subsecond value. This parameter strongly affects the
resulting traffic model.

Active timeout defines the time after which particular
flow record is exported even when the flow is still active.
The aim of this parameter is to limit the amount of mem-
ory required to store active flow records and counters in
the exporter. In an ideal situation, it should not affect
collected flow features as split records can be merged back
(see below). However, the process of flows splitting per-
formed by an exporter can introduce errors. Therefore,
the timeout should be set to the highest value possible
for particular hardware under expected load in order to
reduce flow splitting as much as possible.

2http://github.com/phaag/nfdump

3.3. Cleaning the data

Collected data must be groomed before performing the
next steps. The exporter often generates flow records from
multiple interfaces of a single device, so the same flow is re-
ported as incoming flow on a one interface and as outgoing
flow on another one. Moreover, it may happen that col-
lector gathers data from multiple devices deployed within
the same network, so the same flow may be reported mul-
tiple times by multiple exporters. Therefore, it must be
ensured that data contains only flow records from a single
interface of a single device. Moreover, we have noticed that
NetFlow hardware exporters sometimes provide corrupted
flow records characterized by implausible durations, which
need to be filtered out as well.

The nfdump command line tool can be used to filter
out flow records in the nfcapd format. It supports intu-
itive tcpdump-like filter expressions syntax and performs
the operation pretty quickly. In case of single-homed net-
work simple filtering of flow records that passes boarder
router interface connected to the Internet can be applied.
If a network is multi-homed, used filter should include all
routers and interfaces that are connected upstream.

Wrong flow durations may not be only the results of
a flow record corruption, but also an inevitable artifact
caused by flow exporter. Several artifacts related to tim-
ing have been reported in literature [51]. Due to clock
synchronization and precision issues, start and end times
of flow records may not be precise or just simply incor-
rect. Another category of timing artifacts is the imprecise
or erroneous expiration of flow records [52].

However, the calculation of flow duration requires ac-
curate timestamps. Similarly, any time-related properties,
like packet rate or bit rate, require precise timing. There-
fore, used flow exporter must be examined whether it can
provide accurate timestamps. In order to determine the
reliability of flow timestamp records one can use the algo-
rithm described in [53]. In case of our data, we decided not
to provide any time-related properties due to inaccuracy
of used hardware NetFlow exporter. Ideally, packet-level
traces should be analyzed instead flow-level records in or-
der to obtain accurate flow rate and duration distributions.

3.4. Merging of flow records

Flows which were split into separate records due to the
active timeout must be merged back into a single record
in order to obtain accurate flow length, size or duration
values. There is no software available to perform this op-
eration so we developed a dedicated tool, available in our
framework (called merge).

All flow records are processed in order of appearance.
When a flow with a duration shorter than active timeout−
inactive timeout is encountered, it is dumped immedi-
ately as it is too short to be considered as a flow which
was split due to active timeout. Initially, we were dump-
ing flows with a duration lower than active timeout, but
this was a pitfall because NetFlow agents do not always

5

http://github.com/phaag/nfdump


export active flow records accurately on active timeout.
Instead, we found out that on our hardware the export
of active flows starts after a delay approximately equal to
active timeout − inactive timeout, so we used this value
as a safe decision threshold. Research presented in [52]
shows that the active timeout deviation can vary between
different hardware or even firmware versions.

Flows with a duration greater than active timeout −
inactive timeout are considered as potential candidates
to merge with subsequent flow records. Therefore, instead
of being dumped, they are temporarily cached. When a
new flow record with the same key is encountered, it is
verified if the arrival time of the first packet is within the
inactive timeout interval of the last packet of the cached
flow. If so, these flow records are merged by summing
their packets and octet counters and adjusting the first
and last packet arrival times. Otherwise, the cached flow
is dumped immediately and the new flow is either cached
or dumped depending on the condition indicating if it can
be considered as a candidate to merge.

An additional lesson learned is that some portion of the
flow records is erroneous. For example, a timestamp of the
first packet of one flow is within the period when another
flow with the same key is active (between its first and last
packet timestamps). Such flow records are also filtered out
by our merge tool. For example, in case of our campus
data, erroneous flow records accounted for 0.0046% of all
collected records.

3.5. Data binning

Data binning is a step aimed at reducing the amount
of data processed. We took advantage of the fact that
next stages aimed at fitting and plotting do not have to
be performed on complete flow records. Instead, they can
operate on histograms (frequency distribution tables), cal-
culated by binning flow records into buckets according to
the selected parameter (such as flow length or size). His-
togram files can also be easily published as they are many
orders of magnitude smaller and, unlike flow records, do
not contain private information such as IP addresses. We
provide a tool called hist which performs flow binning and
outputs histogram file in CSV format.

Binning the data into buckets of a width equal to one
gives the most precise histogram. However, the resulting
number of bins can be huge. This is especially problem-
atic in the case of values of high granularity, such as flow
sizes. Each distinct flow size results in a separate bucket
entry, which means that for large flows, there are actually
separate buckets for each flow. For example, in case of
our campus data 4 billion flows resulted in 905 thousand
separate buckets, yielding a 285 MB CSV file.

The solution to the above problem is to use bins of
variable widths. For short and small flows, it is desirable
to keep precise bins as they account for the vast majority
of flows. However, precise bins are not essential for large
flows. Therefore, logarithmic binning is the most appro-
priate scheme. Logarithmic binning can also significantly

reduce size of histogram files. In our case it reduced the
number of buckets to 44 thousand, which is a reduction
by 95%. Information loss introduced by it is negligible for
the accuracy of fitted mixtures and CDF plots, however,
it introduces distortion for PDF plots. Therefore, it must
be appropriately compensated for during plotting.

In the case of empirical PDF line plots, the best option
is to first calculate the interpolated CDF, and second, to
differentiate it in order to obtain the PDF line. Such an ap-
proach allows circumventing the distortion introduced by
variable width binning. The problem appears with plots of
PDF datapoints. The Figure 2 presents the plot of PDF
of flows in function of flow length. Data points are val-
ues of each bin of histogram. The solid line presents the
PDF calculated by differentiating the CDF inferred from
the data points. It can be seen that log-binned data points
(cyan color) for bins wider than one are placed above their
actual positions. This is because the variable-width bin-
ning bumps up number of flows in those bins. The cor-
rect way to compensate that boost is to divide sums in
each bucket by the distance to the next non-empty bucket.
This normalization procedure is implemented in the plot

module in our framework, which can be used for plotting
histograms, as well as fitted mixtures.

101 103 105 107

Flow length [packets]

10−16

10−13

10−10

10−7

10−4

10−1

P
D

F
of

fl
ow

s

infered from data points

raw data points (log-binned)

raw data points (normalized)

Figure 2: Distortion of PDF points due to variable-width binning.

3.6. Fitting of mixture models

The fitting of the probability distribution to the series
of the observed data is a process of finding a probabil-
ity distribution and its parameters. However, due to the
complexity of Internet traffic (many network applications
and different users’ behavior) single distribution cannot
be fitted to match the collected data accurately. In such
a situation, a mixture of distribution can be used. Such
a model is a collection of other well known distributions
called mixture components.

Finding mixture components and their weights is not a
trivial process, especially when compared to the process of
single distribution fitting where maximum-likelihood esti-
mation (MLE) can be applied. To estimate the parameters

6



of a statistical model composed of mixture components,
a more sophisticated method must be used. One of the
most commonly used machine learning algorithms for this
purpose is the Expectation-Maximisation (EM) algorithm,
which was also used by us. For details regarding the EM
algorithm see [54] or our implementation [55].

We have implemented the EM algorithm in a tool called
fit, which is a part of our framework. It takes flow his-
togram CSV file as an input and performs distribution
mixture fitting. In order to start the EM algorithm, an
initial distribution mixture has to be provided. Its pa-
rameters are then iteratively refined in order to find the
local optimum. Our tool can receive an initial distribution
mixture from a user, but it can also generate an initial
mixture for a particular dataset on its own, which means
that a user has to only provide number and types of dis-
tributions used in mixture.

Currently, uniform, normal, lognormal, Pareto, Weibull
and gamma distributions can be used in mixtures fitted by
our tool. However, we have discovered, that uniform and
lognormal distributions are usually sufficient to provide
an accurate mixture model of flow lengths and sizes. They
have an advantage of being fast to fit, since their max-
imization steps have analytical solutions, whereas some
other distribution parameters (Weibull or gamma) must
be calculated using numerical optimization methods. An-
other advantage is that they are widely implemented, so
distribution mixtures composed of them can be usable in
various network simulators and traffic generators.

Flow lengths and sizes are quantized values, so they
should be approximated using discrete distributions. How-
ever, continuous distributions are considerably easier to
model and use. In order to use continuous distributions for
accurate modeling of a discrete data, it is required to prop-
erly handle them during fitting steps. Our implementation
can be consulted for details on this [55]. Moreover, values
generated using such models must be properly rounded,
which is described in the next section.

It is more important to ensure accurate fitting for short
and small flows, because they account for the majority of
traffic. There are very few flows at the tail (which can
be seen on PDF plots), so excessively accurate fitting to
them would result in an overfitted model. For example,
flows of length of one and two packets make up more than
50% of total number of flows, since they are generated
by special phenomena, like port scanning or DNS queries.
Therefore, it is most beneficial to model such flows using
uniform distributions and use heavy-tailed distributions
(like lognormal) for longer flows. In case of our campus
data, we discovered that modeling flows up to 6 packets
with uniform distributions and the rest with lognormal
gives the best results. Such a mixture is in fact a hybrid
discrete-continuous mixture.

3.7. Generating flows from models

In order to be used for benchmarking of network mech-
anisms, models must enable the generation of traffic with

distribution exactly matching that of the used models.
Firstly, flows distribution mixture must be used to gen-

erate a random sample of flow length or size. A single
distribution, randomly chosen from a mixture according
to specified weights, has to be used to generate a ran-
dom value. In case of the scipy.stats package, the rvs

method can be used for this purpose. Next, in the case of
non-continuous variables, such as flow length or size, the
generated value must be rounded to the next nearest in-
teger (by truncating the fractional part and adding one).
In the case of flow size, values lower than the minimum
packet size (64 bytes in the case of Ethernet) must be also
rounded up to the minimum packet size.

As we have discovered, the average packet size depends
on flow length/size. Thus, in order to accurately model the
amount of traffic generated by flows of particular length,
one has to obtain an average packet size that flow. To do
this, the value of PDF of octets at given sample point must
be obtained (PDF should be calculated by differentiating
the CDF of mixture). Value of PDF of octets should be
divided the value of PDF of packets, obtained in a similar
way. In the end, the resulting value has to be multiplied
by the average packet size of the used model.

The tool generate in our framework can be used as a
reference how to properly generate flows from distribution
mixtures.

4. Campus traffic model

We applied the methodology described in the tutorial
to the real traffic traces in order to extract models of flow
lengths and sizes. We collected NetFlow records of all flows
passing through the Internet-facing interface of the AGH
University of Science and Technology wired network over
30 consecutive days. Flows traveling in both directions
(upstream and downstream) were collected separately. We
only collected dataplane traffic, without any control traffic
(like OpenFlow messages between switches and controllers,
etc.). Metadata of our dataset is presented in Table 4.
In total, we collected over 4 billion flows comprising 317
billion packets. The amount of transmitted data was over
275 TB. Table 5 presents statistics of the collected flows.

Table 4: Metadata of collected flows

Dataset name agh 2015

Flow definition 5-tuple

Exporter Cisco router (NetFlow)

L2 technology Ethernet

Sampling rate none

Active timeout 300 seconds

Inactive timeout 15 seconds

Collection duration 30 days

7



Table 5: Statistics of collected flows

All traffic Number of flows 4 032 376 751 flows

Number of packets 316 857 594 090 packets

Number of octets 275 858 498 994 998 bytes

Average flow length 78.578370 packets

Average flow size 68410.894128 bytes

Average packet size 870.607188 bytes

TCP-only Number of flows 2 171 291 495 flows

Number of packets 264 608 398 768 packets

Number of octets 244 338 999 568 258 bytes

Average flow length 121.866824 packets

Average flow size 112531.643094 bytes

Average packet size 923.398504 bytes

UDP-only Number of flows 1 737 523 167 flows

Number of packets 50 730 510 162 packets

Number of octets 31 098 128 445 645 bytes

Average flow length 29.197027 packets

Average flow size 17897.964779 bytes

Average packet size 613.006421 bytes

Dormitories, populated with nearly 8000 students, gen-
erated 69% of the traffic. The rest of the university (over
4000 employees) generated 31%. In the case of dormitories,
91% of traffic was downstream traffic (from the Internet).
In the case of rest of the university, downstream traffic
made up 73% of the total traffic. Therefore, statistics and
models presented in this paper can also be considered as
representative of residential traffic. The breakdown of ob-
served traffic according to the origin is shown in Table 6.

Table 6: Traffic shares by source (%)

Dormitories Rest of the campus

all down up all down up

Flows
41.62 58.38

50.05 49.95 50.02 49.98

Packets
67.72 32.28

63.88 36.12 59.09 40.91

Octets
68.66 31.34

91.41 8.59 73.00 27.00

The trace consists mostly of TCP and UDP traffic,
which accounted for 54% and 43% of flows, respectively.
However, TCP flows were responsible for nearly 89% of
transmitted data. Having in mind different nature of TCP
and UDP traffic, in addition to the general model incor-
porating all observed flows (All traffic), we also provide
models for TCP-only and UDP-only flows. Breakdown
of traffic by the protocol is presented in Table 7.

In the subsequent paragraphs and figures we analyze
the accuracy of the model developed and presented in this
work. Namely, we compare the output of mixture model
with data originally collected from the network and eval-
uate how well our model reflects real situation in the net-
work.

Table 7: Traffic shares by transport layer protocol (%)

TCP UDP Other

Flows 53.85 43.09 3.06

Packets 83.51 16.01 0.48

Octets 88.57 11.27 0.15

Flows cumulative distribution function (CDF) tells what
fraction of flows are flows of up to given length. Packets
and octets CDFs tell what fraction of overall traffic is con-
tributed by these flows. Table 8 and Table 9 presents se-
lected values of empirical CDF derived from the collected
data.

Figure 3-8 show flows, packets and octets distribu-
tions as functions of flow length and flow size, respectively.
Starting from the upper left plot, CDFs are presented on a
single plot. The next plots show probability density func-
tions (PDF), each on a separate plot. The colored solid
lines present CDFs and PDFs inferred from the data (em-
pirical distribution functions). Rasterized datapoints are
also visible on the plots. Black solid lines are CDFs and
PDFs calculated from the fitted mixture models. Present-
ing them on the same figures as data allows graphical as-
sessment of fitting accuracy. Moreover, on PDF plots, each
mixture component is plotted as a dashed line.

Figure 9-11 presents average packet sizes for flows of
particular lengths and sizes, respectively. It can be seen
that longer/larger flows have a greater average packet size.
This causes the horizontal gap between packet and octet
CDFs, which can be seen in Figure 3-8. If the average
packet size was constant and independent from flow length-
/size, packet and octet CDFs (green and blue lines) would
overlap. The minimum packet size was 64 bytes and the
maximum packet size was 1522 bytes, which means that
IEEE 802.1Q VLAN tagged Ethernet frames were observed
in the trace.

Finally, we provide mixture models fitting the distri-
butions. They consist of uniform and lognormal distri-
butions. The mixtures along with their parameters are
provided in the Appendix A Mixture models and in our
GitHub repository [55].

The numbers presented in tables are in line with the
limited histograms of CAIDA and BME traces presented
in [21]. The CAIDA traces contain traffic recorded on
a backbone link between Chicago and San Jose, whereas
the BME trace represents traffic of Budapest University of
Technology and Economics WAN interface. This confirms
that our models indeed represent a realistic Internet traffic.

The provided plots and models can be used to evaluate
various flow-oriented networking solutions. For example,
we can use them to evaluate a traffic engineering mech-
anism based on heuristics that differentiates traffic into
elephant and mice, similar to the one described in the Sec-
tion 1: Introduction.

8



Table 8: Selected values of empirical distributions in function of flow length

Flows of length up to
(packets)

All traffic TCP-only UDP-only

Make up % Make up % Make up %

of flows of packets of octets of flows of packets of octets of flows of packets of octets

1 47.8326 0.6087 0.1047 26.5673 0.2180 0.0248 72.0893 2.4691 0.6936

2 65.3421 1.0544 0.1728 47.5666 0.5626 0.0652 85.9202 3.4165 0.9729

4 74.8933 1.4696 0.2537 58.9241 0.8847 0.1226 93.4510 4.2818 1.2308

8 84.1319 2.1958 0.4412 73.1538 1.6098 0.3050 96.9092 4.9940 1.4527

16 90.5756 3.1633 0.7830 83.8696 2.6480 0.6583 98.4129 5.5985 1.7030

32 94.3448 4.2601 1.2432 90.2560 3.8485 1.1430 99.1112 6.1370 1.9661

64 96.4556 5.4778 1.8863 93.8820 5.1985 1.8303 99.4607 6.6728 2.2622

128 97.7421 6.9597 2.7813 96.1150 6.8565 2.7917 99.6457 7.2502 2.6369

256 98.5940 8.9276 4.1445 97.5940 9.0582 4.2560 99.7673 8.0068 3.2041

512 99.1268 11.3677 5.8630 98.5178 11.7861 6.1010 99.8428 8.9430 3.9217

1024 99.4631 14.4387 8.1638 99.0930 15.1682 8.5593 99.8988 10.3430 4.9581

2048 99.6735 18.2982 11.5607 99.4477 19.3539 12.0957 99.9375 12.2954 7.1653

4096 99.7996 22.9134 15.7892 99.6647 24.4758 16.6297 99.9562 14.1350 8.9254

8192 99.8763 28.5198 21.1283 99.7966 30.6908 22.3573 99.9681 16.5167 11.1823

16384 99.9249 35.6815 28.1727 99.8792 38.5230 29.8534 99.9772 20.1770 14.6856

32768 99.9581 45.4696 37.5909 99.9345 49.0188 39.7829 99.9849 26.3610 20.1202

65536 99.9805 58.5711 50.6240 99.9706 62.6382 53.3185 99.9915 36.8420 29.2514

131072 99.9933 73.2594 67.2425 99.9902 77.0380 70.2250 99.9967 53.2005 43.7028

262144 99.9981 83.9254 80.4537 99.9973 87.2900 83.5018 99.9988 66.2152 56.4890

524288 99.9994 89.9609 87.8104 99.9992 92.7675 90.5868 99.9996 75.2048 65.9873

1048576 99.9998 93.8090 92.4484 99.9998 96.0066 94.7181 99.9999 82.2277 74.5952

2097152 99.9999 96.1224 95.3628 99.9999 97.9366 97.2627 99.9999 86.5530 80.3917

4194304 100.0000 97.4921 97.1076 100.0000 99.0591 98.8117 100.0000 89.2491 83.6806

8388608 100.0000 98.2356 97.9084 100.0000 99.4960 99.4221 100.0000 91.6152 86.0016

16777216 100.0000 98.9065 98.5951 100.0000 99.6210 99.5394 100.0000 95.1656 91.1591

Table 9: Selected values of empirical distributions in function of flow size

Flows of size up to
(bytes)

All traffic TCP-only UDP-only

Make up % Make up % Make up %

of flows of packets of octets of flows of packets of octets of flows of packets of octets

64 4.3082 0.0548 0.0040 6.9223 0.0568 0.0039 1.1258 0.0386 0.0040

128 32.3376 0.4196 0.0424 24.8657 0.2132 0.0168 38.9641 1.3367 0.2140

256 56.8711 0.9477 0.1030 46.6519 0.5932 0.0486 67.4629 2.5868 0.4897

512 71.1101 1.4143 0.1780 56.3675 0.8823 0.0812 87.9533 3.9487 0.8905

1024 79.0397 1.9054 0.2622 65.9424 1.3192 0.1443 94.1627 4.6973 1.1340

2048 85.1875 2.5299 0.3934 75.0551 1.9595 0.2634 96.9302 5.2317 1.3528

4096 89.7285 3.3288 0.5845 82.3581 2.8099 0.4505 98.2762 5.7397 1.5681

8192 93.3548 4.3316 0.8890 88.4784 3.9059 0.7634 99.0219 6.2580 1.8046

16384 95.5706 5.4696 1.2613 92.2810 5.1607 1.1520 99.4008 6.7929 2.0457

32768 96.9521 6.8385 1.7288 94.6877 6.6825 1.6473 99.5938 7.3776 2.2938

65536 97.9398 8.6723 2.4034 96.4164 8.7216 2.3649 99.7202 8.1431 2.6245

131072 98.6472 11.0558 3.3586 97.6511 11.3448 3.3790 99.8117 9.2470 3.0959

262144 99.1008 13.7882 4.5873 98.4430 14.3563 4.6832 99.8686 10.4009 3.6807

524288 99.4222 17.2034 6.3000 99.0041 18.1008 6.4993 99.9084 11.9168 4.4992

1048576 99.6168 21.4048 8.4002 99.3427 22.6740 8.7190 99.9345 14.0095 5.5777

2097152 99.7534 26.8008 11.3725 99.5790 28.4750 11.8410 99.9548 17.1643 7.3150

4194304 99.8481 34.0396 15.4253 99.7403 36.0126 16.0511 99.9726 22.7803 10.1026

8388608 99.9061 41.9744 20.4050 99.8405 43.9471 21.2798 99.9817 30.6529 13.1125

16777216 99.9417 49.1419 26.5333 99.9015 50.9127 27.6685 99.9879 38.9022 17.2073

33554432 99.9659 56.6984 34.8628 99.9425 58.1078 36.2686 99.9926 48.4453 23.4513

67108864 99.9811 64.7532 45.4070 99.9683 66.0042 47.1078 99.9958 57.4070 31.7235

134217728 99.9918 74.5103 60.2620 99.9864 76.1026 62.3844 99.9979 65.6134 43.3810

268435456 99.9974 84.0454 75.4282 99.9958 85.9574 77.8295 99.9992 73.7219 56.4785

536870912 99.9992 90.1133 84.9561 99.9988 91.9435 87.2988 99.9997 80.3462 66.4994

1073741824 99.9998 93.8565 90.6774 99.9996 95.3848 92.7713 99.9999 85.7396 74.1849

9



101 103 105 107

Flow length [packets]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
)

flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

101 103 105 107

Flow length [packets]

10−16

10−13

10−10

10−7

10−4

10−1

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−10

10−8

10−6

10−4

10−2

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−10

10−8

10−6

10−4

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 3: Distribution plots in function of flow length (number of packets) (All traffic).

103 105 107 109 1011

Flow size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
)

flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

103 105 107 109 1011

Flow size [bytes]

10−19

10−16

10−13

10−10

10−7

10−4

10−1

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−13

10−11

10−9

10−7

10−5

10−3

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−13

10−11

10−9

10−7

10−5

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 4: Distribution plots in function of flow size (amount of bytes) (All traffic).

10



101 103 105 107

Flow length [packets]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
)

flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

101 103 105 107

Flow length [packets]

10−15

10−12

10−9

10−6

10−3

100

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−10

10−8

10−6

10−4

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−10

10−8

10−6

10−4

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 5: Distribution plots in function of flow length (number of packets) (TCP-only).

103 105 107 109 1011

Flow size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
)

flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

103 105 107 109 1011

Flow size [bytes]

10−19

10−16

10−13

10−10

10−7

10−4

10−1

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−13

10−11

10−9

10−7

10−5

10−3

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−13

10−11

10−9

10−7

10−5

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 6: Distribution plots in function of flow size (amount of bytes) (TCP-only).

11



101 103 105 107

Flow length [packets]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
) flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

101 103 105 107

Flow length [packets]

10−15

10−12

10−9

10−6

10−3

100

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−9

10−7

10−5

10−3

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

101 103 105 107

Flow length [packets]

10−9

10−7

10−5

10−3

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 7: Distribution plots in function of flow length (number of packets) (UDP-only).

103 105 107 109 1011

Flow size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(F

ra
ct

io
n

of
) flows (infered from data points)

packets (infered from data points)

octets (infered from data points)

flows (model)

packets (model)

octets (model)

103 105 107 109 1011

Flow size [bytes]

10−18

10−15

10−12

10−9

10−6

10−3

P
D

F
of

fl
ow

s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−12

10−10

10−8

10−6

10−4

P
D

F
of

pa
ck

et
s

infered from data points

raw data points (normalized)

model

103 105 107 109 1011

Flow size [bytes]

10−12

10−10

10−8

10−6

10−4

P
D

F
of

o
ct

et
s

infered from data points

raw data points (normalized)

model

Figure 8: Distribution plots in function of flow size (amount of bytes) (UDP-only).

12



min = 64.00

max = 1522.00

avg = 870.61

101 103 105 107

Flow length [packets]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

min = 64.00

max = 1522.00

avg = 870.61

103 105 107 109 1011

Flow size [bytes]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

Figure 9: Average packet size in functions of flow length and flow size (All traffic).

min = 64.00

max = 1522.00

avg = 923.40

101 103 105 107

Flow length [packets]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

min = 64.00

max = 1522.00

avg = 923.40

103 105 107 109 1011

Flow size [bytes]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

Figure 10: Average packet size in functions of flow length and flow size (TCP-only).

min = 64.00

max = 1515.42

avg = 613.01

101 103 105 107

Flow length [packets]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

min = 64.00

max = 1521.71

avg = 613.01

103 105 107 109 1011

Flow size [bytes]

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

pa
ck

et
si

ze
[b

yt
es

]

raw data points

infered from data points

infered from model

Figure 11: Average packet size in functions of flow length and flow size (UDP-only).

13



It can be seen that flows up to 1000 packets comprise
99.45% of all flows in the network, but they are responsible
only for roughly 8% of transmitted data. Such an observa-
tion can be utilized to reduce management overheads and
flow table size requirements in SDN. A traffic engineering
system interested only in elephant flows larger than 1000
packets would have to process only 0.55% of layer-4 flows
present in the network, but would still cover 92% of the
overall amount of traffic. As knowledge about TCP/UDP
headers is available in any monitoring tool, significant ad-
vantages may be achieved without using any deep packet
inspection tools.

In case of more advanced solutions, distribution mix-
tures can be used to calculate their performance analyti-
cally. Ultimately, provided models can be used to gener-
ate traffic in network simulators and emulators to evaluate
performance of flow-based TE solutions on network-scale.

5. Conclusion

The contribution of this paper is fourfold. Firstly, it
provides a complete tutorial on methodology aimed at con-
structing network flow models from flow records.

Secondly, a ready-to-use and scalable framework imple-
menting this methodology is published as an open source
software. Due to applying big data techniques it scales hor-
izontally and can be used to process an unlimited number
of flow records and fit distribution mixtures to them.

Thirdly, the paper presents an example of applying
the methodology to analyze flow records collected at the
Internet-facing interface of the campus network. Flows
number, and total sum of packet and octet distributions
are extracted, analyzed and modeled as functions of both
flow length and flow size. Models are represented by com-
plete distribution mixtures provided with parameters. They
are based on billions of flows which is considerably more
comparing to the previous analyses mostly comprising tens
of millions of flows and can be treated as an approximation
of the general Internet traffic.

Last but not least, the presented models can be uti-
lized as a unified benchmark enabling the comparable as-
sessment of novel flow-oriented solutions, algorithms, and
concepts. This especially applies to next-generation SDN
techniques based on flow forwarding, like OpenFlow or
P4. It makes our work timely and relevant as these next-
generation flow-based approaches have been gaining at-
tention over recent years. There is no other similar work
giving such a reusable contribution. The expected impact
is probably unlimited because each novel network flow-
oriented mechanism should be validated under realistic as-
sumptions regarding the system load.

Acknowledgment

The research was carried out with the support of the project
”Intelligent management of traffic in multi-layer Software-
Defined Networks” founded by the Polish National Science
Centre under project no. 2017/25/B/ST6/02186.

The authors would like to thank Bogus law Juza for pro-
viding NetFlow flow record dumps.

References

[1] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothen-
berg, S. Azodolmolky, S. Uhlig, Software-Defined Networking:
A Comprehensive Survey, Proceedings of the IEEE 103 (1)
(2015) 14–76. doi:10.1109/JPROC.2014.2371999.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap
for traffic engineering in SDN-OpenFlow networks, Computer
Networks 71 (2014) 1–30. doi:10.1016/j.comnet.2014.06.002.

[3] R. Wójcik, A. Jajszczyk, Flow Oriented Approaches to QoS
Assurance, ACM Comput. Surv. 44 (1). doi:10.1145/2071389.
2071394.

[4] S. Shin, L. Xu, S. Hong, G. Gu, Enhancing Network Secu-
rity through Software Defined Networking (SDN), in: 2016
25th International Conference on Computer Communication
and Networks (ICCCN), 2016, pp. 1–9. doi:10.1109/ICCCN.

2016.7568520.
[5] P. Jurkiewicz, R. Wójcik, J. Domża l, A. Kamisiński, Testing im-

plementation of FAMTAR: Adaptive multipath routing, Com-
puter Communications 149 (2020) 300–311. doi:10.1016/j.

comcom.2019.10.029.
[6] A. Shaikh, J. Rexford, K. G. Shin, Load-sensitive Routing of

Long-lived IP Flows, ACM SIGCOMM Computer Communi-
cation Review 29 (4) (1999) 215–226. doi:10.1145/316194.

316225.
[7] T.-Y. Mu, A. Al-Fuqaha, K. Shuaib, F. M. Sallabi, J. Qadir,

SDN Flow Entry Management Using Reinforcement Learning,
ACM Trans. Auton. Adapt. Syst. 13 (2) (2018) 11:1–11:23. doi:
10.1145/3281032.

[8] M. Pustisek, I. Humar, J. Bester, Empirical analysis and mod-
eling of peer-to-peer traffic flows, in: MELECON 2008 - The
14th IEEE Mediterranean Electrotechnical Conference, 2008,
pp. 169–175. doi:10.1109/MELCON.2008.4618429.

[9] M.-S. Kim, Y. J. Won, J. W. Hong, Characteristic analysis of
internet traffic from the perspective of flows, Computer Com-
munications 29 (10) (2006) 1639–1652. doi:10.1016/j.comcom.
2005.07.015.

[10] B. Ryu, D. Cheney, H. werner Braun, Internet Flow Character-
ization: Adaptive Timeout Strategy and Statistical Modeling,
in: in Proc. Passive and Active Measurement workshop, 2001,
p. 45.

[11] W. Fang, L. Peterson, Inter-as traffic patterns and their
implications, in: Seamless Interconnection for Universal
Services. Global Telecommunications Conference. GLOBE-
COM’99. (Cat. No.99CH37042), Vol. 3, 1999, pp. 1859–1868
vol.3. doi:10.1109/GLOCOM.1999.832484.

[12] X. Guan, T. Qin, W. Li, P. Wang, Dynamic feature analysis and
measurement for large-scale network traffic monitoring, IEEE
Transactions on Information Forensics and Security 5 (4) (2010)
905–919. doi:10.1109/TIFS.2010.2066970.

[13] L. Qian, B. E. Carpenter, A flow-based performance analysis
of tcp and tcp applications, in: 2012 18th IEEE International
Conference on Networks (ICON), 2012, pp. 41–45. doi:10.

1109/ICON.2012.6506531.
[14] Y. Zhang, L. Breslau, V. Paxson, S. Shenker, On the charac-

teristics and origins of internet flow rates, in: ACM SIGCOMM
Computer Communication Review, Vol. 32, ACM, 2002, pp.
309–322. doi:10.1145/964725.633055.

14

http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1145/2071389.2071394
http://dx.doi.org/10.1145/2071389.2071394
http://dx.doi.org/10.1109/ICCCN.2016.7568520
http://dx.doi.org/10.1109/ICCCN.2016.7568520
http://dx.doi.org/10.1016/j.comcom.2019.10.029
http://dx.doi.org/10.1016/j.comcom.2019.10.029
http://dx.doi.org/10.1145/316194.316225
http://dx.doi.org/10.1145/316194.316225
http://dx.doi.org/10.1145/3281032
http://dx.doi.org/10.1145/3281032
http://dx.doi.org/10.1109/MELCON.2008.4618429
http://dx.doi.org/10.1016/j.comcom.2005.07.015
http://dx.doi.org/10.1016/j.comcom.2005.07.015
http://dx.doi.org/10.1109/GLOCOM.1999.832484
http://dx.doi.org/10.1109/TIFS.2010.2066970
http://dx.doi.org/10.1109/ICON.2012.6506531
http://dx.doi.org/10.1109/ICON.2012.6506531
http://dx.doi.org/10.1145/964725.633055


[15] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, W. Will-
inger, Tcp revisited: A fresh look at tcp in the wild, in: Pro-
ceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement, IMC ’09, ACM, New York, NY, USA, 2009, pp.
76–89. doi:10.1145/1644893.1644903.

[16] N. Brownlee, K. C. Claffy, Understanding Internet traffic
streams: dragonflies and tortoises, IEEE Communications Mag-
azine 40 (10) (2002) 110–117. doi:10.1109/MCOM.2002.1039865.

[17] K. Papagiannakit, N. Taft, C. Diot, Impact of flow dynamics
on traffic engineering design principles, in: IEEE INFOCOM
2004, Vol. 4, 2004, pp. 2295–2306. doi:10.1109/INFCOM.2004.

1354652.
[18] T. Benson, A. Akella, D. A. Maltz, Network traffic charac-

teristics of data centers in the wild, in: Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement,
IMC ’10, ACM, New York, NY, USA, 2010, pp. 267–280.
doi:10.1145/1879141.1879175.

[19] K.-C. Lan, J. Heidemann, On the correlation of internet flow
characteristics (2003).

[20] K. chan Lan, J. Heidemann, A measurement study of correla-
tions of internet flow characteristics, Computer Networks 50 (1)
(2006) 46 – 62. doi:10.1016/j.comnet.2005.02.008.

[21] P. Megyesi, S. Molnár, Analysis of elephant users in broad-
band network traffic, in: Meeting of the European Network
of Universities and Companies in Information and Communi-
cation Engineering, Springer, 2013, pp. 37–45. doi:10.1007/

978-3-642-40552-5_4.
[22] N. Antunes, V. Pipiras, Estimation of flow distributions from

sampled traffic, ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems 1 (3) (2016) 11. doi:

10.1145/2891106.
[23] D. Lee, N. Brownlee, Passive measurement of one-way and two-

way flow lifetimes, ACM SIGCOMM Computer Communication
Review 37 (3) (2007) 17–28. doi:10.1145/1273445.1273448.

[24] T. Limmer, F. Dressler, Flow-based tcp connection analysis,
in: 2009 IEEE 28th International Performance Computing and
Communications Conference, 2009, pp. 376–383. doi:10.1109/
PCCC.2009.5403846.

[25] L. Quan, J. Heidemann, On the characteristics and reasons of
long-lived internet flows, in: Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, ACM, 2010, pp.
444–450. doi:10.1145/1879141.1879198.

[26] C. Estan, G. Varghese, New Directions in Traffic Measurement
and Accounting: Focusing on the Elephants, Ignoring the Mice,
ACM Trans. Comput. Syst. 21 (3) (2003) 270–313. doi:10.

1145/859716.859719.
[27] F. Hernandez-Campos, J. Marron, G. Samorodnitsky, F. D.

Smith, Variable heavy tails in internet traffic, Performance Eval-
uation 58 (2-3) (2004) 261–284. doi:10.1016/j.peva.2004.07.
008.

[28] V. Ramaswami, K. Jain, R. Jana, V. Aggarwal, Modeling
heavy tails in traffic sources for network performance evalua-
tion, in: Computational Intelligence, Cyber Security and Com-
putational Models, Springer, 2014, pp. 23–44. doi:10.1007/

978-81-322-1680-3_4.
[29] A. B. Downey, Lognormal and pareto distributions in the inter-

net, Computer Communications 28 (7) (2005) 790–801. doi:

10.1016/j.comcom.2004.11.001.
[30] E. Garsva, N. Paulauskas, G. Grazulevicius, Packet size dis-

tribution tendencies in computer network flows, in: Electrical,
Electronic and Information Sciences (eStream), 2015 Open Con-
ference of, IEEE, 2015, pp. 1–6. doi:10.1109/eStream.2015.

7119483.
[31] E. Casilari, F. J. Gonzblez, F. Sandoval, Modeling of http

traffic, IEEE Communications Letters 5 (6) (2001) 272–274.
doi:10.1109/4234.929610.

[32] R. Pries, Z. Magyari, P. Tran-Gia, An http web traffic model
based on the top one million visited web pages, in: Proceedings
of the 8th Euro-NF Conference on Next Generation Internet
NGI 2012, 2012, pp. 133–139. doi:10.1109/NGI.2012.6252145.

[33] K.-T. Chen, P. Huang, C.-L. Lei, Game traffic analysis: An

mmorpg perspective, Computer Networks 50 (16) (2006) 3002
– 3023. doi:10.1016/j.comnet.2005.11.005.

[34] W. chang Feng, F. Chang, W. chi Feng, J. Walpole, A traffic
characterization of popular on-line games, IEEE/ACM Trans-
actions on Networking 13 (3) (2005) 488–500. doi:10.1109/

TNET.2005.850221.
[35] J. Färber, Network game traffic modelling, in: Proceedings of

the 1st Workshop on Network and System Support for Games,
NetGames ’02, ACM, New York, NY, USA, 2002, pp. 53–57.
doi:10.1145/566500.566508.

[36] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre,
A. Pras, Inside Dropbox: Understanding Personal Cloud Stor-
age Services, in: Proceedings of the 2012 Internet Measurement
Conference, IMC ’12, ACM, New York, NY, USA, 2012, pp.
481–494. doi:10.1145/2398776.2398827.

[37] G. Gonçalves, I. Drago, A. P. C. d. Silva, A. B. Vieira, J. M.
Almeida, Modeling the dropbox client behavior, in: 2014 IEEE
International Conference on Communications (ICC), 2014, pp.
1332–1337. doi:10.1109/ICC.2014.6883506.

[38] B. A. Mah, An empirical model of http network traffic, in: Pro-
ceedings of INFOCOM ’97, Vol. 2, 1997, pp. 592–600 vol.2.
doi:10.1109/INFCOM.1997.644510.

[39] X. Yang, Designing traffic profiles for bursty internet traffic,
in: Global Telecommunications Conference, 2002. GLOBECOM
’02. IEEE, Vol. 3, 2002, pp. 2149–2154. doi:10.1109/GLOCOM.

2002.1189012.
[40] S. Waldmann, K. Miller, A. Wolisz, Traffic model for http-based

adaptive streaming, in: 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2017, pp.
683–688. doi:10.1109/INFCOMW.2017.8116459.

[41] T. Silva, J. M. Almeida, D. Guedes, Live streaming of user gen-
erated videos: Workload characterization and content delivery
architectures, Computer Networks 55 (18) (2011) 4055 – 4068,
internet-based Content Delivery. doi:10.1016/j.comnet.2011.
07.016.

[42] E. Veloso, V. Almeida, W. Meira, A. Bestavros, S. Jin, A hi-
erarchical characterization of a live streaming media workload,
IEEE/ACM Transactions on Networking 14 (1) (2006) 133–146.
doi:10.1109/TNET.2005.863709.

[43] H. Toral-Cruz, A.-S. K. Pathan, J. C. R. Pacheco, Accurate
modeling of voip traffic qos parameters in current and future
networks with multifractal and markov models, Mathematical
and Computer Modelling 57 (11) (2013) 2832 – 2845, informa-
tion System Security and Performance Modeling and Simulation
for Future Mobile Networks. doi:10.1016/j.mcm.2011.12.007.

[44] N. Duffield, C. Lund, M. Thorup, Estimating flow distributions
from sampled flow statistics, in: Proceedings of the 2003 con-
ference on Applications, technologies, architectures, and proto-
cols for computer communications, ACM, 2003, pp. 325–336.
doi:10.1145/863955.863992.

[45] L. Yang, G. Michailidis, Sample based estimation of network
traffic flow characteristics, in: IEEE INFOCOM 2007 - 26th
IEEE International Conference on Computer Communications,
2007, pp. 1775 – 1783. doi:10.1109/INFCOM.2007.207.

[46] N. Antunes, V. Pipiras, G. Jacinto, Regularized inversion of
flow size distribution, in: IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications, IEEE, 2019, pp. 1720–
1728. doi:10.1109/INFOCOM.2019.8737406.

[47] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, S. Banerjee, Devoflow: Scaling flow management
for high-performance networks, in: ACM SIGCOMM Com-
puter Communication Review, Vol. 41, ACM, 2011, pp. 254–
265. doi:10.1145/2018436.2018466.

[48] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange,
P. Tran-Gia, ZOOM: Lightweight SDN-Based Elephant Detec-
tion, in: 2016 28th International Teletraffic Congress (ITC 28),
Vol. 02, 2016, pp. 1–6. doi:10.1109/ITC-28.2016.208.

[49] S. Shirali-Shahreza, Y. Ganjali, Delayed Installation and Expe-
dited Eviction: An Alternative Approach to Reduce Flow Ta-
ble Occupancy in SDN Switches, IEEE/ACM Transactions on
Networking 26 (4) (2018) 1547–1561. doi:10.1109/TNET.2018.

15

http://dx.doi.org/10.1145/1644893.1644903
http://dx.doi.org/10.1109/MCOM.2002.1039865
http://dx.doi.org/10.1109/INFCOM.2004.1354652
http://dx.doi.org/10.1109/INFCOM.2004.1354652
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1016/j.comnet.2005.02.008
http://dx.doi.org/10.1007/978-3-642-40552-5_4
http://dx.doi.org/10.1007/978-3-642-40552-5_4
http://dx.doi.org/10.1145/2891106
http://dx.doi.org/10.1145/2891106
http://dx.doi.org/10.1145/1273445.1273448
http://dx.doi.org/10.1109/PCCC.2009.5403846
http://dx.doi.org/10.1109/PCCC.2009.5403846
http://dx.doi.org/10.1145/1879141.1879198
http://dx.doi.org/10.1145/859716.859719
http://dx.doi.org/10.1145/859716.859719
http://dx.doi.org/10.1016/j.peva.2004.07.008
http://dx.doi.org/10.1016/j.peva.2004.07.008
http://dx.doi.org/10.1007/978-81-322-1680-3_4
http://dx.doi.org/10.1007/978-81-322-1680-3_4
http://dx.doi.org/10.1016/j.comcom.2004.11.001
http://dx.doi.org/10.1016/j.comcom.2004.11.001
http://dx.doi.org/10.1109/eStream.2015.7119483
http://dx.doi.org/10.1109/eStream.2015.7119483
http://dx.doi.org/10.1109/4234.929610
http://dx.doi.org/10.1109/NGI.2012.6252145
http://dx.doi.org/10.1016/j.comnet.2005.11.005
http://dx.doi.org/10.1109/TNET.2005.850221
http://dx.doi.org/10.1109/TNET.2005.850221
http://dx.doi.org/10.1145/566500.566508
http://dx.doi.org/10.1145/2398776.2398827
http://dx.doi.org/10.1109/ICC.2014.6883506
http://dx.doi.org/10.1109/INFCOM.1997.644510
http://dx.doi.org/10.1109/GLOCOM.2002.1189012
http://dx.doi.org/10.1109/GLOCOM.2002.1189012
http://dx.doi.org/10.1109/INFCOMW.2017.8116459
http://dx.doi.org/10.1016/j.comnet.2011.07.016
http://dx.doi.org/10.1016/j.comnet.2011.07.016
http://dx.doi.org/10.1109/TNET.2005.863709
http://dx.doi.org/10.1016/j.mcm.2011.12.007
http://dx.doi.org/10.1145/863955.863992
http://dx.doi.org/10.1109/INFCOM.2007.207
http://dx.doi.org/10.1109/INFOCOM.2019.8737406
http://dx.doi.org/10.1145/2018436.2018466
http://dx.doi.org/10.1109/ITC-28.2016.208
http://dx.doi.org/10.1109/TNET.2018.2841397


2841397.
[50] J. Quittek, J. Zseby, B. Claise, S. Zander, IPFIX Requirements,

RFC 3917 (2010).
URL http://tools.ietf.org/html/rfc3917

[51] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre,
A. Sperotto, A. Pras, Flow monitoring explained: from packet
capture to data analysis with NetFlow and IPFIX, IEEE Com-
munications Surveys & Tutorials 16 (4) (2014) 2037–2064. doi:
10.1109/COMST.2014.2321898.

[52] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, A. Pras, Measure-
ment artifacts in netflow data, in: International Conference on
Passive and Active Network Measurement, Springer, 2013, pp.
1–10. doi:10.1007/978-3-642-36516-4_1.

[53] M. Žádnik, E. Šabik, V. Bartoš, Detection of network flow
timestamp reliability, in: A. Sperotto, G. Doyen, S. Latré,
M. Charalambides, B. Stiller (Eds.), Monitoring and Secur-
ing Virtualized Networks and Services, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014, pp. 147–159. doi:10.1007/

978-3-662-43862-6_18.
[54] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likeli-

hood from Incomplete Data via the EM Algorithm, Journal of
the Royal Statistical Society. Series B (Methodological) 39 (1)
(1977) 1–38. doi:10.1111/j.2517-6161.1977.tb01600.x.

[55] P. Jurkiewicz, flow-models: A framework for analysis and mod-
eling of IP network flows.
URL https://github.com/piotrjurkiewicz/flow-models

16

http://dx.doi.org/10.1109/TNET.2018.2841397
http://tools.ietf.org/html/rfc3917
http://tools.ietf.org/html/rfc3917
http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1007/978-3-642-36516-4_1
http://dx.doi.org/10.1007/978-3-662-43862-6_18
http://dx.doi.org/10.1007/978-3-662-43862-6_18
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://github.com/piotrjurkiewicz/flow-models
https://github.com/piotrjurkiewicz/flow-models
https://github.com/piotrjurkiewicz/flow-models


Appendix A. Mixture models

Each mixture is provided as a JSON object. The sum field is the sum of the flows/packets/octets in the dataset. These
sum values can be used for the calculation of the average packet size from the provided distribution mixture models.
The mix field contains a list of distribution components which form a mixture. Each component is represented by a list,
containing its weight, the scipy.stats distribution name and distribution parameters. For generating samples from the
provided distribution mixtures, one should follow the methodology described in the tutorial or use the generate tool
provided in our framework.

Appendix A.1. All traffic

Appendix A.1.1. Flows (length)

{
"sum": 4032376751,

"mix": [

[0.3050265769901237, "uniform", [0, 1]],

[0.2484198800441619, "uniform", [0, 2]],

[0.06366063664158106, "uniform", [0, 3]],

[0.049216499659328734, "uniform", [0, 4]],

[0.00931559166293732, "uniform", [0, 5]],

[0.08217474157187248, "uniform", [0, 6]],

[0.13126374982514846, "lognorm", [0.5207023493412835, 0, 7.8055992790704085]],

[0.07328615421743477, "lognorm", [0.7701056575379265, 0, 22.10972501544739]],

[0.0292891264871594, "lognorm", [1.1252645297342514, 0, 128.6451515069839]],

[0.00834704290025077, "lognorm", [1.98383694524085, 0, 1084.4707584768782]]

]

}

Appendix A.1.2. Packets (length)

{
"sum": 316857594090,

"mix": [

[0.002110368287712165, "uniform", [0, 1]],

[0.005204902009087457, "uniform", [0, 2]],

[0.0008611208380640299, "uniform", [0, 3]],

[0.0001953848185699079, "uniform", [0, 4]],

[1.9081822832806864e-06, "uniform", [0, 5]],

[0.0048883553554204375, "uniform", [0, 6]],

[0.02710154435301931, "lognorm", [0.9402388599292199, 0, 17.389638035271467]],

[0.46884288920105865, "lognorm", [2.683257909795451, 0, 7959.875774748725]],

[0.3938789200857053, "lognorm", [1.0517807783252187, 0, 78648.30394527224]],

[0.09691460686907521, "lognorm", [2.1747855564359075, 0, 788388.3862527548]]

]

}

Appendix A.1.3. Octets (length)

{
"sum": 275858498994998,

"mix": [

[0.0005522188937705094, "uniform", [0, 1]],

[0.0006733419371011684, "uniform", [0, 2]],

[8.712450629315575e-08, "uniform", [0, 3]],

[1.7242898989451478e-07, "uniform", [0, 4]],

[1.4615786843822656e-08, "uniform", [0, 5]],

[0.0004861299541601516, "uniform", [0, 6]],

[0.025410773535068393, "lognorm", [1.4734220306634367, 0, 60.469099992767916]],

[0.47888389261362085, "lognorm", [2.3777777137900578, 0, 17998.560650283638]],

[0.3478874901495348, "lognorm", [0.918261689867093, 0, 97153.89719008311]],

[0.14610587874746267, "lognorm", [2.396148205892031, 0, 458689.5696009558]]

]

}

17



Appendix A.1.4. Flows (size)

{
"sum": 4032376751,

"mix": [

[0.44966670086340027, "lognorm", [0.3417219351724571, 0, 106.166372352337]],

[0.20220241315279464, "lognorm", [0.5104895027884305, 0, 277.63774474539736]],

[0.2686509806417942, "lognorm", [1.2406356394188367, 0, 1000.5544200478133]],

[0.06647780135323868, "lognorm", [1.4509439390336445, 0, 13006.098381673599]],

[0.010998574523761361, "lognorm", [1.3716500213320844, 0, 279076.8101102302]],

[0.001570957282952998, "lognorm", [1.1704125831664687, 0, 4886421.753135197]],

[0.000292175353983837, "lognorm", [1.5101192537041566, 0, 28081955.675893098]],

[0.00014039682805832134, "lognorm", [0.7082820543792429, 0, 83124658.11210157]]

]

}

Appendix A.1.5. Packets (size)

{
"sum": 316857594090,

"mix": [

[0.009407248052942033, "lognorm", [0.5695232010956377, 0, 168.31994829953425]],

[0.17317893304105525, "lognorm", [2.7598572109187933, 0, 93971.53306040031]],

[0.4397773291615796, "lognorm", [1.7856596583166613, 0, 6774586.520568432]],

[0.2838759525683184, "lognorm", [1.096084781703366, 0, 154523629.11502388]],

[0.09376053717610511, "lognorm", [2.143017425155127, 0, 1029106790.6910875]]

]

}

Appendix A.1.6. Octets (size)

{
"sum": 275858498994998,

"mix": [

[0.0011947871676142936, "lognorm", [0.6394221616703024, 0, 205.47201866172307]],

[0.06625789808407466, "lognorm", [2.595354698521618, 0, 202947.16944464625]],

[0.5401266530263714, "lognorm", [2.3185516152408274, 0, 37006202.73334796]],

[0.298097741735126, "lognorm", [0.8770896315727511, 0, 149441408.23497528]],

[0.09432291998681219, "lognorm", [2.325205564350233, 0, 1137154460.9830294]]

]

}

18



Appendix A.2. TCP-only

Appendix A.2.1. Flows (length)

{
"sum": 2171291495,

"mix": [

[0.058043754929076714, "uniform", [0, 1]],

[0.3105249919828018, "uniform", [0, 2]],

[0.05509731658732791, "uniform", [0, 3]],

[0.04775404343193455, "uniform", [0, 4]],

[0.005882528205165834, "uniform", [0, 5]],

[0.12529112884696628, "uniform", [0, 6]],

[0.20654328341287823, "lognorm", [0.5122381561489622, 0, 7.9543319950074585]],

[0.1218958369564864, "lognorm", [0.7507627341686453, 0, 21.74157327774004]],

[0.052507436335709035, "lognorm", [1.1085442272126311, 0, 115.96889383386637]],

[0.016459679311651095, "lognorm", [1.9932118957877463, 0, 845.9121788017795]]

]

}

Appendix A.2.2. Packets (length)

{
"sum": 264608398768,

"mix": [

[2.2755551196918487e-34, "uniform", [0, 1]],

[0.003314106999833896, "uniform", [0, 2]],

[6.013523396795704e-10, "uniform", [0, 3]],

[2.932420026100149e-12, "uniform", [0, 4]],

[1.067649619016758e-11, "uniform", [0, 5]],

[0.003146634905134179, "uniform", [0, 6]],

[0.027932504515234154, "lognorm", [0.9545700860476148, 0, 17.675326565099915]],

[0.577076292381737, "lognorm", [2.840507837788255, 0, 10810.683862254062]],

[0.27234230800741915, "lognorm", [0.9060624216365498, 0, 69254.18734698475]],

[0.11618815257568235, "lognorm", [1.4971495459456274, 0, 117536.41362290115]]

]

}

Appendix A.2.3. Octets (length)

{
"sum": 244338999568258,

"mix": [

[2.5026115836964763e-05, "uniform", [0, 1]],

[0.00030848682168057884, "uniform", [0, 2]],

[0.02629300957158946, "lognorm", [1.4420675639316636, 0, 60.96961570186466]],

[0.4321437483202767, "lognorm", [2.391763848296885, 0, 16292.10824934533]],

[0.34651782224968797, "lognorm", [0.9126642203716411, 0, 95464.19089587945]],

[0.19471190692092794, "lognorm", [2.443090503208728, 0, 99187.63657881475]]

]

}

19



Appendix A.2.4. Flows (size)

{
"sum": 2171291495,

"mix": [

[0.3562156807623126, "lognorm", [0.3907230406692569, 0, 97.44862683388862]],

[0.24596152653055356, "lognorm", [0.8090562734237499, 0, 309.3964432303163]],

[0.29936868220923935, "lognorm", [1.0767646679156089, 0, 2126.6544290721135]],

[0.08064998077948095, "lognorm", [1.3082593320270717, 0, 25680.662146577415]],

[0.015038557697568579, "lognorm", [1.351326892378382, 0, 416680.99610410555]],

[0.00207471133617079, "lognorm", [1.082474779920202, 0, 5602171.637581343]],

[0.0006826279721182512, "lognorm", [1.0191138296449576, 0, 53432349.30912044]],

[8.232712543896472e-06, "lognorm", [1.1904677440253855, 0, 514468038.51135993]]

]

}

Appendix A.2.5. Packets (size)

{
"sum": 264608398768,

"mix": [

[0.019110043221941177, "lognorm", [1.4651993205076452, 0, 768.2474092753541]],

[0.19262668725066606, "lognorm", [2.294092315962418, 0, 150980.85680126044]],

[0.361860135712086, "lognorm", [1.5607143019561114, 0, 5548432.350720047]],

[0.23460483078887964, "lognorm", [0.9099214043924188, 0, 141799840.02481562]],

[0.1917983030264225, "lognorm", [2.175778867451218, 0, 192372125.20865577]]

]

}

Appendix A.2.6. Octets (size)

{
"sum": 244338999568258,

"mix": [

[0.0200921533485388, "lognorm", [1.9499336579584527, 0, 17318.938696766047]],

[0.12687459714739766, "lognorm", [1.8942474190198826, 0, 1211417.6962635145]],

[0.6660517733754548, "lognorm", [1.9205983111977711, 0, 82901773.48206052]],

[0.1592969497877428, "lognorm", [0.5987334669415345, 0, 153610747.54291907]],

[0.02768452634085962, "lognorm", [3.729862894501239, 0, 263013346.81005827]]

]

}

20



Appendix A.3. UDP-only

Appendix A.3.1. Flows (length)

{
"sum": 1737523167,

"mix": [

[0.5827340809061519, "uniform", [0, 1]],

[0.18722586716889525, "uniform", [0, 2]],

[0.09147052372747216, "uniform", [0, 3]],

[0.05622351865268365, "uniform", [0, 4]],

[0.029447542558586896, "lognorm", [0.48946755142877785, 0, 9.674436486545002]],

[0.04022783768479337, "lognorm", [0.26026467622698696, 0, 4.8838363075201485]],

[0.004722552787759103, "lognorm", [0.44942994700845956, 0, 29.41090858057708]],

[0.005631263608965612, "lognorm", [0.9247173397792914, 0, 67.48121917707935]],

[0.0018118271560744815, "lognorm", [1.0498087651873083, 0, 594.4921878194859]],

[0.00032077017026583367, "lognorm", [1.8547729167446296, 0, 7892.503625889563]],

[0.00015649931641790045, "lognorm", [1.1263636801013632, 0, 19824.000189566883]],

[2.756716956778995e-05, "lognorm", [0.40128970829397104, 0, 90369.61088154344]],

[1.4909236588009346e-07, "lognorm", [0.5733877781565124, 0, 12757029.472787634]]

]

}

Appendix A.3.2. Packets (length)

{
"sum": 50730510162,

"mix": [

[0.015500700688304963, "uniform", [0, 1]],

[0.009435060248085889, "uniform", [0, 2]],

[0.0044931303724251555, "uniform", [0, 3]],

[0.005412185554566266, "uniform", [0, 4]],

[0.0016053021813832915, "uniform", [0, 5]],

[0.004636517537471412, "uniform", [0, 6]],

[0.002791076569731363, "uniform", [0, 7]],

[0.015132565651191227, "lognorm", [0.7973580036468034, 0, 12.799911610401022]],

[0.19438355109964933, "lognorm", [2.7929547227813876, 0, 8347.465832961101]],

[0.16859560786890865, "lognorm", [0.5811494223637251, 0, 93439.76897592201]],

[0.48811556105480514, "lognorm", [1.6416577840785012, 0, 212658.10830944445]],

[0.08989874117347661, "lognorm", [0.663786121253159, 0, 16617548.048028754]]

]

}

Appendix A.3.3. Octets (length)

{
"sum": 31098128445645,

"mix": [

[0.004294347339716763, "uniform", [0, 1]],

[0.002828520769629071, "uniform", [0, 2]],

[0.001066971856100983, "uniform", [0, 3]],

[0.0017028778446197923, "uniform", [0, 4]],

[0.0004732752524306332, "uniform", [0, 5]],

[0.0011710470754648713, "uniform", [0, 6]],

[0.0008916773469929783, "uniform", [0, 7]],

[0.010034641229119045, "lognorm", [1.1076152185085193, 0, 22.255938063768316]],

[0.23044127725909141, "lognorm", [2.2868576715155426, 0, 14556.169895186491]],

[0.3148044616602549, "lognorm", [0.8072894441918375, 0, 97378.62560656141]],

[0.28726231322202045, "lognorm", [1.1282822360447493, 0, 704887.045089726]],

[0.1450285891445588, "lognorm", [0.550305719617275, 0, 19017262.81445133]]

]

}

21



Appendix A.3.4. Flows (size)

{
"sum": 1737523167,

"mix": [

[0.6368318183834879, "lognorm", [0.30605856160365386, 0, 119.194382163552]],

[0.2028143298183967, "lognorm", [0.22637348632484486, 0, 319.1796675129598]],

[0.1252950133909036, "lognorm", [0.5892942594845255, 0, 630.2029144235321]],

[0.027699290695991776, "lognorm", [0.7595903510694968, 0, 3216.4358332108045]],

[0.00593176349325996, "lognorm", [1.1418301435106715, 0, 29016.641311394553]],

[0.0011888113464049218, "lognorm", [1.301077232574143, 0, 650546.3136647696]],

[0.0001853823086593862, "lognorm", [1.708941299345426, 0, 12790970.28730909]],

[5.349084480822565e-05, "lognorm", [1.2758486935847089, 0, 22546730.947471276]],

[9.971808265531352e-08, "lognorm", [0.5244356726513165, 0, 21229598019.06612]]

]

}

Appendix A.3.5. Packets (size)

{
"sum": 50730510162,

"mix": [

[0.010256204356373293, "lognorm", [0.17308480731567824, 0, 102.62679666811907]],

[0.030844086441235714, "lognorm", [0.6432754020773255, 0, 267.6661032819417]],

[0.02685706188133373, "lognorm", [1.4984158470482594, 0, 2965.85215348368]],

[0.08580523855066874, "lognorm", [1.799761998854644, 0, 378347.651458613]],

[0.18823579321779155, "lognorm", [1.0858777584070194, 0, 6754398.34678373]],

[0.28805465555289284, "lognorm", [1.5399767728254337, 0, 42706686.55778615]],

[0.22918391889821518, "lognorm", [1.4964054459366063, 0, 189231219.8306924]],

[0.07888875545972893, "lognorm", [0.9014834641012421, 0, 1258964757.4953783]],

[0.06187428564175922, "lognorm", [0.5087438892297369, 0, 27586008021.430702]]

]

}

Appendix A.3.6. Octets (size)

{
"sum": 31098128445645,

"mix": [

[0.008743954302478988, "lognorm", [0.6556352655697212, 0, 233.0991244107341]],

[0.009043458696784244, "lognorm", [1.2293570646603522, 0, 2081.1893487186962]],

[0.01390867553910152, "lognorm", [1.7865980995011648, 0, 95940.98742907401]],

[0.03790862213756647, "lognorm", [2.122469298512453, 0, 1384290.7533060464]],

[0.1314371359145332, "lognorm", [1.3846650107480718, 0, 8243117.92583758]],

[0.24317263385123908, "lognorm", [1.1587390305442005, 0, 112649756.51562566]],

[0.27828358762231536, "lognorm", [1.1813069072741065, 0, 204868989.52410865]],

[0.1428515782894115, "lognorm", [1.1064603547801617, 0, 1629156765.603726]],

[0.13465035364656983, "lognorm", [0.49190322615873755, 0, 28150000653.69207]]

]

}

22


	Introduction
	Related works
	Methodology
	Flow definition
	Collecting of flow records
	Cleaning the data
	Merging of flow records
	Data binning
	Fitting of mixture models
	Generating flows from models

	Campus traffic model
	Conclusion
	Mixture models
	All traffic
	Flows (length)
	Packets (length)
	Octets (length)
	Flows (size)
	Packets (size)
	Octets (size)

	TCP-only
	Flows (length)
	Packets (length)
	Octets (length)
	Flows (size)
	Packets (size)
	Octets (size)

	UDP-only
	Flows (length)
	Packets (length)
	Octets (length)
	Flows (size)
	Packets (size)
	Octets (size)



