
Boundaries of Flow Table Usage Reduction
Algorithms Based on Elephant Flow Detection

Piotr Jurkiewicz
Department of Telecommunications

AGH University of Science and Technology
Kraków, Poland

piotr.jurkiewicz@agh.edu.pl

Abstract—The majority of Internet traffic is caused by a
relatively small number of flows (so-called elephant flows). This
phenomenon can be exploited to facilitate traffic engineering:
resource-costly individual flow forwarding entries can be created
only for elephants while serving mice over the shortest paths.
Although this idea already appeared in proposed TE systems, it
was not examined by itself. It remains unknown what extent of
flow table occupancy and operations number reduction can be
achieved or how to select thresholds or sampling rates to cover
the desired fraction of traffic. In this paper, we use reproducible
traffic models obtained from a 30-day-long campus trace covering
4 billion flows, to answer these questions. We establish theoretical
boundaries for flow table usage reduction algorithms that classify
flows since the first packet, after reaching a predefined counter
threshold or detect elephants by sampling. An important finding
is that simple packet sampling performs surprisingly well on
realistic traffic, reducing the number of flow entries by a factor
up to 400, still covering 80% of the traffic. We also provide
an open-source software package allowing the replication of our
experiments or the performing of similar evaluations for other
algorithms or flow distributions.

Index Terms—flows, elephant, mice, heavy hitter, SDN, traffic
engineering, sampling

I. INTRODUCTION

It is widely believed that the distribution of flow lengths and
sizes in the Internet follows the Pareto principle: the majority
of traffic is comprised of a relatively small number of flows.
Such flows are called elephant flows. The remaining flows,
which are large in number but carry very little traffic, are called
mice flows. In practice, flow length and size distributions are
even more long-tailed than the Pareto rule (80/20) assumes.
According to recent analysis, 80% of traffic is caused by only
0.2-0.4% of flows [1][2].

This phenomenon can be exploited to facilitate quality of
service (QoS) provisioning and traffic engineering (TE). In
per-packet routing, due to loop prevention constraints, only a
subset of disjoint paths existing between selected nodes can be
used [3]. Adaptive (load-sensitive) routing is also impossible
in a per-packet approach, as the dynamic alteration of link
costs leads to instability (route flapping) which ultimately
deteriorates network performance; this has been shown by
early ARPANET pitfalls [4] and definitively proven in [5].

Flow-based routing can overcome these problems by main-
taining separate per-flow forwarding entries. It allows flows

between the same endpoints to follow any number of alter-
native paths. Adaptive flow routing is also more stable than
selecting paths at the packet level, as the load on each link fluc-
tuates more slowly, as has been shown in [6]. To sum up, with
flow-based routing more traffic can be served using existing
infrastructure, reducing the need for links oversubscription.

However, despite recent technological advancements, the
number of simultaneous flows in networks still overwhelms
the capacities of switch flow tables [7]. Moreover, in the
case of centralized control plane usage, controller throughput
can impose additional limits on the rate of incoming flows.
This is confirmed in practice. The real deployments, like
Google’s B4 [8], are limited to proactive systems. Such
systems forward packets according to predefined, per-prefix
shortest-path entries. Specific entries are created for heavy-
hitter aggregates, which are detected basing on external infor-
mation (for example, a notification of an expected migration
between datacentres). In the case of non-private WANs, such
a piece of information is not available. A possible solution
would be to focus on dynamically identified elephant flows.
This would significantly reduce the number of flow entries
while simultaneously keeping most traffic covered by TE.

The problem is early identification of whether a particular
flow is, or more precisely will become an elephant. Issues
related to elephant flow detection have been the subject of
many papers. However, most works have been directed in
the context of flow accounting and monitoring and focus on
detection accuracy. In the case of traffic engineering, detection
accuracy is not the most important issue. Instead, the focus
should be put on the moment of identification, and particularly
on the amount of traffic transmitted by the flows after their
classification as elephants (i.e. when they have individual
entries) and the resulting reduction in flow table occupancy.
None of the previous works analyzes these parameters or
provides numerical boundaries for them.

Moreover, any elephant-related mechanism performance
strictly depends upon flow length and size distribution. Pa-
pers make different, and often over-simplistic and arbitrary
assumptions, for example by considering constant elephant-
to-mice ratio and sizes, which do not correspond with reality.
Other papers use distributions obtained from real traffic traces;
however, they are either irreproducible or simplified to a single
distribution function.



The definition of elephant flow is another factor, which
differs among many papers. The analysis presented in this
paper is independent of the elephant flow definition. We did
not assume a fixed elephant definition, because we do not focus
on strict classification of flows as mice or elephants. Instead,
our goal is the statistical reduction of flow table occupancy.

This paper aims to fill the gap in research and provide
numerical boundaries for the performance of flow table usage
reduction algorithms. The key point of our research is the use
of realistic, accurate, and reproducible flow length and size
distributions. We analyze the performance of three approaches,
which can provide boundaries to several classes of elephant
detection algorithms:
• first, which assumes a pre-established knowledge about

flow length/size and classifies it accordingly since its first
packet,

• threshold, which classifies a flow as an elephant after
transmitting a predefined amount of packets or bytes,

• sampling, which performs packet sampling and classifies
flows in a probabilistic manner.

Similar ideas have appeared already as a part of proposed
TE systems (see Section II: Related works). However, metrics
in these papers were related to overall TE system performance
(like packet loss). The trade-off between table occupancy re-
duction and traffic coverage has not been analyzed. Therefore,
the novelty of this paper lies in:
• Analysis of parameters relevant to traffic engineering in

the context of SDN: the fraction of traffic covered, re-
duction of the number of flow entry operations (and thus
controller traffic), and reduction of flow table occupancy.

• Providing theoretical upper and lower boundaries for
several classes of flow table usage reduction algorithms
based on elephant flow classification.

• Use of realistic and accurate distribution mixtures ob-
tained from 30-day-long 4-billion flow trace of cam-
pus/residential traffic, which is many orders of magnitude
more than in previous research.

• Reproducibility of the research, as both the distribution
mixtures and code used for analysis are provided as an
open-source package [9].

II. RELATED WORKS

The idea of performing adaptive routing only for elephants
while keeping mice on the shortest paths is not new. According
to our knowledge, it was first proposed in 1999 in [10].
The authors, however, did not solve the problem of detecting
elephant flows. They propose the usage of per-flow counters
or timers, which is pointless considering that our goal is
the reduction in the number of tracked flows and flow table
operations. Moreover, their analysis is based on a one-week
trace collected in 1997, which is both outdated and too short.
A similar approach was proposed in [11], but concerned the
top destination IP prefixes (so-called heavy hitters) instead of
5-tuple flows.

This approach has been recently reiterated, specifically in
the SDN context. The general idea is to initially install shortest

path wildcard entries and monitor the traffic in order to identify
elephant flows. After identification, the controller can compute
alternative non-congested paths for them based on the global
network view and install individual entries for these most
significant flows in order to load-balance traffic.

Hedera [12] was proposed as a dynamic flow scheduling
system for datacentres, aimed at going beyond equal-cost
multipath (ECMP) routing limitations. By default, all flows
are load-balanced onto ECMP paths. Such a path is used
until the flow grows and meets a predefined threshold rate.
After reaching the threshold, elephants are rerouted in mid-
connection onto flow-specific paths, computed dynamically
by the controller. Hedera assumes that the edge switches
collect flow statistics for all flows using OpenFlow counters.
This means that it actually only reduces non-edge switches
overhead, while the edge switches still have to maintain
individual entries for all flows.

In 2011, Curtis et al. presented a system called Mahout
[13]. Unlike Hedera, it performs elephant detection at the
end hosts by monitoring socket buffers (via a shim layer
in the OS). After reaching a predefined threshold, it marks
subsequent packets of flow using an in-band signaling mech-
anism. The switches in the network are configured to forward
these marked packets to the controller, which as with Hedera
computes the best path and installs flow-specific entries in
switches. With that approach, overhead can be eliminated from
the switches and controller, as elephant detection is moved to
end hosts, which however must be modified.

DevoFlow [14] is another example of a complete TE system
based on modified Openflow switches, which key feature is
focusing on significant flows. To detect these flows, it explores
both threshold and sampling approaches, which is similar
to this paper. However, the traffic model used in DevoFlow
was a datacentre workload, which considerably differs from
the residential/ISP load. Moreover, the authors ”reverse engi-
neered” the flow distributions they used from plots presented in
another paper and did not make them available, which makes
their results both inaccurate and unreproducible. Authors do
not analyze the amount of traffic covered. Instead, the only
performance indicator provided is the aggregate throughput of
the whole network, which also depends on topology, demands
matrix, and routing decisions. Only absolute values of the
number of flow entries are provided, so the relative reduction
of table occupancy also cannot be determined. Only three
thresholds/sampling probabilities are analyzed, whereas our
paper provides analysis for the continuous spectrum of values.

A similar system to DevoFlow is proposed in [15]. It detects
elephant flows only on edge switches with the use of a Bloom
filters variant, called randomized counter sharing. However,
the traffic model used for the evaluation of this mechanism is
oversimplified: the authors assume the power law for the flow-
size distribution, where 20% of all flows account for 80% of
traffic volume. This is, as shown in [1] and [2], far from reality.

OpenSample [16] is a TE system based on the rerouting
of elephant flows, which are detected by sampling packet
headers on switches with sFlow. The authors claim that it can



achieve a low latency of measurements with a high degree
of accuracy. Unlike Mahout and MicroTE, OpenSample can
be implemented without end host modifications and unlike
Hedera, it does not require the use of expensive OpenFlow
counters. The authors provide an analysis of the percentage
of traffic covered after detection and after rerouting. However,
the used traffic model is extremely simplified. They consider
only two classes of flows, short flows with an exponential
distribution of mean 1 MB size, and long flows with the same
exponential distribution but a 1 GB mean flow size. The paper
also does not analyze flow table occupancy reduction.

Planck [17] is another system, similar to OpenSample.
It deserves special attention because it does not use sFlow
for packet sampling. Instead, the authors propose the use of
a port mirroring feature to redirect all packets to a single
monitoring port. Because the total traffic forwarded through
the switch usually exceeds the capacity of the monitoring port,
some packets are dropped, which effectively provides a packet
sample. Such an approach has several advantages over sFlow,
specifically, the reduced load of switch CPU and significantly
lower latencies. As a result of this, the Planck-based traffic
engineering system can reroute congested flows within mil-
liseconds, which can improve its overall performance.

The following surveys provide a good overview of SDN
traffic engineering systems: [18] [19]. The use of packet
sampling for traffic engineering purposes is indicated in [20],
which also provides a good overview of other packet sampling
techniques. It has to be noted that several other, non-sampling
based techniques for elephant/heavy-hitters detection and flow
table occupancy reduction have been proposed. This includes
flow table compression and entry aggregation [21] [22] [23],
entry caching [24], label-based switching [25], use of multiple
hash tables [26] [27] [28] and a variety of Bloom filters or
sketching-based approaches [29] [30] [31] [32].

Moreover, in the wake of growing machine learning popu-
larity, it recently started being employed as well. Going specif-
ically to flow classification based on the first packet, in [33]
authors propose a machine learning based flow classification
based on for the NFV offloading. Classification is performed
using features extracted from the header of the first packet (5-
tuple, size of the first packet). In [34] prediction of new flows
size and duration is done at the flow start through a Locally
Weighted Regression (LWR) model, using the previous flows
behavior and its temporal correlation with the new flow.

To sum up, most of the works mentioned in previous
paragraphs focus on the issue from the network monitoring
or accounting point of view. The main evaluated parameters
are related to detection accuracy; it includes false positive
ratio, false-negative ratio, and the precision of flow length/size
estimation from the sample. On the other hand, papers focus-
ing on the concept from SDN and traffic engineering point
of view, examine the performance of the TE whole system
and analyze metrics like network throughput or packet loss.
Therefore, despite the idea already appeared as a part of
proposed systems, it has not been examined in isolation. Its
numerical performance boundaries are yet to be explored.

III. ANALYZED ALGORITHMS

A. First

In the first algorithm, a flow entry is created on the arrival of
the flow’s first packet when the length/size of flow will exceed
the selected threshold. Thus, it assumes that based on the first
packet, the length/size of the whole flow can be determined.
The flowchart of the first algorithm is show in Figure 1.

It is impossible to achieve in reality: it is not possible
to know in advance how long a flow will be, despite that
classification with the first packet would be the most benefi-
cial. Classifying a flow correctly with the first packet would
allow avoiding rerouting it in the middle. Flow rerouting
may result in transport layer issues. Specifically, packets
may become reordered, which can cause their retransmission.
Additionally, path change can misdirect congestion control
algorithms, which usually work basing on observed path delay
and throughput estimation.

However, the first approach is still worth evaluating, because
it can provide an upper boundary for the performance of all
elephant detection algorithms. Moreover, an (imperfect) flow
classification with the first packet can be achieved with the
help of machine learning based algorithms, which attempt to
predict the flow length/size basing on header values. Such
algorithms are becoming a hot research topic, especially in
combination with their realization in programmable data-
planes, like P4 [28][35]. Thus, the results of first approach
will provide an upper baseline for all of these research.

B. Threshold

As already mentioned, in practice switches cannot know
in advance whether a newly appeared flow will eventually
become an elephant or a mice flow. Thus, they cannot create an
entry for this flow when its first packet appears. Instead, flow
entry can be created when the amount of traffic or the number
of transmitted packets exceeds a certain elephant detection
threshold. The most trivial approach is to use per-flow counters
on each switch. A counter reaching a threshold would cause
a flow entry to be created. This is the outline of threshold
algorithm, which is shown in Figure 2.

Such an algorithm is realizable, however, it has obvious
drawbacks. Per-flow counters must be stored and updated with
each packet. In the case of OpenFlow, flow entries aimed at
packet counting use the same memory as any other flow entry,
so it would not yield any reductions in flow table usage. In
the case of other data plane technologies, the low-overhead
implementation of accurate per-flow counters may be possible,
as shown by TurboFlow for P4 [36]. Moreover, solutions based
on inexact counters, like Bloom filters or sketches, can also
classify elephant flows after reaching a predefined threshold, at
the same time requiring a reduced amount of memory. Thus,
the results of the threshold algorithm can provide an upper
bound for all algorithms, which are based of any kind of
counting. This includes exact counters and inexact counting
methods, based on Bloom filters or sketching.



Subsequent packets of flow
not checked

Add flow entry
to flow table

Do not add
flow entry

YESNO

Flow will be longer/larger
than threshold?

The first packet of
a new flow

Fig. 1. The first algorithm.

Add flow entry
to flow table

Do not add
flow entry

YESNO

Is counter greater
than threshold?

Increment length/size counter

S
u
b
se

q
u
en

t 
p
ac

k
et

s 
of

 f
lo

w

Packet of a flow
without an entry in flow table

Fig. 2. The threshold algorithm.

Add flow entry
to flow table

Do not add
flow entry

YESNO

Is r greater
than sampling probability?

Generate random number r

S
u
b
se

q
u
en

t 
p
ac

k
et

s 
of

 f
lo

w

Packet of a flow
without an entry in flow table

Fig. 3. The sampling algorithm.

C. Sampling

An alternative approach is to use sampling. Packets without
entries in flow tables can be randomly sampled with some
probability p. If a packet is sampled, a new flow entry is
created and subsequent packets of that flow are forwarded
in accordance with it, without being sampled. Otherwise, the
packet is forwarded basing on aggregated (usually ECMP)
entry without the creation of a flow entry, and sampling is
performed for the rest of the packets until a flow entry is
created, as shown in Figure 3.

The probability that a flow has an entry in the flow table
after reaching n packets is given by:

ptotal = 1− (1− p)n

This means, that by adjusting p, a network operator can
adaptively control how many flow entries will be stored in
tables and how much traffic will be covered by them.

The sampling algorithm can also be used to sample flows
according to their size. In this way, larger packets have a
greater probability of being sampled. Such an approach is
called Non-Uniform Probabilistic Sampling in RFC 5475 [37].
It is enough to scale the sampling probability for each packet
proportionally to its size. In our simulation, we scaled provided
sampling probabilities by relative packet size:

pscaled = p · s

smax

where:
• s is the packet size, and
• smax is the maximum packet size.
In our calculations and simulations, we assume that sam-

pling is performed only on edge switches (i.e. any given packet
can be sampled only once when it enters the network). An
alternative setup would be a network in which all switches
sample packets independently (i.e. a packet is sampled on all
switches on its path). In such a case, the effective sampling
probability value can be calculated using the following equa-
tion:

peff =
∑

k∈paths

P (k) · (1−
l(k)∏
i=1

(1− p
(k)
i ))

where:
• peff is the effective sampling probability,
• P (k) is the probability of going through path k,
• p

(k)
i is the probability of being sampled at switch i of

path k, and
• l(k) is the length of this path.
Assuming that the probability of going through the each

path is the same (i.e. each switch is traversed by a high number
of flows, going through a variety of paths), the above equation
can be simplified to:

peff = 1− (1− p)lavg

where:
• p is the sampling probability set by the operator on a

single switch, and
• lavg is the average length of path in the network.
The peff value, calculated with the above equation, can be

used to read values from tables presented in Appendix A to
determine what traffic coverage and occupancy reduction will
be achieved with selected p in the case of all-switch sampling.

The advantage of sampling method is that it is stateless, i.e.
there is no need to store and update any kind of counters. Ad-
ditionally, it has a negligible performance impact, as random
number generation can be performed using a hardware random
generator or a simple software pseudorandom generator with a
few CPU cycles. The P4 standard allows to perform sampling
in dataplane1. Alternatively to on-switch sampling, a low-
overhead port mirroring based approach can be used, as
proposed in Planck system [17]. However, as classification
happens not with the first packet, but in the middle of a
flow, it may cause rerouting resulting in transport layer issues.
Nevertheless, it provides a lower boundary for all algorithms
which classify flows not on the first packet.

1https://p4.org/p4-spec/docs/PSA.html#sec-random

https://p4.org/p4-spec/docs/PSA.html#sec-random


IV. RESULTS

In this section, we present the results of the simulations, as
well as analytical calculations. The following parameters are
analyzed:
• traffic coverage – the percentage of traffic (bytes) in

the network which were transmitted by flows after their
detection (i.e. when they had an individual entry),

• operations reduction – the factor by which the number
of flow entry additions/removals (and thus the controller
traffic) can be reduced,

• occupancy reduction – the factor by which the average
number of flow entries in tables can be reduced.

All these values are presented relative to the baseline case,
in which all flows have their entries created with their first
packets (the classic SDN reactive mode). In our analysis we
assume that all flows have the same rate. This means that, as
long we focus only on relative performance metrics, any flow
aging issues are irrelevant here.

As already mentioned, flow size and length distributions
have a crucial impact on the performance of any elephant-
related algorithms. In this paper we use flow length and size
distributions from the agh_2015 dataset presented in [2].
These are based on traffic traces collected on the outgoing
interface of the campus/residential network. Unlike CAIDA
traces, which are truncated to one hour, which distorts tails
of distributions and therefore makes them unsuitable for such
analysis, they were collected over a continuous period of
30 days and consisting of more than 4 billion flows. Both
the timespan of the collection and the number of flows are
many orders of magnitude higher than in previously published
flow statistics. These distributions are in line with selected
values of CAIDA and BME traces presented in [1], which
confirms their credibility. The authors of [2] provide accurately
fitted distribution mixture models. They allow an analytical
calculation of all the performance parameters of the evaluated
algorithms, which also would be impossible with the CAIDA
data. We also use them to generate flow samples in packet-
level simulations.

For selected values of thresholds (in cases of first and
threshold algorithms) and sampling probability (in the case of
sampling algorithm) we performed packet-level simulations.
Packets were randomly generated, basing on the distribution
mixtures from the used traffic model. For each value of
threshold/sampling probability, we performed the experiment
five times with different random seeds, each time generating 1
billion flows, and calculated mean values from these five runs.
All algorithms are evaluated using both flow length (number
of packets) and flow size (amount of bytes) as an elephant
classification criterion. Results of these simulations are shown
in Table II and Table III provided in Appendix A.

Additionally, we use distribution mixture equations provided
in [2] to calculate the performance for a continuous spectrum
of threshold/sampling probability values, which is impossible
with simulations. This allows straightforward plotting and
comparison of algorithms performance against each other.

Analytically calculated reduction of flow table occupancy is
shown in Figure 4 on y-axis (logarithmic). Similarly, reduction
in number of operations is presented on Figure 5. The x-axis
(linear) on both figures is the desired traffic coverage. In the
occupancy calculation, we assumed that the average packet
interarrival time is the same for all flows. The presented results
of analytical calculations are in line with selected values
obtained in simulations, which confirms their correctness.

It can be seen that the first algorithm achieves the best
performance. For any target traffic coverage, it gives the
largest reduction, both in flow table occupancy and operations
number. Additionally, in the case of the first algorithm, oper-
ations number and occupancy reduction factors are the same.
While its implementation is impossible in practice, the results
are still valuable as they provide an upper boundary for all
flow table usage reduction algorithms based on elephant/mice
classification. Because of that, on Figure 6 and Figure 7,
we also show the analytically calculated performance of all
algorithms relative to it.

In the case of threshold algorithm, the average reduction of
flow table occupancy is always higher than the reduction of
the number of flow entry operations. This is expected as flows
are added not with their first packet but with some subsequent
packet, so they occupy the flow table for only a fraction of their
lifetime. Unfortunately, the same applies to traffic coverage. To
achieve similar traffic coverage, a lower threshold value has to
be used than in the first approach, which also results in lower
table occupancy reduction. Occupancy in the case of threshold
algorithm is approximately 1.5 times higher than with the
first and the number of flow entries operations is 2-3 times
higher. Its usability is limited in OpenFlow switches, but low-
overhead implementation may be possible in other dataplane
technologies (such as P4). Apart from that, it provides an upper
boundary for all algorithms based on some kind of inexact
counting, for example, Bloom filters or sketches.

In the case of sampling algorithm, similarly as in threshold,
the average reduction of flow table size is higher than the
reduction of the number of flow entry operations, for the same
reason. It can be also seen that, in general, decreasing sampling
probability results in an exponential increase in the flow table
occupancy reduction, but only in a linear decrease in traffic
coverage. In the case of sampling algorithm, occupancy is 2-4
times higher and operations number is 3-7 times higher than
in the first. However, the numbers are still high. For example,
with a target of 80% traffic coverage, which we believe is a
fair target in TE case, it can reduce the number of flow table
entries by a factor of 225 (packet sampling) or 401 (size-based
non-uniform sampling). Thus, the performance of sampling
stays within the same order of magnitude as the performance
of first and threshold algorithms. Unlike them, it is trivial to
implement, has negligible computational overhead, and does
not require any memory.

Finally, all algorithms achieve better performance when size
is used as a threshold/sampling base. This can be attributed to
the fact that longer flows have a larger average packet size.



5060708090100

Traffic coverage [%] (decision by length)

1

10

100

1000

10000

F
lo

w
ta

b
le

o
cc

u
p

an
cy

re
d

u
ct

io
n

[x
]

first

threshold

sampling

5060708090100

Traffic coverage [%] (decision by size)

1

10

100

1000

10000

F
lo

w
ta

b
le

o
cc

u
p

an
cy

re
d

u
ct

io
n

[x
]

first

threshold

sampling

Fig. 4. Analytically calculated flow table occupancy reduction in function of traffic coverage.

5060708090100

Traffic coverage [%] (decision by length)

1

10

100

1000

10000

F
lo

w
ta

b
le

op
er

at
io

n
s

re
d

u
ct

io
n

[x
]

first

threshold

sampling

5060708090100

Traffic coverage [%] (decision by size)

1

10

100

1000

10000

F
lo

w
ta

b
le

op
er

at
io

n
s

re
d

u
ct

io
n

[x
]

first

threshold

sampling

Fig. 5. Analytically calculated flow table operations number reduction in function of traffic coverage.

5060708090100

Traffic coverage [%] (decision by length)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
lo

w
ta

b
le

o
cc

u
p

an
cy

[r
el

at
iv

e
to

fi
rs

t]

first

threshold

sampling

5060708090100

Traffic coverage [%] (decision by size)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
lo

w
ta

b
le

o
cc

u
p

an
cy

[r
el

at
iv

e
to

fi
rs

t]

first

threshold

sampling

Fig. 6. Analytically calculated flow table occupancy relative to the first algorithm in function of traffic coverage.

5060708090100

Traffic coverage [%] (decision by length)

1

2

3

4

5

6

7

F
lo

w
ta

b
le

op
er

at
io

n
s

[r
el

at
iv

e
to

fi
rs

t]

first

threshold

sampling

5060708090100

Traffic coverage [%] (decision by size)

1

2

3

4

5

6

7

F
lo

w
ta

b
le

op
er

at
io

n
s

[r
el

at
iv

e
to

fi
rs

t]

first

threshold

sampling

Fig. 7. Analytically calculated flow table operations number relative to the first algorithm in function of traffic coverage.



TABLE I
CLASSES OF ALGORITHMS FOR WHICH EACH ANALYZED APPROACH PROVIDES BOUNDARIES

first threshold sampling

Upper boundary All algorithms, machine learning algo-
rithms based on header classification

Exact counters, inexact counters, Bloom
filters, sketches

Lower boundary All algorithms classifying flows not with
the first, but on some subsequent packet

V. FURTHER RESEARCH

In this paper, we use flow sizes to calculate traffic cover-
age. However, it would be more beneficial to maximize the
coverage of flow rates. It has been shown that there is a
correlation between flow sizes and rates [38]. Therefore, the
idea that high-rate flows could be identified using flow sizes is
theoretically correct [39]. Nevertheless, it may be interesting
to directly use flow rates for traffic coverage calculations.

Similarly, we assumed that packet interarrival time is the
same for all flows and does not depend on flow length or
size, in other words, that the flow duration is proportional
to flow length/size. Using real flow durations to calculate
occupancy would give more accurate results. However, the
calculation of flow rate and duration distributions requires
accurate timestamps. Hardware NetFlow agents usually cannot
assign accurate timestamps to generated flow records [40].
Therefore, packet traces instead of flow records should be
analyzed in order to obtain accurate flow rate and duration
distributions. Unfortunately, sufficiently long packet traces are
not publicly available (CAIDA traces, as we already stated,
are truncated to one hour).

In our research, we followed the NetFlow default 15 seconds
inactive timeout. It will be interesting to perform similar
evaluations for flows with other timeouts, especially subsecond
(so-called flowlets). Flowlet-based traffic engineering is an
interesting concept since the number of simultaneous flowlets
is several orders of magnitude lower than the number of
simultaneous flows. However, we also expect that gains from
elephant-mice flow differentiation will be lower for flowlets.

Another interesting research direction is the usage of
elephant-based traffic engineering in distributed systems. In
centralized approaches, all switches send detected elephants
to the central controller, which installs flow-specific paths on
all switches at once. In distributed systems, the installation
of elephant flow-specific entry would have to be coordinated
between all switches without the usage of a central controller.

Implementation aspects are also very important. The exact
counting of packets of all candidate flows is resource-intensive
in OpenFlow switches. Novel dataplane technologies, like P4
or eBPF, can allow the implementation of low-overhead per-
flow counters [36]. An interesting alternative is the inexact
counting of significant queue contributors based on count-min
sketches, which was proven to run on P4 switch at line rate
and identify elephants with high accuracy and low latency
[32]. High performance and low latency out-of-band sampling
mechanisms, like [17], are also an interesting research topic.

VI. CONCLUSIONS

The contribution of this paper is fourfold. First, it examines
elephant-based flow table usage reduction approaches from the
traffic engineering point of view. The idea, although already
appeared as a part of some TE systems, was not analyzed
numerically in isolation. It remained unknown what extent of
flow table occupancy and operations number reduction can be
achieved, how to select thresholds or sampling rates to cover
the desired fraction of traffic.

Secondly, the presented results of the first and threshold
algorithms provide upper boundaries for whole classes of
flow table usage reduction algorithms. The Table I presents
boundaries provided by each of the analyzed algorithms. Such
boundaries were not previously available.

Thirdly, we discovered the surprisingly good performance
of the sampling algorithm. It introduces a negligible overhead
to the packet processing pipeline and does not require any
memory (unlike counters or Bloom filters), yet when applied
to realistic traffic, it can reduce the number of flow entries
by a factor of 400, while still maintaining 80% of the traffic
covered by individual flow entries. Thus, it can provide a lower
bound for the performance of other algorithms and in cases
when flow rerouting is acceptable, it can eliminate the need
for more sophisticated solutions.

Finally, the key aspect of our analysis is the usage of
accurate and reproducible flow length and size distribution
mixtures. The accuracy of used distributions has a crucial
impact on results. We acknowledge that various networks can
have different distributions; therefore, we provide an open-
source software package allowing both the replication of our
experiments and the performing of similar evaluations for
other algorithms or flow distributions [9].

The elephant detection for forwarding purposes is becoming
currently an attractive research topic (e.g. ML-based detection
in P4). However, to analyze more sophisticated solutions,
baselines and theoretical boundaries need to be established
first. This is the goal of this paper. It sets the baseline for
analysis of the performance of flow table occupancy reduction
algorithms of various classes and provide methodology, traffic
model and software which can be used by other researchers.

ACKNOWLEDGMENT

The research was carried out with the support of the project
”Intelligent management of traffic in multi-layer Software-
Defined Networks” founded by the Polish National Science
Centre under project no. 2017/25/B/ST6/02186.



APPENDIX

The tables below present packet-level simulation results for all analyzed algorithms. They can be also used as reference for
researchers and network operators on how to set threshold values or sampling probabilities to achieve a desired traffic coverage
or flow table usage reduction.

TABLE II
SIMULATION RESULTS (DECISION BY LENGTH)

Threshold
(packets)

First algorithm Threshold algorithm
Sampling
prob.

Sampling algorithm

Traffic Operations Occupancy Traffic Operations Occupancy Traffic Operations Occupancy
coverage reduction reduction coverage reduction reduction coverage reduction reduction

(%) (x) (x) (%) (x) (x) (%) (x) (x)

1 99.89 1.92 1.92 99.71 1.92 2.60 1.00 100.00 1.00 1.00
2 99.82 2.88 2.88 99.52 2.88 4.06 5.00e-01 99.77 1.41 1.54
4 99.74 3.89 3.89 99.23 3.89 6.16 2.50e-01 99.47 2.04 2.41
8 99.56 5.99 5.99 98.77 5.99 10.28 1.25e-01 99.04 3.00 3.81
16 99.22 10.40 10.40 98.10 10.40 17.71 6.25e-02 98.43 4.53 6.09
32 98.75 17.32 17.32 97.16 17.32 29.15 3.12e-02 97.61 6.93 9.74
64 97.99 28.33 28.33 95.87 28.33 46.66 1.56e-02 96.46 10.83 15.78
128 96.99 44.05 44.05 94.16 44.05 73.62 7.81e-03 94.97 16.95 25.42
256 95.65 69.57 69.57 91.88 69.57 119.93 3.90e-03 92.96 26.88 41.30
512 93.79 115.98 115.98 88.88 115.98 198.05 1.95e-03 90.37 42.21 66.07
1 024 91.44 191.38 191.38 84.96 191.38 318.15 9.76e-04 86.93 67.57 107.39
2 048 88.45 300.49 300.49 79.73 300.49 503.95 4.88e-04 82.52 105.88 170.58
4 096 84.16 469.59 469.59 72.77 469.59 827.40 2.44e-04 76.41 169.31 276.96
8 192 77.78 775.64 775.64 64.01 775.64 1462.54 1.22e-04 69.26 271.58 453.25
16 384 69.37 1399.51 1399.51 53.83 1399.51 2834.49 6.10e-05 61.21 431.17 735.66
32 768 59.27 2794.15 2794.15 42.60 2794.15 6069.15 3.05e-05 50.30 727.99 1271.26
65 536 47.29 6201.41 6201.41 31.09 6201.41 14399.51 1.52e-05 40.64 1229.39 2197.34
131 072 34.27 15345.62 15345.62 20.65 15345.62 37977.86 7.62e-06 30.39 2283.27 4198.14
262 144 22.41 42262.61 42262.61 12.47 42262.61 111279.85 3.81e-06 19.61 4994.85 9425.16
524 288 13.26 130950.45 130950.45 6.84 130950.45 367074.49 1.90e-06 14.21 8402.36 16061.45
1 048 576 7.09 456577.43 456577.43 3.37 456577.43 1365306.53 9.53e-07 9.95 14669.12 28322.65
2 097 152 3.37 1799949.44 1799949.44 1.49 1799949.44 5604593.17 4.76e-07 6.21 27264.93 53215.32

TABLE III
SIMULATION RESULTS (DECISION BY SIZE)

Threshold
(bytes)

First algorithm Threshold algorithm
Sampling
prob.

Sampling algorithm

Traffic Operations Occupancy Traffic Operations Occupancy Traffic Operations Occupancy
coverage reduction reduction coverage reduction reduction coverage reduction reduction

(%) (x) (x) (%) (x) (x) (%) (x) (x)

64 100.00 1.04 1.04 99.90 1.04 1.58 1.00 100.00 1.00 1.00
128 99.95 1.53 1.53 99.83 1.53 2.45 5.00e-01 99.98 1.12 1.14
256 99.89 2.34 2.34 99.73 2.34 3.58 2.50e-01 99.90 1.49 1.61
512 99.82 3.43 3.43 99.59 3.43 5.12 1.25e-01 99.76 2.06 2.38
1 024 99.73 4.76 4.76 99.41 4.76 7.23 6.25e-02 99.57 2.86 3.51
2 048 99.60 6.74 6.74 99.14 6.74 10.60 3.12e-02 99.32 4.01 5.18
4 096 99.38 10.03 10.03 98.77 10.03 15.83 1.56e-02 98.98 5.67 7.66
8 192 99.10 15.02 15.02 98.28 15.02 23.52 7.81e-03 98.54 8.08 11.32
16 384 98.73 22.18 22.18 97.62 22.18 34.87 3.90e-03 97.94 11.69 16.85
32 768 98.22 32.86 32.86 96.73 32.86 52.09 1.95e-03 97.14 16.99 25.07
65 536 97.52 49.23 49.23 95.53 49.23 78.37 9.76e-04 96.08 24.87 37.35
131 072 96.58 74.00 74.00 93.93 74.00 118.38 4.88e-04 94.70 36.29 55.38
262 144 95.32 111.45 111.45 91.80 111.45 180.52 2.44e-04 92.84 53.78 83.23
524 288 93.60 170.39 170.39 89.00 170.39 279.56 1.22e-04 90.43 79.91 125.35
1 048 576 91.29 265.01 265.01 85.37 265.01 437.69 6.10e-05 87.36 119.62 189.44
2 097 152 88.29 414.00 414.00 80.71 414.00 690.84 3.05e-05 83.22 182.75 292.31
4 194 304 84.41 650.85 650.85 74.77 650.85 1112.19 1.52e-05 77.99 275.65 448.04
8 388 608 79.21 1053.94 1053.94 67.30 1053.94 1847.74 7.62e-06 71.80 415.82 685.60
16 777 216 72.51 1759.10 1759.10 58.24 1759.10 3152.64 3.81e-06 64.19 659.01 1096.09
33 554 432 64.46 2945.28 2945.28 47.41 2945.28 5653.28 1.90e-06 53.81 1052.41 1793.71
67 108 864 53.75 5289.09 5289.09 34.77 5289.09 11787.26 9.53e-07 43.64 1804.65 3155.34
134 217 728 38.69 12142.54 12142.54 22.15 12142.54 31499.08 4.76e-07 32.17 3176.87 5777.40
268 435 456 23.50 36943.89 36943.89 12.63 36943.89 102107.04 2.38e-07 22.36 5640.73 10524.92
536 870 912 13.20 124827.05 124827.05 6.77 124827.05 350449.76 1.19e-07 14.24 9935.61 18946.22
1 073 741 824 7.02 434921.71 434921.71 3.33 434921.71 1273242.43 5.96e-08 10.50 17532.00 33966.28



REFERENCES

[1] P. Megyesi and S. Molnár, “Analysis of elephant users in broadband
network traffic,” in Meeting of the European Network of Universities and
Companies in Information and Communication Engineering. Springer,
2013, pp. 37–45.

[2] P. Jurkiewicz, G. Rzym, and P. Boryło, “Flow length and size distribu-
tions in campus Internet traffic,” Computer Communications, vol. 167,
pp. 15–30, 2021.

[3] J. J. Garcia-Lunes-Aceves, “Loop-free routing using diffusing compu-
tations,” IEEE/ACM Transactions on Networking (TON), vol. 1, no. 1,
pp. 130–141, 1993.

[4] D. Bertsekas, “Dynamic behavior of shortest path routing algorithms
for communication networks,” IEEE Transactions on Automatic Control,
vol. 27, no. 1, pp. 60–74, Feb 1982.

[5] Z. Wang and J. Crowcroft, “Analysis of Shortest-Path Routing Algo-
rithms in a Dynamic Network Environment,” ACM SIGCOMM Com-
puter Communication Review, vol. 22, no. 2, pp. 63–71, 1992.

[6] P. Jurkiewicz, R. Wójcik, J. Domżał, and A. Kamisiński, “Testing
implementation of FAMTAR: Adaptive multipath routing,” Computer
Communications, vol. 149, pp. 300–311, 2020.

[7] G. Shen, Q. Li, S. Ai, Y. Jiang, M. Xu, and X. Jia, “How Powerful
Switches Should be Deployed: A Precise Estimation Based on Queuing
Theory,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019, pp. 811–819.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined WAN,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
3–14.

[9] P. Jurkiewicz. flow-models: A framework for analysis and
modeling of IP network flows. [Online]. Available: https:
//github.com/piotrjurkiewicz/flow-models

[10] A. Shaikh, J. Rexford, and K. G. Shin, “Load-sensitive Routing of Long-
lived IP Flows,” ACM SIGCOMM Computer Communication Review,
vol. 29, no. 4, pp. 215–226, 1999.

[11] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-
aging zipf’s law for traffic offloading,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 1, pp. 16–22, 2012.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’10. USA: USENIX Association,
2010, p. 19.

[13] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in 2011 Proceedings IEEE INFOCOM, 2011, pp. 1629–1637.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
Performance Networks,” in Proceedings of the ACM SIGCOMM 2011
Conference, ser. SIGCOMM ’11. ACM, 2011, p. 254–265.

[15] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[16] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample: A
Low-Latency, Sampling-Based Measurement Platform for Commodity
SDN,” in 2014 IEEE 34th International Conference on Distributed
Computing Systems, 2014, pp. 228–237.

[17] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca, “Planck: Millisecond-Scale Monitoring and
Control for Commodity Networks,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM ’14. ACM, 2014, p.
407–418.

[18] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for
Traffic Engineering in SDN-OpenFlow Networks,” Computer Networks,
vol. 71, p. 1–30, Oct. 2014.

[19] M. R. Abbasi, A. Guleria, and M. S. Devi, “Traffic Engineering in
Software Defined Networks: A Survey,” Journal of Telecommunications
and Information Technology, vol. 4, pp. 3–14, 12 2016.

[20] R. E. Jurga and M. M. Hulbój, “Packet Sampling for Network Monitor-
ing,” CERN, Tech. Rep., 2007.

[21] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Transactions on Networking (TON), vol. 18, no. 2, pp. 490–500, 2010.

[22] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange, and
P. Tran-Gia, “Zoom: Lightweight sdn-based elephant detection,” in 2016
28th International Teletraffic Congress (ITC 28), vol. 02, Sep. 2016, pp.
1–6.

[23] Z. Duliński, G. Rzym, and P. Chołda, “MPLS-based reduction of
flow table entries in SDN switches supporting multipath transmission,”
Computer Communications, vol. 151, pp. 365–385, 2020.

[24] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’16. ACM,
2016.

[25] N. Huang, Q. Li, D. Lin, X. Lit, G. Shen, and Y. Jiang, “Software-
Defined Label Switching: Scalable Per-Flow Control in SDN,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS). IEEE, 2018, pp. 1–10.

[26] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-Hitter Detection Entirely in the Data Plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17. ACM,
2017, p. 164–176.

[27] W. Wang, Y. Yang, and E. Wang, “A Distributed Hierarchical Heavy Hit-
ter Detection Method in Software-Defined Networking,” IEEE Access,
vol. 7, pp. 55 367–55 381, 2019.

[28] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“IDEAFIX: Identifying Elephant Flows in P4-Based IXP Networks,” in
2018 IEEE Global Communications Conference (GLOBECOM), 2018,
pp. 1–6.

[29] M. Cafaro, I. Epicoco, and M. Pulimeno, “CMSS: Sketching based
reliable tracking of large network flows,” Future Generation Computer
Systems, vol. 101, 07 2019.

[30] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “SketchVisor: Robust Network Measurement for Software
Packet Processing,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
ACM, 2017, p. 113–126.

[31] R. Ben Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, 2017, pp. 1–9.

[32] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-Grained Queue Measurement in the
Data Plane,” in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, ser. CoNEXT ’19.
ACM, 2019, p. 15–29.

[33] R. Durner and W. Kellerer, “Network Function Offloading Through
Classification of Elephant Flows,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 807–820, June 2020.

[34] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“Predicting Elephant Flows in Internet Exchange Point Programmable
Networks,” in International Conference on Advanced Information Net-
working and Applications. Springer, 2019, pp. 485–497.

[35] C. Hardegen and S. Rieger, “Prediction-based Flow Routing in Pro-
grammable Networks with P4,” in 2020 16th International Conference
on Network and Service Management (CNSM). IEEE, 2020.

[36] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information Rich Flow Record Generation on Commodity Switches,”
in Proceedings of the Thirteenth EuroSys Conference, ser. EuroSys ’18.
ACM, 2018.

[37] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall,
“Sampling and Filtering Techniques for IP Packet Selection,” IETF, RFC
5475, March 2009. [Online]. Available: http://tools.ietf.org/html/rfc5475

[38] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of internet flow rates,” in SIGCOMM, ser. SIGCOMM ’02.
ACM, 2002, p. 309–322.

[39] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement. ACM,
2004, pp. 115–120.

[40] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

https://github.com/piotrjurkiewicz/flow-models
https://github.com/piotrjurkiewicz/flow-models
http://tools.ietf.org/html/rfc5475

	Introduction
	Related works
	Analyzed algorithms
	First
	Threshold
	Sampling

	Results
	Further research
	Conclusions
	Appendix
	References

