
flow-models: A framework for analysis and modeling of IP network flows

Piotr Jurkiewicz

Department of Telecommunications, AGH University of Science and Technology, Kraków, Poland

Abstract

Recent developments in SDN technologies have resulted in flow-based forwarding becoming are a feasible alternative
for traditional mechanisms. However, as the efficiency of flow-based solutions strongly depends on traffic characteristics,
they need to be evaluated using realistic and accurate flow models. In this paper, we present a software framework,
called flow-models, for creating precise and reproducible statistical flow models from NetFlow/IPFIX flow records. The
flow-models package can be used to merge split records, calculate histograms of flow features and create General Mixture
Models fitting them. The models created by flow-models can be used both as an input in analytical calculations and to
generate realistic traffic in simulations.

Keywords: flow model, distribution fitting, traffic engineering, SDN

1. Motivation and significance

Fixed-function switches and routers are the founda-
tion of traditional networking. These network devices are
custom-built, monolithic proprietary boxes. They consist
of a vertically integrated application-specific integrated
circuit (ASIC) and proprietary, closed source software.
Network administrators are allowed by device vendors to
configure only selected parameters, without the possibil-
ity to change the device operation in a significant way.
Moreover, such devices need manual configuration, usu-
ally through CLI, which is a slow and error-prone process.

To overcome these drawbacks, the software-defined net-
working (SDN) concept emerged around 2010 as an al-
ternative. SDN decouples the network control and for-
warding functions, and makes network control directly pro-
grammable. In SDN, forwarding devices are programmed
with flow forwarding rules using standardized mechanisms
like OpenFlow and P4. Network intelligence is central-
ized in a software controller which maintains a global view
of the network. Administrators can dynamically adjust
network-wide traffic flow to meet changing traffic patterns
with automated SDN programs they write, which do not
depend on proprietary software.

Although the SDN concept originated in academia, its
advantages resulted in the development of programmable
switching chips and the subsequent introduction of SDN
switches to the market. Due to these technological ad-
vancements, flow-based networking is gaining increasingly
more attention as a feasible alternative for traditional so-
lutions [1].

Flow in computer networks is defined as a unidirec-
tional sequence of related packets. In Internet Protocol

Email address: jurkiew@agh.edu.pl (Piotr Jurkiewicz)

(IP) networks, the most common approach, used for ex-
ample in NetFlow/IPFIX (IP Flow Information Export)
[2], is to associate flows with transport layer connections.
This means that flow is a sequence of packets that share
the same address fields up to the transport layer (so-called
5-tuple): IP source address, IP destination address, source
port, destination port, and transport layer protocol type.

SDN and flow-based networking can ease network man-
agement, and can overcome many limitations of existing
approaches, especially in traffic engineering (TE) [3], qual-
ity of service (QoS) provisioning [4] or network security
[5]. The most promising area for flow-based networking is
flow-based forwarding.

Currently, the most common approach is still packet-
based forwarding. In such an approach, each packet is
forwarded by a router independently, according to a per-
destination IP prefix routing table. Routing tables are
usually populated by routing protocol daemons, which run
on each router, and use a distributed algorithm to discover
the network topology and shortest paths between partic-
ular IP destinations. However, due to its distributed na-
ture, per-packet routing imposes significant limitations on
multi-path transmission capabilities, as well as adaptivity
to changing traffic patterns.

Distributed routing protocols can discover and use the
shortest path between selected nodes in the network. Where
more than one path with a cost equal to the shortest one
exists, all of them can be used. Such an approach is called
equal-cost multi-path (ECMP) and is common in current
networks. Its usability is however limited in wide-area net-
works due to their asymmetric nature and resulting lack of
multiple shortest paths. For example in the nobel eu topol-
ogy from SNDLib1, the average number of disjoint short-

1http://sndlib.zib.de

Preprint submitted to SoftwareX December 20, 2021

http://sndlib.zib.de


Table 1: Code metadata

Current code version 1.2

Permanent link to code/repository used for this code version https://github.com/piotrjurkiewicz/flow-models/tree/v1.2

Legal Code License MIT

Code versioning system used Git

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies NumPy, SciPy, Matplotlib, pandas

Link to developer documentation/manual https://flow-models.readthedocs.io

Support email for questions piotr.jurkiewicz@agh.edu.pl

est paths between any nodes is 1.20, whereas the average
number of all disjoint paths is 2.61. Unequal cost multi-
path (UCMP) assumes usage of additional paths with cost
higher than the shortest one’s cost. However, this is not
trivial, as it may lead to routing loops. Loop-free UCMP
requires specific metrics and constraints in routing pro-
tocol. The only protocol currently in usage supporting
UCMP is EIGRP. However, to maintain its distributed
nature, it has to enforce conservative conditions while cal-
culating the set of feasible paths and discard some of the
existing paths [6]. This significantly limits the number
of additional paths which can be used. To use all avail-
able disjoint paths and achieve maximum flow between
selected nodes, techniques not based on distributed algo-
rithms have to be used.

Adaptive (load-sensitive) routing is also impossible in
the per-packet approach, as the dynamic alteration of link
costs leads to instability, which ultimately deteriorates net-
work performance. This has been shown by early ARPANET
attempts [7] [8]. Flow-based forwarding enables multi-
path and adaptive approaches, which are impossible to
achieve in per-packet routing due to routing loops and
route-flapping constraints, respectively [9].

However, the efficiency of most flow-based solutions
strongly depends on traffic characteristics. Therefore, they
should be evaluated using realistic flow models. A perfect
example of such solutions are traffic engineering mecha-
nisms exploiting the heavy-tailed nature of IP flows, which
reroute significant flows over alternative paths, balancing
that way the network’s load [10]. To reliably evaluate such
ideas, accurate distributions of flows’ length and size must
be used. The lack of such models negatively impacts the
credibility of experiments results.

Realistic models can be created from traffic traces, pre-
viously collected in the network. The well-known solutions
for flow records collection are NetFlow, IPFIX, and sFlow.
Packages like flow-tools or nfdump [11] provide tools for
filtering and calculating simple statistics from collected
flow records. flow-tools generates usage reports for flow
data sets by IP address, IP address pairs, ports, pack-
ets, bytes, interfaces, next hops, autonomous systems, ToS
bits, exporters, and tags. On the other hand, nfdump al-
lows filtering and calculating simple summary/top-N statis-
tics from network flow records. The aforementioned pack-

ages lack, however, any capabilities for the analysis and
modeling of flow features. This includes flow’s length (num-
ber of packets), size (amount of bytes), duration, and rate
distributions. Moreover, they do not provide any tool for
merging flow records split due to active timeout. The goal
of this framework is to fill this gap.

Specifically, the presented framework can be used to
merge flow records split during the collection process, cal-
culate histograms of flow features distributions and finally
to create General Mixture Models fitting those distribu-
tions. Afterward, created models can be used in network-
ing research, both as an input in analytical calculations
and to generate realistic traffic in simulations. The frame-
work also provides several auxiliary functionalities, like
flow records sorting or histogram distribution and model
plotting.

2. Software architecture

The framework consists of several tools, which pro-
vide features not available in the existing flow record pro-
cessing packages. Following the Unix philosophy, each
tool is a separate Python module aimed at a single pur-
pose. Tools are tailored to be used sequentially in data-
processing pipelines and features provided by them are
orthogonal. The scheme of such a pipeline is shown in
Figure 1. Tools being part of the framework are shown in
black, while tools from the external packages are colored
in blue.

The existing solutions can be used in the initial steps
of the pipeline. First, all flow records have to be collected.
Hardware NetFlow exporters or software ones (ulogd2 or
nfpcapd) can be used to create flow records from packet
traffic. Such flow records are collected in the nfcapd for-
mat. Next, before any further processing, the data need
to be cleaned and filtered. Irrelevant or erroneous flow
records can be filtered out with the nfdump tool. Sub-
sequent steps require the usage of tools provided by our
package, as necessary functionalities are not provided by
existing solutions. Since long-lasting flows may be re-
ported multiple times due to triggering procedures in the
exporters, such flow records have to be found and merged
back. The next step is the reduction of data passed to

2

https://github.com/piotrjurkiewicz/flow-models/tree/v1.2
https://flow-models.readthedocs.io
mailto:piotr.jurkiewicz@agh.edu.pl


Hardware exporters

Packet trace
(pcap format) Packets

NetFlow IPFIX

nfpcapd nfcapd IPFIX ulogd2

Raw flow dumps
(nfcapd format)

nfdump

Filtered flow dumps
(nfcapd format) 

merge

Merged flow records
(binary format)

sort

Sorted flow records
(binary format)

hist

Binned histogram of
a selected flow feature
(CSV format) 

summary fit

Fitted distribution mixtures
modeling the selected feature
(JSON format) 

LaTeX tables
with statistics 

plot generate

Generated flow records
according to the model
(CSV format)

Plots of features
distributions Packets

Model validation

Traffic generator

Figure 1: The scheme of data processing pipeline.

3



the modeling by binning it. The fitting of a general mix-
ture model, approximating the collected data, follows af-
terward. The fitted model can be used to mimic real traffic
in simulators or traffic generators. The framework cur-
rently includes the following tools:

� merge – merges flow records that were split across
multiple records due to active timeout

� sort – sorts flow records according to specified fields
(requires numpy)

� hist – calculates histograms of flows length, size,
duration or rate

� hist np – calculates histograms using multiple threads
(requires numpy, much faster, but uses more mem-
ory)

� fit – creates General Mixture Models (GMM) fitted
to flow records (requires scipy)

� plot – generates plots from flow records and fitted
models (requires pandas and scipy)

� generate – generates flow records from histograms
or mixture models

� summary – produces TeX tables containing summary
statistics of flow dataset (requires pandas)

� convert – converts flow records between supported
formats

The framework is implemented in Python. It has been
published on GitHub and can be installed as a package
from the PyPI (The Python Package Index) using the pip

install flow-models command. The package consists
of executable tool modules listed above and subpackage
lib containing modules providing common functionalities.
All tool modules are registered as entry points, so after
package installation, a user can easily call them from the
shell command line (e.g. flow-models-merge).

The package makes an extensive use of NumPy [12] and
SciPy [13] numerical processing libraries. Matplotlib [14]
is used for plots generation and Pandas [15] data analysis
library for CSV file handling and summary tables gener-
ation. Overall, the framework consists of 15 Python files,
containing 1988 lines of code and 176 lines of comments,
according to the cloc utility.

The purpose of the framework is to provide flow analy-
sis and modeling functionalities not present in the existing
packages. Therefore, it was designed to be used on the
top of nfdump toolset, which is a standard solution for
flow data collection and filtering. The nfcapd file format
from that toolset is an input format for our framework.
To exchange data between tools included in the frame-
work, two intermediate flow records formats can be used:
comma-separated values (CSV) format and binary format.
A flow record contains the following fields:

� af, prot – address family, IP protocol number

� inif, outif – input and output interface numbers

� sa0:sa3, da0:da3 – consecutive 32-bit words form-
ing source and destination IP addresses

� sp, dp – source and destination transport layer ports

� first, first ms – timestamp of a first packet (sec-
onds and milliseconds components)

� last, last ms – timestamp of a last packet (seconds
and milliseconds components)

� packets – number of packets (flow length)

� octets – number of octets (bytes) (flow size)

� aggs – number of aggregated flow records forming
this record

The binary file format can be used as an effective alter-
native to the textual CSV format. Each binary file stores
one field as an array of binary values of a specified type.
The file name contains field name (as listed above) and
data type, which specifies the type of binary object stored
in a file. Such a storage schema has several advantages:

� Fields can be distributed independently (for exam-
ple, one can share flow records without sa* and da*
address fields for privacy reasons).

� Fields can be compressed/uncompressed selectively
(important when processing data which barely fits
on disks).

� Additional or custom fields can be trivially added or
removed.

� Supports storage of any field using any object type
(signedness, precision).

� Files can be memory-mapped as numerical arrays
(unlike IPFIX, nfcapd or any other structured/TLV
format).

� Memory-mapping is IO and cache efficient (columnar
memory layout allows applications to avoid unneces-
sary IO and accelerate analytical processing perfor-
mance on modern CPUs and GPUs).

3. Software functionalities

First, flow records have to be collected. In the case
of hardware NetFlow/IPFIX exporters, the nfcapd tool
can be used for that purpose. Alternatively, ulogd2 can
be used on Linux systems to export flows observed on the
machine by the Netfilter/Conntrack subsystem into IPFIX
records. These records are also collected by nfcapd and
saved into its on-disk format. It is also possible to convert
a packet capture file into flow records with the nfpcapd

4



tool. This brings the possibility to analyze and model
time-related features (flow durations and rates), which is
impossible with data originating from hardware exporters
due to timekeeping issues [16].

After the collection, the data have to be cleaned. This
is especially important in the case of data originating from
hardware exporters, as they can provide corrupted flow
records characterized by implausible durations. Moreover,
the flow records file may contain records originating from
multiple devices, which also need to be filtered out. The
nfdump command-line tool can be used for that purpose.
It supports powerful and flexible filter syntax similar to
tcpdump. It is written in C and is very well optimized for
filtering tasks.

3.1. merge

In all hardware and many software exporters, long-
lasting flows may become split due to active timeout and
reported as multiple flow records. Such flow records have
to be found and merged back in order to obtain accu-
rate flow length, size, or duration values. The merge tool
available in our framework can be used for that purpose.
Additionally, it filters out erroneously split records. The
tool processes all flow records sequentially and performs
all calculations using only integers to ensure precision and
reproducibility. This is possible thanks to Python’s unlim-
ited width integer support.

The tool takes flow records in any supported format
as an input and outputs merged flow records in binary
or CSV format. Each merged flow record contains aggs
field, which tells how many flow records were merged back
into that particular aggregate flow record. A user should
specify both active and inactive timeouts used in the col-
lection process when calling the command to ensure the
correctness of merge operation.

3.2. sort

During the merging process, flow records may become
reordered. This applies especially to long flows, which in
some circumstances may stay cached until the end of the
merge process. Such flows are dumped at the end of output
files. The purpose of sort tool is to reorder flow records
in a file according to specified keys, usually flow start or
flow end times. This step is unnecessary when further
operations will be performed on the whole file. However,
in a case when only a part of a record file will be used,
sorting is required.

3.3. hist

Fitting of mixture models does not have to be per-
formed on complete flow records. Instead, it can be per-
formed on histograms, calculated by binning flow records
into buckets according to the selected parameter (e.g. flow
length or size). Histogram files can also be easily published
as they are many orders of magnitude smaller and, unlike
flow records, do not contain private information such as IP

addresses. We provide a tool called hist which performs
flow binning.

The tool takes flow records in any supported format as
an input and outputs a histogram file in a CSV format.
A user should specify the parameter to be binned (flow
length, size, duration, or rate) and additional columns to
be summed in a histogram (by default packets and octets
are counted, additional fields can be rate and duration).
The user can also specify a parameter, which is a power-of-
two defining starting point for logarithmic binning. Loga-
rithmic binning significantly reduces the size of histogram
files without affecting the quality of the fitting process no-
ticeably.

Two implementations of the tool are available: hist

and hist np. The former is a pure Python implementa-
tion that takes advantage of unlimited width integer sup-
port in Python to perform more accurate calculations. The
latter uses the NumPy package to perform binning, which
can utilize SIMD instructions and multiple threads and is
many orders of magnitude faster, but requires more mem-
ory and can introduce rounding errors due to the operation
on doubles having limited precision.

3.4. fit

The fit tool is the key component of the framework.
Its purpose is to find a mixture of distributions (along with
their parameters) matching accurately the selected flow
feature. We have implemented the Expectation–Maximization
(EM) algorithm [17] to estimate the parameters of a sta-
tistical model composed of mixture components.

The tool takes a flow histogram CSV file as an input
and performs distribution mixture fitting. JSON file, de-
scribing shares of separate distributions in the mixture and
their parameters, is an output. To start the EM algorithm,
an initial distribution mixture has to be provided. Its pa-
rameters are then iteratively refined in order to find the
local optimum. Our tool can receive an initial distribution
mixture from a user, but it can also generate an initial
mixture for a particular dataset on its own, which means
that the user has to only provide the number and types of
distributions used in a mixture.

Currently, uniform, normal, lognormal, Pareto, Weibull
and gamma distributions can be used in mixtures fitted
by our tool. However, the uniform and lognormal distri-
butions are usually sufficient to provide an accurate mix-
ture model. They have the advantage of being fast to fit,
since their maximization steps have analytical solutions,
whereas some other distribution parameters (Weibull or
gamma) must be calculated using numerical optimization
methods. Another advantage is that they are widely im-
plemented, so distribution mixtures composed of them can
be usable in various network simulators and traffic gener-
ators.

The fit tool can operate in command line mode and
graphical interactive mode (GUI). In the case of batch
operation, fitting is performed according to provided com-
mand line parameters and the result is saved in a JSON

5



file in the working directory. In the case of interactive
operation, the user can observe the fitting process in real-
time on a GUI. After its completion, he can examine the
model quality on plots and, if necessary, refine the number
of distributions and their initial parameters and repeat the
fitting. The video showing the interactive fitting process
is provided in Section 4.

3.5. plot

An important part of any modeling task is the visu-
alization of both input data and resulting models. The
plot tool can be used for that purpose. It can generate
probability density (PDF), cumulative distribution func-
tion (CDF), average packet size, and packet interarrival
time plots. It takes CSV histogram files and mixture
model JSON files as input. The input histogram data can
be visualized on a PDF plot as points, 2-dimensional his-
togram, or kernel density estimation (KDE) contour plot.
Model mixtures are presented as lines. Additionally, com-
ponents of a mixture can be plotted, both separately and
in stacked mode. The tool automatically normalizes data
points in the case of logarithmically-binned histograms.
Moreover, the framework contains a custom fast Fourier
transform (FFT) based implementation of weighted KDE
computation.

3.6. generate

In order to be used for benchmarking network mecha-
nisms, models must enable the generation of traffic match-
ing the mixtures. The tool generate provides a reference
for how to properly generate flows from distribution mix-
tures. It takes a path to the directory containing JSON
mixture models as input and outputs flow records. Ad-
ditionally, a CSV histogram file can be used instead of
a mixture model as an input, to generate flows exactly
matching the particular dataset.

3.7. summary

The purpose of the summary tool is to generate traffic
characteristics and features distribution tables in TeX or
HTML format from CSV histogram files. Generated sum-
mary tables can be easily published in an article or shared
as a web page.

3.8. convert

The convert tool can be used to convert flow records
between supported formats (nfcapd format and CSV and
binary formats flow described in Section 2).

4. Illustrative examples

Here we provide a step-by-step guide through the dis-
tribution fitting and model creation process. In order to be
able to follow the tutorial with the data publicly available
in the project’s repository, it starts after flow binning (that
is with a flow histogram CSV file). To get a reference on

how to create histogram files from flow records, framework
documentation and Makefile should be consulted.

First, it must be ensured that the required Python’s
standard library modules are installed. This applies in
particular to tkinter and venv modules, which in some
distributions are not installed by default with the Python’s
binaries. We will conduct our experiments in a virtual
environment. Alternatively, the flow-models package can
be installed systemwide with the pip command, in which
case the numpy, scipy, pandas and matplotlib should be
present on the system.

Listing 1: Installation of the framework and its dependencies.

$ python3 -m venv test

$ cd test

$ bin/pip install flow -models numpy scipy pandas

matplotlib

In this tutorial, we will use the dataset agh 2015, which
is provided in the project’s Git repository. The provided
dataset does not contain flow records due to privacy and
size concerns. Therefore, we will start the fitting process
with the histogram file, which was previously created from
flow records with the hist command.

Firstly, we will use the summary tool to get a grasp on
the data. The tool generates TeX tables containing overall
traffic characteristics and distributions of selected features.
Specifically, with the command below, a distribution table
for the flow length of all transport layer protocol flows will
be created.

Listing 2: Usage of the summary tool.

$ cd agh_2015

$ flow -models -summary -x length histograms/all/

length.csv

Similarly, a distribution table for flows depending on
their size can also be generated:

Listing 3: Usage of the summary tool for a flow size.

$ flow -models -summary -x size histograms/all/size

.csv

Now having the grasp on basic data properties, let us
get an insight into the details. This can be done by plot-
ting empirical probability distribution functions and cu-
mulative distribution functions of flow features. The plot

tool can be used for that purpose. The command below
will generate plots of PDF and CDF of a number of flows,
packets, and octets (bytes) in the function of flow length.
Additionally, plots presenting an average number of pack-
ets, octets, and packet size depending on flow length will
be created.

Listing 4: Plotting a histogram of a flow length.

$ flow -models -plot histograms/all/length.csv

6



Figure 2: The cumulative distribution function (CDF) plots.

Plots were created in the current working directory as
PNG files. The Figure 2 presents the CDF plot (cdf.png).

Now let us move to the fitting process, which is the core
operation of the framework. It can be performed with the
fit tool. Similarly as with previous commands, flow his-
togram CSV should be given as an input. The fit tool
can operate in the batch and the interactive mode. Below
we will perform mixture fitting for the flows distribution
in function flow’s length in the batch mode. In such a
case, the number of iterations (i) and the number of dis-
tributions of each type (U and L) should be specified as
command-line parameters.

Listing 5: Fitting of a distribution mixture.

$ flow -models -fit -i 400 -U 6 -L 4 -y flows

histograms/all/length.csv

0.00 Processing: histograms/all/length.csv

0.05 Iteration: 0

...

12.29 Iteration: 399

12.29 Saving: flows

$ cat flows.json

{

"sum": 4032376751 ,

"mix": [

[0.3050265769901237 , "uniform", [0, 1]],

[0.24841988004416196 , "uniform", [0, 2]],

[0.06366063664158104 , "uniform", [0, 3]],

[0.04921649965932878 , "uniform", [0, 4]],

[0.00931559166293734 , "uniform", [0, 5]],

[0.08217474157187263 , "uniform", [0, 6]],

[0.1312637498251484 , "lognorm",

[0.5207023493412831 , 0,

7.805599279070412]] ,

[0.07328615421743442 , "lognorm",

[0.7701056575379248 , 0,

22.10972501544735]] ,

[0.029289126487159662 , "lognorm",

[1.1252645297342552 , 0,

128.6451515069823]] ,

[0.008347042900250784 , "lognorm",

[1.9838369452408506 , 0,

1084.4707584768773]]

]

}

The fitted mixture is saved into a JSON file in the
current working directory. In this case, this is the file
flows.json, which contents is listed above. Alternatively, a
user can perform interactive fitting with the GUI. In such
a case, the tool should be started with the --interactive
parameter.

Listing 6: Interactive fitting of a distribution mixture.

$ flow -models -fit -i 100 -L 1 -y packets --

interactive histograms/all/length.csv

The Figure 3 shows a screenshot of the interactive fit-
ting tool. Users can change parameters (number of itera-
tions and number of distributions) on the right panel. Af-
ter clicking the fit button, the process starts. Its progress
can be monitored on the progress bar. Additionally, after
checking the animate checkbox, the current distribution
mixture will be plotted after each iteration. This allows
observing the fitting process in real-time. The window on
the bottom-right shows the current distribution mixture
in JSON format. After achieving a satisfying result, the
mixture can be saved to a JSON file using the save button.

We also provide an illustrative video presenting the in-
teractive fitting process. The video is visible next to the
article, in the right-hand side panel. The user is trying
to find a mixture model describing flow size (octets num-
ber) in the function of flow length (packets number). On
the upper plot, the probability density function is shown,
for data, mixture, and all its components separately. The
bottom plot shows cumulative distribution functions. The
user repeats the fitting process with a different number of
distributions and algorithm iterations until the satisfying
result is obtained. Model’s accuracy can be examined on
presented plots, in which fragments can be zoomed in.

The plot tool can be used not only to plot empirical
distribution functions from histogram files but also mix-
ture models. Both can be plotted on the same figure in
order to enable their comparison. For this, a path to a
directory containing model JSON files should be provided
after the path to a histogram CSV file.

Listing 7: Plotting empirical flow distributions and mixture models.

$ flow -models -plot histograms/all/length.csv

my_mixture/

Finally, the constructed model can be used to generate
flows. The tool generate can be used for that purpose.
It is not particularly useful on its own. Instead, its goal
is to provide a reference and serve as an example of how
to properly generate traffic from flow models. In the case
presented below, the model from my mixture directory is
used to generate 20 flow records in csv flow format using
two different seeds.

Listing 8: Generating artificial flows from a model.

$ flow -models -generate -x length -s 20 --seed 0

my_mixture/

$ flow -models -generate -x length -s 20 --seed 1

my_mixture/

7



Figure 3: The interactive fit tool.

5. Impact

The uninterrupted growth of Internet traffic is being
observed for many years. Recently, the forced transition
to remote work and education boosted its rate even more
[18]. As limits of physical infrastructure are being reached,
efficient traffic engineering is becoming a necessity for net-
work operators to maintain the desired quality of service.
Fine-grained flow traffic engineering is considered to be
one of the most promising solutions [19].

However, the efficiency of flow-based control strongly
depends on traffic characteristics, and thus, should be as-
sessed based on realistic and accurate flow models. To re-
liably evaluate such ideas, realistic distributions of flows’
length and size must be ensured. Due to a lack of adequate
models, researchers make arbitrary and oversimplified as-
sumptions, which often do not correspond to reality. This
negatively impacts the credibility of results presented in
numerous papers. Moreover, different and arbitrary as-
sumptions in various works exclude the possibility to ef-

fectively compare different solutions. Thus, despite many
SDN-based TE solutions that have been proposed recently
[19], their adoption by operators is very limited.

We expect that the presented framework will help to
solve these issues. It goes along with the reproducible
research effort, which is still being neglected in the com-
puter networking field [20]. It is also designed with big
data analysis capabilities in mind. Specifically, it supports
out-of-core computing, making it possible to analyze data
that exceeds available memory. Moreover, most processing
steps can be scaled horizontally using the map-reduce tech-
nique. Therefore, provided implementation is not limited
in terms of the number of processed flow records, which
makes it suitable for researchers and network operators
who experience significant traffic volumes. We hope that
they will share their models.

The framework was already used to construct flow length
and size models from a trace of 4 billion flows recorded in
a campus network [21]. Statistics and models provided

8



in that paper are already being used in various research
areas, including protocol performance [22], deep learning
traffic prediction [23], intrusion detection [24] and server
CPU scheduling algorithms [25].

However, other types of networks (e.g. datacenter net-
works) can exhibit significantly different traffic character-
istics. This means that models presented in [21] could
not be suitable for all research scenarios. Thus, in this
publication, we want to provide the framework itself to
a wider audience of researchers and network operators.
This should allow them to create similar models based on
their networks’ traffic. We expect that they will share
their models and thus provide a set of research data to
be used in a variety of networking experiments, improving
their credibility, comparability and reproducibility. Usage
of realistic, accurate, and repeatable traffic models will be
a key factor in providing comparability and reproducibility
in flow-based networking research.

6. Limitations and further research

The framework operates on flow records, which are col-
lected according to some specific flow definition. Whereas
NetFlow flow is a sequence of packets in the transport
layer, network layer flows (defined only by source and des-
tination IP addresses) are also used in some research areas.
Flow timeout rules are also strictly associated with flow
definition. This means that using the framework to model
flows present in a packet trace with different definitions
(e.g. various timeout values) requires repeated creation of
several flow record files which would be the input for the
framework. Such files can consume a lot of storage.

Another limitation of the framework is that General
Mixture Models created with the fit tool model all flow
features independently. Such models are sufficient for many
use cases. Nevertheless, more advanced models, incorpo-
rating relationships between features and header values,
would be useful in machine learning applications, like the
prediction of flow features based on header values in the
first packet [23].

The framework can also be further extended with ca-
pabilities to model or simulate particular mechanisms and
techniques. This includes for example elephant-based flow
table management [10] or techniques like mirroring first-N
packets of a flow to CPU for inspection. A very promis-
ing direction would be creating an interface to connect
the framework with machine learning libraries, like Scikit-
learn, Keras or OpenAI Gym.

7. Conclusions

In this paper, we introduced the flow-models frame-
work, a toolset for creating statistical models of IP net-
work flows. The software provides flow features distri-
bution analysis and modeling capabilities, not present in
the exiting packages. In particular, the framework allows

to merge flow records split during the collection process,
calculate histograms of flow features distributions, and fi-
nally to create General Mixture Models fitting those dis-
tributions. The framework also provides several auxiliary
functionalities, like flow records sorting or histogram dis-
tribution and model plotting. With the framework, re-
searchers and network operators can create flow models
based on their networks’ traffic. Created models can be
used in networking research, both as an input in analytical
calculations or to generate realistic traffic in simulations.
We expect that the presented framework will significantly
enhance the quality of networking research by improving
its reproducibility and comparability.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The research was carried out with the support of the project
”Intelligent management of traffic in multi-layer Software-
Defined Networks” founded by the Polish National Science
Centre under project no. 2017/25/B/ST6/02186.

References

[1] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothen-
berg, S. Azodolmolky, S. Uhlig, Software-Defined Networking:
A Comprehensive Survey, Proceedings of the IEEE 103 (1)
(2015) 14–76. doi:10.1109/JPROC.2014.2371999.

[2] J. Quittek, J. Zseby, B. Claise, S. Zander, IPFIX Requirements,
RFC 3917 (2010).
URL http://tools.ietf.org/html/rfc3917

[3] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap
for traffic engineering in SDN-OpenFlow networks, Computer
Networks 71 (2014) 1–30. doi:10.1016/j.comnet.2014.06.002.

[4] R. Wójcik, A. Jajszczyk, Flow Oriented Approaches to QoS
Assurance, ACM Comput. Surv. 44 (1) (Jan. 2012). doi:10.

1145/2071389.2071394.
[5] S. Shin, L. Xu, S. Hong, G. Gu, Enhancing Network Secu-

rity through Software Defined Networking (SDN), in: 2016
25th International Conference on Computer Communication
and Networks (ICCCN), 2016, pp. 1–9. doi:10.1109/ICCCN.

2016.7568520.
[6] J. J. Garcia-Lunes-Aceves, Loop-free routing using diffusing

computations, IEEE/ACM Transactions on Networking (TON)
1 (1) (1993) 130–141. doi:10.1109/90.222913.

[7] D. Bertsekas, Dynamic behavior of shortest path routing algo-
rithms for communication networks, IEEE Transactions on Au-
tomatic Control 27 (1) (1982) 60–74. doi:10.1109/TAC.1982.

1102884.
[8] Z. Wang, J. Crowcroft, Analysis of Shortest-Path Routing

Algorithms in a Dynamic Network Environment, ACM SIG-
COMM Computer Communication Review 22 (2) (1992) 63–71.
doi:10.1145/141800.141805.

[9] P. Jurkiewicz, R. Wójcik, J. Domża l, A. Kamisiński, Testing im-
plementation of FAMTAR: Adaptive multipath routing, Com-
puter Communications 149 (2020) 300–311. doi:10.1016/j.

comcom.2019.10.029.

9

https://doi.org/10.1109/JPROC.2014.2371999
http://tools.ietf.org/html/rfc3917
http://tools.ietf.org/html/rfc3917
https://doi.org/10.1016/j.comnet.2014.06.002
https://doi.org/10.1145/2071389.2071394
https://doi.org/10.1145/2071389.2071394
https://doi.org/10.1109/ICCCN.2016.7568520
https://doi.org/10.1109/ICCCN.2016.7568520
https://doi.org/10.1109/90.222913
https://doi.org/10.1109/TAC.1982.1102884
https://doi.org/10.1109/TAC.1982.1102884
https://doi.org/10.1145/141800.141805
https://doi.org/10.1016/j.comcom.2019.10.029
https://doi.org/10.1016/j.comcom.2019.10.029


[10] P. Jurkiewicz, Boundaries of Flow Table Usage Reduction Al-
gorithms Based on Elephant Flow Detection, in: 2021 IFIP
Networking Conference (IFIP Networking), 2021, pp. 1–9. doi:
10.23919/IFIPNetworking52078.2021.9472832.

[11] P. Haag, Watch your Flows with NfSen and NFDUMP, in: 50th
RIPE Meeting, 2005.

[12] S. v. d. Walt, S. C. Colbert, G. Varoquaux, The NumPy Array:
A Structure for Efficient Numerical Computation, Computing
in Science & Engineering 13 (2) (2011) 22–30. doi:10.1109/

MCSE.2011.37.
[13] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-

land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, et al., SciPy 1.0: fundamental al-
gorithms for scientific computing in Python, Nature Methods
17 (3) (2020) 261–272. doi:10.1038/s41592-019-0686-2.

[14] J. D. Hunter, Matplotlib: A 2D Graphics Environment, Com-
puting in Science & Engineering 9 (3) (2007) 90–95. doi:

10.1109/MCSE.2007.55.
[15] W. McKinney, et al., pandas: a foundational python library for

data analysis and statistics, Python for High Performance and
Scientific Computing 14 (9) (2011).

[16] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, A. Pras, Measure-
ment artifacts in netflow data, in: International Conference on
Passive and Active Network Measurement, Springer, 2013, pp.
1–10. doi:10.1007/978-3-642-36516-4_1.

[17] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likeli-
hood from Incomplete Data via the EM Algorithm, Journal of
the Royal Statistical Society. Series B (Methodological) 39 (1)
(1977) 1–38. doi:10.1111/j.2517-6161.1977.tb01600.x.

[18] CISCO, Cisco Annual Internet Report (2018–2023) White
Paper (2020).
URL https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

[19] A. Mendiola, J. Astorga, E. Jacob, M. Higuero, A Survey on the
Contributions of Software-Defined Networking to Traffic Engi-
neering, IEEE Communications Surveys Tutorials 19 (2) (2017)
918–953. doi:10.1109/COMST.2016.2633579.

[20] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, G. Carle,
Towards an ecosystem for reproducible research in computer
networking, Reproducibility ’17, Association for Computing
Machinery, New York, NY, USA, 2017, p. 5–8. doi:10.1145/

3097766.3097768.
[21] P. Jurkiewicz, G. Rzym, P. Bory lo, Flow length and size distri-

butions in campus Internet traffic, Computer Communications
167 (2021) 15–30. doi:10.1016/j.comcom.2020.12.016.

[22] V. Adarsh, P. Schmitt, E. Belding, MPTCP Performance over
Heterogenous Subpaths, in: 2019 28th International Conference
on Computer Communication and Networks (ICCCN), 2019,
pp. 1–9. doi:10.1109/ICCCN.2019.8847086.

[23] C. Hardegen, B. Pfülb, S. Rieger, A. Gepperth, Predicting
Network Flow Characteristics Using Deep Learning and Real-
World Network Traffic, IEEE Transactions on Network and Ser-
vice Management 17 (4) (2020) 2662–2676. doi:10.1109/TNSM.
2020.3025131.

[24] L. Han, Y. Sheng, X. Zeng, A Packet-Length-Adjustable At-
tention Model Based on Bytes Embedding Using Flow-WGAN
for Smart Cybersecurity, IEEE Access 7 (2019) 82913–82926.
doi:10.1109/ACCESS.2019.2924492.

[25] A. Rucker, M. Shahbaz, T. Swamy, K. Olukotun, Elastic RSS:
Co-Scheduling Packets and Cores Using Programmable NICs,
in: Proceedings of the 3rd Asia-Pacific Workshop on Network-
ing 2019, APNet ’19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 71–77. doi:10.1145/3343180.

3343184.

10

https://doi.org/10.23919/IFIPNetworking52078.2021.9472832
https://doi.org/10.23919/IFIPNetworking52078.2021.9472832
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-642-36516-4_1
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/COMST.2016.2633579
https://doi.org/10.1145/3097766.3097768
https://doi.org/10.1145/3097766.3097768
https://doi.org/10.1016/j.comcom.2020.12.016
https://doi.org/10.1109/ICCCN.2019.8847086
https://doi.org/10.1109/TNSM.2020.3025131
https://doi.org/10.1109/TNSM.2020.3025131
https://doi.org/10.1109/ACCESS.2019.2924492
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3343180.3343184

	Motivation and significance
	Software architecture
	Software functionalities
	merge
	sort
	hist
	fit
	plot
	generate
	summary
	convert

	Illustrative examples
	Impact
	Limitations and further research
	Conclusions

