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a b s t r a c t

This article presents the new version of the flow-models IP network flow modeling framework. The
improved features include flow skipping and counting, flow filtering, IP address anonymization, and
time series data calculation. The new version also enables simulation of the first packet mirroring
feature and provides tools for modeling the detection of elephant flows. It includes examples of using
the scikit-learn library to build machine learning models for elephant flow detection based on the
first packet. Furthermore, it provides an anonymized flow dataset, enabling researchers to train and
validate machine learning models for traffic analysis in a reproducible and comparable manner.
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1. Introduction

Flow-based traffic engineering is a promising approach for
anaging the increasing network demand without compromis-

ng quality of service or requiring costly infrastructure invest-
ents [1,2]. It involves dynamically selecting paths for IP flows
ased on the network’s current or predicted load. This allows
lows between the same endpoints to follow any number of alter-
ative paths. Adaptive routing of flows also offers greater stability

DOI of original article: https://doi.org/10.1016/j.softx.2021.100929.
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compared to dynamic load balancing in classic IP prefix-based
routing [3].

In [4], we introduced flow-models, an open-source Python
framework designed to create precise and reproducible statistical
IP network flow models from NetFlow/IPFIX flow records. This
framework offers advanced capabilities that are not found in
other packages, including the ability to merge split flow records,
calculate histograms of flow feature distributions, and create Gen-
eral Mixture Models fitting those. Researchers and network oper-
ators can utilize these models for analytical calculations and gen-
erate realistic traffic in simulations. Furthermore, the framework
provides additional functionalities such as sorting flow records
and plotting histograms and distribution models.
ttps://doi.org/10.1016/j.softx.2023.101506
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In this paper, we present a new version of the framework
hat introduces new functionalities specifically focused on mod-
ling and detecting elephant flows. Despite technological ad-
ancements, the number of simultaneous flows in networks still
xceeds the capacities of switch flow tables [5]. However, recent
nalysis shows that a small percentage of flows, representing only
.2–0.4% of the total, account for 80% of network traffic [6,7]. By
mplementing individual handling for this subset of flows and
outing the remaining flows over the shortest paths, significant
mprovements in network performance can be achieved while
inimizing overhead and the number of flow table entries.
The challenge lies in detecting elephant flows, preferably

rom their initial packets. To address this, we introduce the
irst_mirror and elephants subpackages in the new version
f framework. These subpackages can be used to model various
lephant detection mechanisms and techniques. We provide ex-
mples how to train machine learning models detecting elephant
lows with the first packet using the scikit-learn library. We
lso publicly share a dataset of flow records in a binary format,
nonymized using the prefix-preserving encryption algorithm,
hich can be utilized for training and testing machine learning
odels. Additionally we describe improvements and fixes in the
xisting framework functionalities introduced since the previ-
usly presented version, including three new tools in the main
ramework package.

. Improvements of existing features

Since the version 1.2, which was described in the previous
aper, several improvements and fixes has been made in the
ramework. This included 92 commits, 4788 lines of code added
nd 2003 lines deleted. Overview of the most significant changes
s provided below:

ommon flow skipping and counting capability. In the previous
ersion, the convert tool had the capability to skip a specified
umber of flows on its input or output, or to process only a
equested number of flows instead of all flows. This functionality
as been moved to the input generator functions within the
low_models.lib.io library. As a result, this feature is now
vailable in all tools. Users can utilize the --skip-in, --skip-
ut, --count-in, and --count-out parameters to control this
ehavior.

low filtering capability. The convert tool also had the capabil-
ty to filter flows according to a specified Python expression. This
llowed, for example, selecting only flows with certain source
ddresses or longer than N packets. In the current version, this

functionality was also moved to the common I/O library, which
means that now any tool can perform filtering during its opera-
tion. Filters can be specified using the --filter-expr command
line parameter.

Fast flow filtering with NumPy. Filtering is done by executing a
filter Python expression when the flow tuple is being read by the
input function. However, when using the binary flow record input
format, it can be performed much faster using NumPy masking.
We have implemented this in the new version of the package.
Consequently, starting from version 2.0, bitwise operators should
be used instead of logical ones in filter expressions to ensure
compatibility with both the Python interpreter and NumPy:

For example, a filter selecting HTTPS flows:
--filter-expr ‘‘prot==6 and (sp==443 or dp==443)’’

should be rewritten as:
--filter-expr ‘‘(prot==6) & ((sp==443) | (dp==

443))’’

Common argument parser. In the current version of the frame-
work, we have standardized the command line argument syntax

across different tools. We achieved this by implementing a com-
mon argument parser using the argparse library, which is now
utilized by all tools.

Update of read_pipe to the new nfdump format. Recently,
the nfdump package made a change to its pipe format syntax,
adopting a single field that represents the flow start and end
timestamps as milliseconds since the start of the Unix epoch.
Consequently, we have updated the function responsible for read-
ing nfdump pipe formatted flow records in our framework to
accommodate this change.

API documentation improvements. Since the previous version,
we have made significant improvements to the documentation
of our tools and API. We have added usage examples to the help
messages of our tools, as well as parameter types and descriptions
to the functions in the framework library via docstrings. These are
accessible through the automatically generated API reference at:
https://flow-models.readthedocs.io.

Automatic testing and deployment. The previous version did
not contain any functional tests of the code. In the current ver-
sion, we have introduced tests to validate the main features of
the framework using the pytest package. Furthermore, we have
implemented continuous integration (CI) using GitHub Actions.
This allows for the automatic building of the framework and
running tests on each commit and pull request. Additionally, we
have included an action that automatically builds and publishes a
Python package to PyPI whenever new releases of the framework
are made.

Bug fixes. Several bugs, also reported by other users of the
framework, have been fixed since the previous release. They were
mostly related to type casting problems or inconsistent parameter
names usage across different tools.

3. New features

Several new features have been also added in the current
version. This includes three new tools in the main flow_models
package, and two first_mirror and elephants subpackages
aimed at specific applications.

3.1. New tools

cut tool efficiently splits binary flow record files without the
need for serialization. It utilizes the dd Unix command for optimal
performance in this task.

anonymize tool anonymizes IPv4 addresses in flow records using
Crypto-PAn [8] prefix-preserving algorithm. It works only for IPv4
flows. Therefore, after processing by this tool all flows of other
address families will be filtered out.

series tool is designed to calculate the number of flows, packets,
and bytes transmitted on a link in each second based on flow
records. It generates time series data for these features and writes
them in CSV format.

3.2. First packet mirroring simulation

The first_mirror subpackage enables simulations and ana-
lytical calculations of the first N packets mirroring feature found
in the latest generation of SDN switches. This feature involves
the switch’s CPU or SDN controller receiving copies of the initial
packets from each new flow in the switch’s dataplane. The con-
troller can then perform packet inspection and flow identification.
By analyzing various aspects of the new flows, including the
connection setup procedure, packet size, and time gaps between
2
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he first packets, the controller can determine the associated
pplication, even for encrypted connections.
This capability is also valuable for early detection of elephant

lows. By classifying flows based on their first packets, the need
or mid-flow rerouting is eliminated. Furthermore, it ensures that
or the majority of a flow’s lifespan, it will be subject to traffic
ngineering mechanisms specifically designed for elephant flows,
uch as individual routing paths. Additionally, the controller can
ontinuously learn and refine its detection models based on the
tream of first packets from flows.
We provide a script to simulate this feature at the packet level

nd compute the count of flows, packets, and bytes mirrored to
he controller for each second, using flow records as input.

.3. Elephants modeling and detection with machine learning

The elephants subpackage provides functionalities related
o elephant flows modeling. It offers tools for simulating and
alculating reduction in flow table occupancy and number of flow
ntry operations for a desired fraction of traffic, which can be
chieved using various elephant detection methods. These meth-
ds include classifying flows based on the first packet header
including machine learning-based algorithms), reaching a prede-
ined counter threshold (including inexact counters like sketches
r Bloom filters), or detecting elephants through sampling.
The simulate tool performs simulations at the packet level.

t reads flow statistics from a histogram file or generates flows
rom a JSON mixture, and then generates sample packets for these
lows. Simulations can be repeated to obtain confidence intervals.
n the other hand, the calculate tool can analytically calculate
low table occupancy reduction curves based on provided flow
ecords, histograms, or mixtures.

Additionally, we provide the elephants.sklearn subpack-
ge, which offers examples on how to use the scikit-learn
ibrary [9] to train machine learning algorithms for detecting
lephant flows based on the first packet. Several recent papers
ave focused on this topic, for example [10–14]. However, none
f these works analyze metrics such as flow table reduction or
he amount of traffic transmitted after flow classification, which
e believe are crucial from the perspective of traffic engineering
nd QoS. These studies primarily focus on classification accuracy,
easured by parameters like true positive rate, true negative rate,
nd accuracy of flow size and duration prediction. They provide
imited insight into the effectiveness of the analyzed algorithms
n our specific application. For example, misclassifying the largest
low in the network has a much greater impact on the change
n traffic coverage than misclassifying a small flow. The metrics
resented so far do not account for this difference. Our proposal is
o use novel metrics for evaluating ML algorithms in the context
f elephant flow detection for TE purposes, specifically flow table
ccupancy reduction and fraction of traffic covered. There is a
radeoff between those two: increasing the elephant detection
hreshold leads to greater flow table reduction but decreases the
raction of covered traffic.

The examples in the elephants.sklearn subpackage demo-
nstrate how to train and validate classifiers and regressors from
the scikit-learn library to obtain reduction curves and how
to tune the hyperparameters of these algorithms. Additionally,
we provide the elephants.ml utility module, which contains
functions useful in machine learning applications, such as data
preparation and calculation of flow table reduction scores.

Fig. 1. Flow rate on June 10th.

Fig. 2. Bit rate on June 10th.

4. Anonymized flow dataset

In the previous version of the package, we provided CSV his-
tograms of flow features derived from the agh_2015 dataset, as
well as JSON files containing distribution mixtures fitted to these
histograms. However, the original flow records used to generate
these histograms were not included in the package. The complete
set of flow records for this dataset occupies approximately 278 GB
in binary format. Furthermore, the records contain real source
and destination IP addresses, so it was not possible to share them
both due to practical and privacy reasons.

However, for training machine learning algorithms, individual
flow records that include IP addresses, port numbers, and flow
sizes are required. As a result, we have made the decision to
publicly share an anonymized subset of flow records from the
agh_2015 dataset. This will allow other researchers to train and
validate their models in a reproducible and comparable manner.

4.1. Selection process

We examined the whole dataset in order to select the most
suitable time period to share. Using the series tool, we gener-
ated separate plots of flows, packets, and bytes per second for
each of the 30 days in the dataset. We analyzed these plots,
3
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ooking for anomalies or irregularities that may indicate unusual
etwork activity. For instance, a sudden spike in flow rate without
corresponding increase in bit rate could be indicative of a DDoS
r SYN flood attack. Finally we decided to select Wednesday, June
0th for sharing. This particular day was a working day with nor-
al university operations, including the presence of students in
ormitories, which contributes to the majority of traffic. Network
raffic is shown in Fig. 1 and Fig. 2. The red line represents traffic
rom/to dormitories, and the black line is the overall campus
traffic.

However, even after excluding non-IPv4 flows, the size of the
flow records for that day amounted to 6.4 GB. Therefore, we di-
vided the chosen day into 24 one-hour periods based on the flow
start time (first, first_ms). For each of these hours, we calcu-
lated the theoretical flow table occupancy reduction rate curves
of a detection algorithm which can perfectly detect elephant on
the first packet, as described in [15]. Finally, we determined that
the most suitable hour to share is 19:00 UTC. It is marked on
Fig. 1 and Fig. 2 in blue. The reduction rate curve calculated from
the flow records data during that hour closely resembles that of
the mixture derived from the entire 30-day dataset, as shown in
Fig. 3. Moreover, the traffic generated by dormitories accounted
for 90% of traffic during that hour. Therefore, the selected dataset
can be regarded as a representative for residential traffic.

4.2. Anonymization

We applied the prefix-preserving Crypto-PAn algorithm [8]
to anonymize the source and destination IPv4 addresses in the
dataset using the anonymize tool. This approach is commonly
employed in research, as demonstrated in previous works such
as [16,17]. However, it is important to consider that anonymiza-
tion may impact the performance of machine learning models. To
investigate this, we conducted experiments using the scikit-
learn library. The dataset was divided into five folds, and we
trained and tested regressors to predict flow sizes and detect
elephant flows using both the original and anonymized data. The
results, presented in Fig. 3, indicate that the achieved reduction in
flow table occupancy is similar across the same folds, regardless
of whether the IP addresses were anonymized or not.

Fig. 3. Flow table occupancy reduction curves for the original and anonymized
dataset.

5. Conclusions

The new version of the framework includes several improve-
ents and bug fixes, enhancing its overall functionality and
sability. Notable enhancements consist of flow skipping and
ounting, flow filtering, anonymization of IP addresses using the
rypto-PAn algorithm, and calculation of time series data for
lows, packets, and bytes transmitted on a link.

The new first_mirror subpackage allows for simulations of
the first packet mirroring feature found in recent SDN switches.

The new elephants subpackage focuses on modeling the detec-
tion of elephant flows. It offers tools for simulating and calculat-
ing flow table occupancy reduction for various detection methods
and provides examples of using the scikit-learn library to
build machine learning models for elephant flow detection based
on the first packet. We emphasize the importance of specific
metrics, such as flow table reduction and fraction of traffic cov-
ered, for evaluating machine learning algorithms in the context
of elephant flow detection for traffic engineering purposes.

Furthermore, we share an anonymized flow records dataset,
allowing other researchers to train and validate their models in
a reproducible and comparable manner. We describe the data
selection process and anonymization method used to ensure pri-
vacy while maintaining the dataset’s utility for machine learning
applications. The framework’s open-source nature and the avail-
ability of the anonymized dataset promote collaboration and
reproducibility in network traffic research.
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