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Time dependent problems in 1D – parabolic equations

Heat conduction – the rate of change in time of the temperature
at a point is equal to the imbalance between the heat flux spatial
derivative and heat source at the point

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

Unknown fields as functions of time and space: T(x, t), u(x, t)
Partial differential equations with partial derivatives
Initial condition(s) in addition to boundary conditions

for all points inside the computational domain
T(x, 0) = T0(x) – for non-stationary heat conduction
u(x, 0) = u0(x) , ∂u

∂t (x, 0) = v0(x) – for elastodynamics
initial conditions must agree with boundary conditions

Initial-boundary value problems
well posed→ existence and uniqueness of solutions

Stationary problems can be considered as limits of
non-stationary processes, after reaching steady-state
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Convection equation

The simplest time dependent problems are first order convection PDEs:

∂u
∂t

+ vi
∂u
∂xi

= f

where v is the convection velocity
for v being the function of x only, the equation is linear
when v is the function of u (or its derivatives), the equation is non-linear

Boundary conditions:
the part of the boundary where the velocity vector points inside – is the
inflow boundary

on the inflow boundary the solution must be specified – to indicate what is
convected into the computational domain
the part of the boundary where the velocity vector points outside – is the
outflow boundary

on the outflow boundary the solution must not be specified – to allow for free
departure from the computational domain
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Convection equation

The convection PDE requires an initial condition:
u(x, 0) = u0(x)

In case of no source term f
the initial ”shape” u0(x) is convected along the direction of velocity v

For the 1D case with no source term and constant v the solution is
u(x, t) = u0(x− vt)

at time instant tn: u(x, tn) = u0(x − vtn)

the solution is just constant
along characteristics x = x0 + vt

x

t

x

t∆

∆

characteristics

∆ t

x∆

x∆

x∆ ∆ t

x

t

characteristics v = = const/

[v, 1]
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The finite difference method for ODEs and PDEs (recall)

The finite difference method for ODEs and PDEs – approximation of
derivatives that appear in equations with formulae that use the values at
discrete points:

based on Taylor’s theorem

f (x0 + h) = f (x0) +
f ′(x0)

1!
h +

f (2)(x0)

2!
h2 + · · ·+ f (n)(x0)

n!
hn + Rn(x0 + h)

where Rn is the remainder:

Rn(x0 + h) =
f (n+1)(ξ)

(n + 1)!
(h)n+1 = O(hn+1) for x0 < ξ < x0 + h

for first order derivatives it gives:

f ′(x0) =
f (x0 + h)− f (x0)

h
+ O(h)

the formula is first order accurate, i.e. the discretization error is
proportional to the first power of the distance (grid size) h
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The finite difference method for PDEs (recall)

Approximation of partial derivatives appearing in equations using formulae
with the values at discrete points:

for example, given points utn
xi−1

, utn
xi

, utn
xi+1

, utn+1
xi

(
utn

xi
= u(tn, xi)

)
and ∆t = tn+1 − tn, ∆x = xi+1 − xi = xi − xi−1:

∂u
∂t
|(tn,xi) ≈

utn+1
xi − utn

xi

∆t

∂u
∂x
|(tn,xi) ≈

utn
xi+1
− utn

xi

∆x
or ∂u

∂x
|(tn,xi) ≈

utn
xi
− utn

xi−1

∆x
or ∂u

∂x
|(tn,xi) ≈

utn
xi+1
− utn

xi−1

2∆x x

t

t_0

t_n+1

t_n

t_n−1

x_i−1 x_i x_i+1

(t_n, x_i)
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The finite difference method and convection equations
For the convection equation one of possible simple finite difference
formulations is:

given the solution at time tn (for t0 taken from the initial condition) and
each point xi within the computational domain ...
calculate the solution at time tn+1 for each point xi according to the
formula:

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi+1
− utn

xi

∆x
= f (tn, xi)

The formulated method is explicit, we do not have to solve a system of
equations, but just calculate:

utn+1
xi = utn

xi
−∆t

(
v ·

utn
xi+1
− utn

xi

∆x
− f (tn, xi)

)
Usually explicit methods are stable (their solutions do not grow to
infinity) only when suitable limits for time steps ∆t are satisfied, e.g.:

∆t · v
∆x

< CFLlimit (CFL is the, so called, Courant-Friedrichs-Lewy number)
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The finite difference method and convection equations

Hyperbolic problems pose important difficulties for numerical approximation
the methods that use characteristics (e.g. find characteristics and then solve the
equations along characteristics) are difficult for systems of PDEs (PDEs for
vector problems) and do not work well when, as is often found in practice,
additional terms (e.g. with second order derivatives) appear in the equations
classical finite difference and finite element methods have problems with
stability and accuracy (even for small time steps)

when exact solutions are not smooth the approximations exhibit spurious oscillations
for the finite difference methods, one of possible solutions is to use, so called, upwind

differencing, where the choice of the difference formulae used for spatial derivatives
depends upon the actual direction of velocity:

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi − utn

xi−1

∆x
= f (tn, xi) for v > 0

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi+1 − utn

xi

∆x
= f (tn, xi) for v < 0

the above upwind scheme is stable for CFL < 1 and is first order accurate in time and
in space
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Accuracy, stability, consistency, convergence

Numerical approximation methods have several properties related to the
behaviour of the discretization error eh = u− uh:

The step size or grid size parameter h is assumed to be the most
important parameter in studying the behaviour of eh

it can be taken as the largest step size or grid cell (element) size (in the
latter case some definition for 2D and 3D grids has to be adopted, e.g. the
radius of the smallest ball (circle) that contains each grid cell or the
longest element edge for the whole mesh)

The most important property is the convergence of a numerical method
A numerical method converges if some suitable norm of discretization
error tends to zero with the discretization parameter h going to zero

‖eh‖ → 0 for h→ 0
The order of accuracy of a discretization error specifies how fast the
method converges to the exact solution with the step size or grid size
tending to zero

it does not say how large is the error for a given value of h



Krzysztof Banaś, Advanced Computational Techniques 1/45

Accuracy, stability, consistency, convergence

Consistency is a measure to which extent the exact solution u satisfies
the discrete problem

A numerical method is consistent if the exact solution satisfies the
discrete problem in the limit h→ 0

Stability determines whether the numerical (discrete) solution does not
amplifies too much disturbances in problem parameters

the stability of numerical schemes correspond to the well-posedness of
differential problems (continuous dependence on data)
in practical applications stability says whether the numerical solution can
grow significantly (e.g. tend to infinity) in some circumstances

conditionally stable numerical schemes are stable for specific values of h
unconditionally stable schemes are stable for all values of h

The fundamental theorem of numerical analysis states that the solutions
of a scheme that is stable and consistent converge to the exact solution
of the discretized problem
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The finite difference method for ODEs (recall)

There are several fundamental simple finite difference approximations for
ODEs of the form du

dt
= f (t, u)

The first order accurate explicit (forward) Euler method:
utn+1 − utn

∆t
= f (tn, utn) → utn+1 = utn + ∆tf (tn, utn)

The first order accurate implicit (backward) Euler method:
utn+1 − utn

∆t
= f (tn+1, utn+1) → utn+1 −∆tf (tn+1, utn+1) = utn

The second order accurate implicit Crank-Nicolson method:
utn+1 − utn

∆t
=

1
2

(f (tn+1, utn+1) + f (tn, utn)) → utn+1−∆t
2

f (tn+1, utn+1)=utn+
∆t
2

f (tn, utn)

Implicit methods are more stable than explicit methods, but require the
solution of an algebraic equation, that may be non-linear, at each step
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The finite difference method for ODEs (recall)

Explicit Euler time integration

Stability of time integration - dependence on the size of time step
(blue – large, red – small) ... and the type of approximation
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The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

∂x

(
k
∂T
∂x

)
= s(x, t)

Finite difference approximations:
second order derivative in space - the most popular approach: central
difference

∂

dx

(
k
∂T
dx

)
|(t,xi) ≈ ∂

dx

(
k

T t
xi+1
− T t

xi

∆x

)
|(t,xi) ≈ k

T t
xi+1
−T t

xi

∆x −
T t

xi
−T t

xi−1
∆x

∆x

≈ k
∆x2

(
T t

xi+1
− 2T t

xi
+ T t

xi−1

)
the PDE becomes an ODE

dT
dt
|(t,xi) =

k
∆x2

(
T t

xi+1
− 2T t

xi
+ T t

xi−1

)
+ s(xi, t) = f (t)



Krzysztof Banaś, Advanced Computational Techniques 1/45

The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

∂x

(
k
∂T
∂x

)
= s(x, t)

Finite difference approximations:
the obtained ODE is solved by one of basic methods, giving:

for the explicit Euler method

T tn+1
xi = T tn

xi + k
∆t
∆x2

(
T tn

xi+1 − 2T tn
xi + T tn

xi−1

)
+ s(xi, tn)

for the implict Euler method

T tn+1
xi − k

∆t
∆x2

(
T tn+1

xi+1 − 2T tn+1
xi + T tn+1

xi−1

)
− s(xi, tn+1) = T tn

xi

for the Crank-Nicolson method

2T tn+1
xi −k

∆t
∆x2

(
T tn+1

xi+1 −2T tn+1
xi +T tn+1

xi−1

)
−s(xi, tn+1) = 2T tn

xi +k
∆t
∆x2

(
T tn

xi+1 −2T tn
xi +T tn

xi−1

)
+s(xi, tn)
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The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):
∂T
∂t
− ∂

∂x

(
k
∂T
∂x

)
= s(x, t)

Finite difference approximations:
the finite difference formulae link several values at particular points and
time instants, creating, so called, finite difference stencils:

x

t

t_0

t_n−1

x_i−1 x_i x_i+1

(t_n, x_i)

Crank−Nicolson

Explicit Euler

Implicit Euler

t_n+1

t_n
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The combined FEM+FDM approach for non-stationary problems

Non-stationary heat conduction in several space variables – notation
T(x, t) - temperature as function of time and space

Tn(x) = T(x, tn)

assumption for finite element discretization:

T(x, t) =

N∑
L=1

TL(t)ψL(x)

T(t) = {TL(t)} - the set of degrees of freedom for the approximation of T
hence

∂T(x, t)
∂t

=

N∑
L=1

dTL

dt
ψL(x) =

N∑
L=1

ṪLψL(x) Tn(x) =

N∑
L=1

Tn
LψL(x)

and Ṫ = {ṪL} Tn = {Tn
L}

test functions in the standard way:
w =

N∑
K=1

WKψK(x)
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The combined FEM+FDM approach for non-stationary problems

Non-stationary heat equations in several space variables

∂T
∂t
− k

∂2T
∂x2

i
= s(x, t) T,t − kT,ii = s(x, t)

weak formulation (Dirichlet boundary conditions for simplicity)

(T,t,w) + k(T,i,w,i) = (s,w) ∀w ∈ V0

finite element space discretization leads to
N∑

L=1

(ψK , ψL) ṪL +

N∑
L=1

k
(

dψK

dx
,

dψL

dx

)
TL = (s, ψK) for K =1, 2, ...,N

that can be written as
MṪ + KT = b

with

MK,L =(ψK , ψL) KK,L =k
(

dψK

dxi
,

dψL

dxi

)
bn

K =(ψK , ψL) Tn
L+∆t(s(tn, x), ψK)
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The combined FEM+FDM approach for non-stationary problems

FDM for linear ODEs of the form

MṪ + KT = b
explicit Euler time integration:

MTn+1 = MTn −∆tKTn + ∆tbn

implicit Euler time integration:

MTn+1 + ∆tKTn+1 = MTn + ∆tbn+1

Crank-Nicolson time integration:

MTn+1 +
1
2

∆tKTn+1 = MTn − 1
2

∆tKTn +
1
2

∆t
(

bn + bn+1
)

the above time integration schemes can be generalized into the so called
α-method

MTn+1 + α∆tKTn+1 = MTn − (1− α)∆tKTn + ∆t
(

(1− α)bn + αbn+1
)

with: α = 0 – for explicit Euler, α = 1 – for implicit Euler, α = 0.5 – for
Crank-Nicolson,
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The combined FEM+FDM approach for non-stationary problems

The method of lines
the same discretization steps as for the non-stationary heat equation can be
done for other time-dependent problems
for first order equations the resulting systems of ordinary differential
equations may be written as:

MṪ + KT = b
for second order hyperbolic problems the ODEs have the form:

MÜ + CU̇ + KU = b
due to interpretations in mechanics the matrix M is usually caled ”the mass
matrix”, while the matrix K is ”the stiffness matrix”
any method, explicit or implicit, can be used to solve the above ODEs

typical choices include: the introduced variations of the α-method, Runge-Kutta
methods, a family of Newmark methods for second order equations, discontinuous
Galerkin time discretization, etc.

in order not to solve a system of linear equations at each time step, so called ”mass
lumping” (diagonalization of M) is performed for explicit methods
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Linear convection-diffusion-reaction equations

General form for time dependent convection-diffusion-reaction equations
for a vector valued function u = [u1, u2, ..., uNu ], posed in the computational
domain Ω ⊂ IRs, s = 2 or 3, with boundary Γ

M
∂u
∂t
−
(
Aiju,j

)
,i +

(
Biu
)
,i + Cu = s− qi

,i

equivalent form
Nu∑

l=1

mkl
∂ul

∂t
−∇ ·

(
Nu∑

l=1

Akl∇ul

)
+ ∇ ·

(
Nu∑

l=1

bklul

)
+

Nu∑
l=1

cklul = sk −∇qk

with k = 1, 2, ...Nu.
a particular case of time dependent heat equation for the temperature T(x, t)

ρc
(
∂T
∂t

+ v ·∇T
)
−∇ · (k∇T) = s

with density ρ, specific heat c, velocity field v, heat conductivity k and source s
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FEM+FDM for linear convection-diffusion-reaction equations

Boundary conditions on Γ
Dirichlet (essential) on ΓD: u = f D(x, t)
Neumann (natural) on ΓN:

Aiju,jni = f N(x, t)
Robin (third type) on ΓR:

Aiju,jni =
(
u − f R(x, t)

)
KR(x, t)

with KR, f D, f N and f R given matrix and vector valued functions

for the special case of heat equation
Dirichlet on ΓT T = TD

Neumann on Γq (with n the unit outward vector normal to the boundary)
−kT,ini = qN

convection-radiation on ΓR

−kT,ini = −hc(T − TA) − Σε(T4 − T4
A)

with: hc – heat transfer coefficient, TA – ambient temperature, ε – emissivity and
Σ – Stefan-Boltzmann constant
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FEM+FDM for linear convection-diffusion-reaction equations

Standard finite element procedures (multiplication by test functions,
generalized integration by parts, i.e. Green-Gauss-Ostrogradski
theorem) lead to the weak statement (valid for any test function w)∫

Ω

(
Mw

∂u
∂t

+ Aijw,iu,j − Biw,iu + Cwu
)

dΩ +

+

∫
Γ+∪Γ−

R

BiniwudΓ−
∫

ΓR

KRwudΓ =∫
Ω

swdΩ +

∫
Ω

qiw,idΩ−
∫

Γ
qiniwdΓ +

∫
ΓN

wf NdΓ−
∫

ΓR

KRwf RdΓ

for the special case of the heat equation (no Robin conditions)∫
Ω

ρc
∂T
∂t

wdΩ +

∫
Ω

ρcviT,iwdΩ +

∫
Ω

kT,iw,idΩ =

∫
Ω

swdΩ−
∫

Γq

qNwdΓ
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FEM+FDM for linear convection-diffusion-reaction equations

Scalar linear convection diffusion equation
ut + viu,i − ku,ii = s

the equation is formally parabolic (due to the second order terms)
for ‖v‖ >> k the equation has dominating convection
in the limit k→ 0 the equation becomes hyperbolic

The equation has the standard weak formulation of the form∫
Ω

∂u
∂t

wdΩ +

∫
Ω

viu,iwdΩ +

∫
Ω

ku,iw,idΩ =

∫
Ω

swdΩ

(for homogeneous Dirichlet boundary conditions for simplicity)
For both types. hyperbolic and with dominating convection, standard finite
element procedures lead to oscillations of the solution

there are many methods for obtaining stable solutions to the equation
some of them are similar to the upwinding used for FDM

one of the most popular technique is to stabilize the formulation by adding
suitable second order terms (in the form of a special additional diffusivity)
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FEM+FDM for linear convection-diffusion-reaction equations

The important parameter for the stability and convergence of discretization
of convection dominated equations is the element Péclet number

Pe =
h‖v‖
2k

for linear convection diffusion equations the solutions of standard finite
element formulations and linear elements are stable when Pe < 1

for every proportion of velocity magnitude (inertia forces) to diffusion coefficient
there is a mesh size that guarantees the stability of solution

for many practical applications such mesh sizes are impractical, leading to billions
of degrees of freedom in the mesh
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FEM+FDM for linear convection-diffusion-reaction equations
Stabilized formulation for the scalar convection-diffusion equation:

one of many formulations for the stabilized finite element method uses
residuals of the original equation:

R(u) =
∂u
∂t

+ viu,i − ku,ii − s

with a similar expression for test functions:

R̄(w) = viw,i − kw,ii

the stabilized formulation uses the following integral statement:∫
Ω

∂uh

∂t
whdΩ +

∫
Ω

viuh
,iw

hdΩ +

∫
Ω

kuh
,iw

h
,idΩ

+
∑

e

∫
Ωe

R(uh)ωR̄(wh)dΩ =

∫
Ω

swhdΩ

ω is the coefficient of stabilization, integrals are calculated over element interiors
thanks to the use of residuals the formulation is consistent
it can be proven that the solutions to the stabilized problems converge to the exact

solution of the original equations
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FEM+FDM for linear convection-diffusion-reaction equations

For the special case of the time dependent heat equation (no Robin boundary
conditions) the stabilized integral statement is the following:∫

Ω
ρc
∂Th

∂t
whdΩ +

∫
Ω
ρcviTh

,iw
hdΩ +

∫
Ω

kTh
,iw

h
,idΩ

+
∑

e

∫
Ωe

RF(Th)ωR̄F(wh)dΩ =

∫
Ω

swhdΩ−
∫

Γq

qNwhdΓ

for stationary problems and linear elements (with zero second order derivatives
of shape functions inside elements), the stabilization term becomes in essence∫

Ωe

viTh
,iωviwh

,idΩ

and the stabilized method can be interpreted as the standard weak form for the
equation with suitably modified test functions wh + ωviwh

,i
the procedure of modifying test functions can be interpreted as corresponding
to the upwinding in the FDM and the family of related stabilization techniques
is often named streamline upwind Petrov-Galerkin (SUPG) method
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FEM+FDM for linear convection-diffusion-reaction equations

After applying the α-method for time integration the final integral
equation becomes (with Robin boundary conditions included):∫

Ω
ρc

Tn+1

∆t
wdΩ + α

∫
Ω
ρcviTn+1

,i wdΩ + α

∫
Ω

kTn+1
,i w,idΩ

+
∑

e

∫
Ωe

RF(Tn+1)ωR̄F(w)dΩ−
∫

ΓR

hcTn+1whdΓ

=

∫
Ω

swdΩ−
∫

Γq

qNwhdΓ−
∫

ΓR

hcTAwhdΓ

+

∫
Ω
ρc

Tn

∆t
wdΩ + (α− 1)

∫
Ω
ρcviTn

,iwdΩ + (α− 1)

∫
Ω

kTn
,iw,idΩ

The whole discretization procedure leads to the system of equations
(linear or non-linear) for each time step

the integrals for entries in the system matrix and the right hand side vector
directly correspond to the finite element weak statement above
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The fundamental equations in mechanics and
thermodynamics

The continuity equation (mass balance)

∂ρ

∂t
+ (ρvi),i = 0

Momentum equation

∂(ρvj)

∂t
+ (ρvjvi),i +p,i−τji,i = bj

Energy balance equation

∂(ρe)

∂t
+ ((ρe + p)vi − τjivj + qi),i = 0
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Compressible fluid flow equations in conservative form

The equations for the three conservation principles in vector form ρ
ρvj

ρe


,t

+

 ρvi

ρvivj + pδij − τij

(ρe + p)vi − τijvj + qi


,i

= 0

Defining:
U = (ρ, ρvj, ρe)T - vector of conservation variables
f E

i = (ρvi, ρvivj + pδij, (ρe + p)vi)
T – vector of Eulerian

(inviscid) fluxes
fµi = (0, τij, τijvj − qi)

T - vector of viscous and heat fluxes
leads to:

The Navier-Stokes equations of compressible fluid flow

U(x, t),t + f E
i (U),i = fµi (U,∇U),i
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Finite volume method
Finite volume method (FVM) is a method for finding approximate solutions to
partial differential equations, especially PDEs formulated as conservation laws

The idea of the finite volume method for compressible Euler equations:

U(x, t),t + f E
i (U),i = 0

discretization of the computational domain into cells (control volumes) –
the cells can be either simple (as finite elements) or can be constructed as
Voronoi diagrams based on standard meshes
integration of the PDEs over the computational domain, splitting the global
integral into the sum of integrals over each cell, the application of the
Green-Gauss-Ostrogradski theorem for fluxes – the exchange of volume
integrals to surface integrals∫

Vc

U(x, t),tdV = −
∫
∂Vc

f E
i (U)nidS

the application of special techniques for calculating approximations to
integrals of fluxes based on discrete values and for updating these values
based on calculated fluxes
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Finite volume method
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Finite volume method
Based on suitable extensions of the basic scheme, the FVM can be applied to
inviscid and viscous, compressible and incompressible flows, as well as
different than fluid dynamics application areas
The main advantage of the finite volume method is its conservative character,
related to the direct application of conservative principles for each cell
Moreover, due to special methods for constructing flux approximations, the
FVM, for many problems, can eliminate oscillations of solutions in the
regions of rapid gradient changes (such as e.g. shocks)
The FVM does not introduce higher order cells – the values are associated
either with cells or mesh vertices
h-adaptivity and remeshing (usually called Adaptive Mesh Refinement
(AMR) techiques) are often applied to locally increase accuracy of solutions
The FVM method for time dependent problems can use explicit or implicit
time integration schemes
In practical applications FVM is today the most popular discretization
technique in computational fluid dynamics (CFD)
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The fundamental equations in mechanics and
thermodynamics

The continuity equation (mass balance)

∂ρ

∂t
+ (ρvi),i = 0

Momentum equation

∂(ρvj)

∂t
+ (ρvjvi),i +p,i−τji,i = bj

Energy balance equation

∂(ρe)

∂t
+ ((ρe + p)vi − τjivj + qi),i = 0
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
due to incompressibility density is assumed to be constant

ρ = ρ0 = const, the volume for a group of particles remains the same
the terms in the fluid flow equations with the gradient of density vanish
the analysis of the thermodynamic relations indicates that the speed of
sound is infinite for incompressible media
therefore the changes in the pressure field propagate immediately
throughout the whole computational domain
although the model of incompressible flow is purely theoretical (there are
no fully incompressible materials) the approximations to the real flows
based on the model can be relatively easily computed and have great
practical importance

Mass balance (the continuity equation) for incompressible fluid flow

∂ρ

∂t
+ ∇(ρv) = 0 ⇔ ∇ · v = 0
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
since the density is constant, the pressure becomes the function of
velocity field only, not the thermodynamic quantity
the continuity and momentum equations decouple from the energy
equation (the pressure and velocity fields do not depend on the
temperature field)

Momentum balance for incompressible fluid flow

ρ0(
∂v
∂t

+ (v ·∇)v)− µ∇2v + ∇p = f

Historically, the Navier-Stokes equations denoted the equations for fluid velocities,
derived form the momentum balance. The name is also used for the whole system
that must solved to find the velocity field in fluid flow and, hence, denotes the
coupled equations for mass, momentum and energy balance for compressible flows
and coupled equations for mass and momentum balance for incompressible flows
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Incompressible fluid flow – the Navier-Stokes equations

Derivation of the Navier-Stokes equations for incompressible fluid flow:
the Navier-Stokes equations assume the viscous stress tensor for
the Newtonian incompressible fluid in the form:

τij = µ(vi,j + vj,i)

usually the system is closed with the typical boundary conditions

Boundary conditions for incompressible fluid flow

v = v̂0 on ΓD

(µ∇v)n− pn = g on ΓN

in the so called Boussinesq approximation for the buoyancy driven
flows, the density in the momentum balance may be treated as
linear function of the temperature

e.g. ρ = ρ0 + ∆ρ(T) = ρ0 − αρ0(T − T0)
this approximation is used for modifying the body force due to
gravity: f = ρ0g (1− α(T − T0))
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Energy equation for incompressible fluid flow

the energy balance equation formulated for the total energy e = eI + eK(
ρ(eI +

1
2

vjvj)

)
,t

+

(
(ρ(eI +

1
2

vjvj) + p)vi − τijvj + qi

)
,i

= 0

can be transformed to the equation for the internal energy alone (by using
the momentum balance to eliminate the mechanical energy eK = 1

2 vjvj

from the equation):

(ρeI),t + (ρeIvi),i + pvi,i − τijvi,j + qi,i = 0

the assumption of incompressibility leads to further simplifications of the
model:

ρcp

(
∂T
∂t

+ T,ivi

)
− (κT,i),i = 0

due to the fact that: vi,i = 0, cp = cV = const, eI = cVT , qi = −κT,i and
τijvi,j (heat produced by fluid viscosity) is small and can be neglected



Krzysztof Banaś, Advanced Computational Techniques 1/45

Energy equation for incompressible fluid flow

Convective heat transfer equation

ρc
(
∂T
∂t

+ v ·∇T
)
−∇ · (κ∇T) = s

temperature distribution depends on the velocity field
velocity and pressure fields do not depend on the temperature field

the exception is the Bussinesq approximation with gravity causing hotter
fluid to move up and the cooler fluid to move down
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Incompressible fluid flow – the Navier-Stokes equations

The Navier-Stokes equations for incompressible fluid flow is an
example of non-linear convection-diffusion equations

Mass balance

∂ρ

∂t
+ ∇(ρv) = 0⇔∇ · v = 0

Momentum balance

ρ0(
∂v
∂t

+ (v ·∇)v)− µ∇2v + ∇p = f

Boundary conditions

v = v̂0 on ΓD

(µ∇v)n− pn = g on ΓN
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Comments

Different character of the two equations
elliptic mass balance (divergence free condition) – equivalent to
the so called pressure Poisson equation (derived from the
momentum balance, taking into account the mass balance):

ρ0vi,jvj,i = p,jj + f j,j

usually convection dominated momentum balance
historically, the Navier-Stokes equations denoted the equations
for fluid velocities, derived form the momentum balance
the name is also used for the whole system that must solved to
find the velocity field in fluid flow and, hence, denotes the
coupled equations for mass and momentum balance

the convective heat transfer equation is often combined with the
Navier-Stokes equations to describe the whole phenomena
related to mass, momentum and energy balance for
incompressible fluids
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Approximating the Navier-Stokes equations by the FEM

The Navier-Stokes equations and the convective heat transfer equation can
be approximated using the finite element method
For the momentum balance equations and the heat transfer equation, in the
case of dominating convection, standard finite element procedures lead to
the solutions with strong oscillations

the family of SUPG stabilization methods (introduced already for the time
dependent heat equation) can be used to effectively remove oscillations,
maintaining the high accuracy of the approximate solution

Moreover, the fact that divergence free condition is equivalent to the
elliptic equation for the pressure leads to the instability of the whole
formulation (so called ”chequerboard patterns” appearing for the pressure)

in order to deal with the stability problems several approaches have been
developed including

mixed formulations with different approximation spaces for velocities and pressure
stabilized formulations, that introduce additional second order terms into the weak

formulations of the problem
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Finite element formulation for the Navier-Stokes equations

Space discretization - with SUPG and pressure stabilization terms∫
Ω
ρ0
∂vj

∂t
wjdΩ +

∫
Ω

(ρ0vj,kvkwj + µvj,kwj,k − pwj,j) dΩ

+
∑

e

∫
Ωe

{Rj(v, p)ωR̄j(w, r) + vj,jδwk,k} dΩ

+

∫
Ω

vj,jrdΩ =

∫
Ω

fjwjdΩ−
∫
∂Ω

gjwjdS

Rj(v, p) = ρ0
∂vj

∂t
+ ρ0vj,kvk − µvj,kk + p,j − fj

R̄j(w, r) = ρ0wj,kvk − µwj,kk + r,j

w and r – test functions
ω and δ – stabilization parameters
equal order linear approximation for velocities and pressure
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Finite element formulation for the Navier-Stokes equations

System of ODEs for the vector of degrees of freedom u
Rearrangement of DOFs: uv - velocity DOFs, up - pressure DOFs(

Mvw(v) · u̇v

0

)
+

(
Avw(v) Apw(v)
Avr(v) Apr

)
·
(

uv

up

)
=

(
bw

br

)

α scheme for time integration

Mvw(vn+1) · un+1
v −Mvw(vn) · un

v

∆t
+

+α ·
(
Avw(vn+1)un+1

v + Apw(vn+1)un+1
p
)

= (α− 1) ·
(
Avw(vn)un

v + Apw(vn)un
p
)

+ αbn+1
w + (1− α)bn

w

Avr(vn+1)un+1
v + Aprun+1

p = bn+1
r
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Finite element formulation for the Navier-Stokes equations
Algorithms for time integration and non-linear problem solution can be
applied to the weak finite element statement
An example finite element formulation for a single fixed-point (Picard’s)
nonlinear iteration within the implicit Euler time integration for the
stabilized finite element method approximating the Navier-Stokes
equations reads:

Final formulation

∫
Ω

ρ
(vn+1

k+1)j

∆t
wjdΩ +

∫
Ω

ρ(vn+1
k+1)j,l(vn+1

k )lwjdΩ +

∫
Ω

µ(vn+1
k+1)j,lwj,ldΩ

−
∫

Ω

pn+1
k+1wj,jdΩ−

∫
Ω

(vn+1
k+1)j,jrdΩ +

∑
e

∫
Ωe

Rj(u, p)ωR̄j(w, r)dΩ

+
∑

e

∫
Ωe

(un+1
k+1)j,lδwj,ldΩ =

∫
Ω

ρ
(vn)j

∆t
wjdΩ +

∫
Ω

fjwjdΩ−
∫

ΓN

gjwjdΓ
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Finite element formulation for the Navier-Stokes equations

An example: the simulation of the von Karman vortex street by the
adaptive finite element method
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