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Krzysztof Banaś, Mathematical modelling in science and engineering 2/10

Notation and notational conventions
Ω ⊂ IRN , N=1,2 or 3 – domain in 1D, 2D or 3D space

all domains are assumed to have smooth boundaries ∂Ω

standard font - scalar, bold - vector
x = [x, y, z] = [x1, x2, x3] - point in 3D space
t - time instant
f (x, t)[f(x, t)] – scalar [vector] function of space and time

the function will usually denote some description of state of domain points
the dependence on space and time is often omitted in notation

when indices i, j, k, l refer to cartesian space coordinates the summation
convention for repeated indices is used

uini =
∑

i uini

”,” denotes differentiation (for indices i, j, k, l of cartesian space
coordinates and partial derivatives with respect to time)

ui,i = ∂ui
∂xi

= ∇ · u = divu u,t = ∂u
∂t

standard mathematical notation, operators, etc.
e.g. indices of matrix entries: Aij element i, j of matrix A
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Description of state
Examples of state description:

material point
position (spatial coordinates)

Cartesian – x, polar, spherical, cylindrical
velocity

v =
dx
dt

(a single component: vi =
dxi

dt
= xi,t)

acceleration
a =

dv
dt

(a single component: ai =
dvi

dt
= vi,t)

displacement
l = x − x0 (

dl
dt

=
dx
dt

= v)

continuous object (1D, 2D and 3D domains)
scalar fields: energy – e(x, t)), temperature – T(x, t)
vector fields: displacement – l(x, t)), velocity – v(x, t)
tensor fields: strain – ε(x, t) ( εij = li,j + lj,i ), stress – σ(x, t)

discretization – a process of transferring a description in terms of
infinite number of values into a description that uses only a finite
number of values
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Discretization
We will consider several types of discretization

domain discretization – using a finite number of points and parameters,
instead of infinite number of points to describe geometric domains
function discretization – describing a function (usually continuous) using a
finite number of parameters and values at a finite number of points
equation discretization – transforming a differential equation for a function
(usually continuous) into an equation for a discretized function

Discretization usually introduces an error – the original domain, original
function and the solution to the original equation differ at certain points
from their discretized counterparts

the discretization error can be measured in a number of different ways
with the increasing number of parameters and points the discretized
domains, discretized functions and solutions to discretized equations usually
tend to their original counterparts (the discretization error goes to 0)
discretization is a form of approximation, we will often use the two terms
interchangeably

Only discretized equations, functions and domains are amenable to
computer processing
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Domain discretization
Computational domain

Ω ⊂ IRN , N=1,2 or 3 – domain in 1D, 2D or 3D space
Domain discretization – using a finite number of points and parameters,
instead of infinite number of points to describe the domain

the simplest discretization uses a finite number of points and straight line
segments to join them
more complex discretizations employ a finite number of points and
curvilinear segments that join them
in 2D the most popular are linear or curvilinear triangles and quadrilaterals
in 3D the most popular are linear or curvilinear tetrahedra and hexahedra,
as well as prisms and pyramids

The set of points and segments joining
them is called a grid (or mesh)
There are two basic types of grids (with
different neighbourhood relations)

structured (regular) grids
unstructured grids
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Example of modelling – mass-spring system with damping
Reality (experiment) Physical model Mathematical model

Ordinary differential equation

m
d2x
dt2 + c

dx
dt

+ kx = 0

+ Initial conditions

x(0) = x0
dx
dt

(0) = v0

= Initial value problem
→ existence and uniqueness

of resultsBalance of forces:
ma=ΣiFi - Newton’s second law of mechanics

Result: oscillations
Predicted by the mathematical model
Compared with experimental results
Validation of the physical and
mathematical model (quantitative!)
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Example of modelling – heated 1D rod

Reality (experiment)

Physical model
Energy conservation - the rate of change

of heat flux is equal to heat source

dq/dx = s(x)

Fourier’s law - heat flux is proportional
to the temperature gradient

q = −k · dT/dx

• k - heat conduction coefficient

Mathematical model
Ordinary differential equation

− d
dx

(
k

dT
dx

)
= s(x)

+ Boundary conditions
(for both ends, possible types:

- temperature, e.g.
T(0) = T0

- heat flux, e.g.
q(L) = −k · dT/dx = q0

- other (convection, radiation)
= Boundary value problem
→ existence and

uniqueness of results
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Generalization of mathematical model derivation
Conservation principle(s)

”physics” – may be formulated as conservation principle(s)
for some flux q and source s
not necessarily related to energy conservation, i.e. heat problem

general form for stationary 1D problems:
integral form (for any interval (x, x + ∆x)):

q(x + ∆x)− q(x) =

∫ x+∆x

x
s(ξ)dξ

differential form (in the limit ∆x→ 0) :
dq
dx

= s(x)

Constitutive equation(s)
often called material model

connects different quantities used in process description
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Generalization of mathematical model derivation

Conservation principle(s) (stationary form) + Constitutive equation(s)
= Differential equation(s)

first or second order in space variables
ordinary (ODE) or partial (PDE), depending on space dimension
unknown u

Boundary conditions:
Dirichlet: u = u0

Neumann:
du
dx

= q̃0

Robin:
du
dx

= c̃(u− u0)

Differential equation(s) + Boundary conditions
= Boundary value problem

→ existence and uniqueness of results
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One more 1D example – tensile test

Stress - force intensity: σ = F/A Strain: ε = ∆L/L→ dl/dx

Conservation principle –
balance of forces

(from the conservation of momentum
- Newton’s second law of mechanics)

−dσ
dx = f (x)

Constitutive equations –
Hooke’s law for linearly
elastic material

σ = Eε

Differential equation: −E d2l
dx2 = f (x) (f - external force intensity)

+ Boundary conditions: displacements (l) or forces (−E dl
dx ) at the ends
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