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Notation and notational conventions

e QO C RV, N=1,2 or 3 —domain in 1D, 2D or 3D space

o all domains are assumed to have smooth boundaries 92
o standard font - scalar, bold - vector

e x = [x,¥,2] = [x1,x2,x3] - point in 3D space

o - time instant

o f(x,1)[f(x,1)] — scalar [vector] function of space and time

o the function will usually denote some description of state of domain points
@ the dependence on space and time is often omitted in notation

o when indices i, j, k, [ refer to cartesian space coordinates the summation
convention for repeated indices is used
@ un; = Zi un;
@ . denotes differentiation (for indices i, j, k, [ of cartesian space
coordinates and partial derivatives with respect to time)

oui,—au'—V u = divu u,—‘g’;
o standard mathematical notation, operators, etc.
o e.g. indices of matrix entries: A; element 7, j of matrix A
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Description of state

Examples of state description:
@ material point
e position (spatial coordinates)
o Cartesian — x, polar, spherical, cylindrical

e velocity
o v= d (a single component: v; = @ = Xir)
T dt & P T T
e acceleration
e a= ad (a single component: a; = @ = Vi)
. T dr & P T ar T
o displacement
dl  dx
ol=x—x0 (—=—=v)

@ continuous object (1D, 2D and 3D domains)

o scalar fields: energy — e(x, 1)), temperature — T'(x, ¢)
o vector fields: displacement —I(x, t)), velocity — v(x, t)

Stationary 1D problems
0000
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o tensor fields: strain — e(x, 1) (e; = l;; +[;; ), stress — o' (x, 1)
o discretization — a process of transferring a description in terms of
infinite number of values into a description that uses only a finite

number of values
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Discretization

@ We will consider several types of discretization
e domain discretization — using a finite number of points and parameters,
instead of infinite number of points to describe geometric domains
o function discretization — describing a function (usually continuous) using a
finite number of parameters and values at a finite number of points
e equation discretization — transforming a differential equation for a function
(usually continuous) into an equation for a discretized function
o Discretization usually introduces an error — the original domain, original
function and the solution to the original equation differ at certain points
from their discretized counterparts
e the discretization error can be measured in a number of different ways
e with the increasing number of parameters and points the discretized
domains, discretized functions and solutions to discretized equations usually
tend to their original counterparts (the discretization error goes to 0)
e discretization is a form of approximation, we will often use the two terms
interchangeably
@ Only discretized equations, functions and domains are amenable to
computer processing
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Domain discretization

o Computational domain
o O C RV, N=1,2 or 3 — domain in 1D, 2D or 3D space

@ Domain discretization — using a finite number of points and parameters,
instead of infinite number of points to describe the domain
o the simplest discretization uses a finite number of points and straight line
segments to join them
e more complex discretizations employ a finite number of points and
curvilinear segments that join them
e in 2D the most popular are linear or curvilinear triangles and quadrilaterals
e in 3D the most popular are linear or curvilinear tetrahedra and hexahedra,
as well as prisms and pyramids
@ The set of points and segments joining
them is called a grid (or mesh)

@ There are two basic types of grids (with
different neighbourhood relations)
o structured (regular) grids
e unstructured grids

STRUCTURED

T
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Example of modelling — mass-spring system with damping
@ Reality (experiment) @ Physical model @ Mathematical model
Ordinary differential equation
L B d2 dx
Fe==k-x Fr==c-x
’ +c— +kx=0
I I "k T ar
+ Initial conditions
dx
Equilibrium X 0 = X _ 0 =
g i ( ) 0 dt ( ) 0
= Initial value problem
dampng cosfont o — existence and uniqueness
Balance of forces: of results
ma=3;F; - Newton’s second law of mechanics
\ — Wy =6, 6=1
@ Result: oscillations o e
e Predicted by the mathematical model o
o Compared with experimental results 00 N

e Validation of the physical and -0z
mathematical model (quantitative!)

~0.6,

00 05 10 15 20 25 30 35 40 45
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Example of modelling — heated 1D rod

@ Reality (experiment) @ Mathematical model
Ordinary differential equation

L)

+ Boundary conditions
(for both ends, possible types:
- temperature, e.g.

@ Physical model

Energy conservation - the rate of change

of heat flux is equal to heat source T(0) =To
- heat flux, e.g.
dq/dx = s(x) (L) = —k - dT /dx = g9
Fourier’s law - heat flux is proportional - other (convection, radiation)
to the temperature gradient = Boundary value problem
q = —k-dT/dx — existence and

e k - heat conduction coefficient uniqueness of results
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Generalization of mathematical model derivation

Conservation principle(s)

@ “’physics” — may be formulated as conservation principle(s)

o for some flux ¢ and source s
e not necessarily related to energy conservation, i.e. heat problem

o general form for stationary 1D problems:
o integral form (for any interval (x, x + Ax)):

x+Ax
4 + Ax) — g(x) = / S(6)de

o differential form (in the limit Ax — 0) :
d
= s(x)

Constitutive equation(s)

@ often called material model

e connects different quantities used in process description
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Generalization of mathematical model derivation

Conservation principle(s) (stationary form) + Constitutive equation(s)

= Differential equation(s)
o first or second order in space variables

e ordinary (ODE) or partial (PDE), depending on space dimension
@ unknown u

Boundary conditions:

@ Dirichlet: U = ugy
d
@ Neumann: = = q0
x
du
Robin: — =c(u—
@ Robin = (u — uo)

Differential equation(s) + Boundary conditions
= Boundary value problem
— existence and uniqueness of results



Preliminaries: notation, notational conventions, simple examples Transient second order ODEs
0000 o]

Krzysztof Bana$, Mathematical modelling in science and engineering

One more 1D example — tensile test

Stationary 1D problems
[ele]e] }

10/10

@ Stress - force intensity: o = F/A @ Strain: e = AL/L — dl/dx

. ]
Strain 5
T
=
Stress ]
r—y s — -
Y eiMcRilGes Sess "
oungs ModUlUS = otrain AL
o Conservation principle — Constitu .
° _
balance of forces onstlfutlve equa.tlons
(from the conservation of momentum Hooke’s law for linearly
- Newton’s second law of mechanics) elastic material
_% =f(x) o = Ee

Differential equation: —FE 57221 =f(x) (f - external force intensity)

+ Boundary conditions:  displacements (/) or forces (—E %) at the ends
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