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Linear convection-diffusion-reaction equations

General form for time dependent convection-diffusion-reaction equations
for a vector valued function u = [u1, u2, ..., uNu ], posed in the computational
domain Ω ⊂ IRs, s = 2 or 3, with boundary Γ

M
∂u
∂t
−
(
Aiju,j

)
,i +

(
Biu
)
,i + Cu = s− qi

,i

equivalent form
Nu∑

l=1

mkl
∂ul

∂t
−∇ ·

(
Nu∑

l=1

Akl∇ul

)
+ ∇ ·

(
Nu∑

l=1

bklul

)
+

Nu∑
l=1

cklul = sk −∇qk

with k = 1, 2, ...Nu.
a particular case of time dependent heat equation for the temperature T(x, t)

ρc
(
∂T
∂t

+ v ·∇T
)
−∇ · (k∇T) = s

with density ρ, specific heat c, velocity field v, heat conductivity k and source s
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FEM+FDM for linear convection-diffusion-reaction equations

Boundary conditions on Γ
Dirichlet (essential) on ΓD: u = f D(x, t)
Neumann (natural) on ΓN:

Aiju,jni = f N(x, t)
Robin (third type) on ΓR:

Aiju,jni =
(
u − f R(x, t)

)
KR(x, t)

with KR, f D, f N and f R given matrix and vector valued functions

for the special case of heat equation
Dirichlet on ΓT T = TD

Neumann on Γq (with n the unit outward vector normal to the boundary)
−kT,ini = qN

convection-radiation on ΓR

−kT,ini = −hc(T − TA) − Σε(T4 − T4
A)

with: hc – heat transfer coefficient, TA – ambient temperature, ε – emissivity and
Σ – Stefan-Boltzmann constant
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FEM+FDM for linear convection-diffusion-reaction equations

Standard finite element procedures (multiplication by test functions,
generalized integration by parts, i.e. Green-Gauss-Ostrogradski
theorem) lead to the weak statement (valid for any test function w)∫

Ω

(
Mw

∂u
∂t

+ Aijw,iu,j − Biw,iu + Cwu
)

dΩ +

+

∫
Γ+∪Γ−

R

BiniwudΓ−
∫

ΓR

KRwudΓ =∫
Ω

swdΩ +

∫
Ω

qiw,idΩ−
∫

Γ
qiniwdΓ +

∫
ΓN

wf NdΓ−
∫

ΓR

KRwf RdΓ

for the special case of the heat equation (no Robin conditions)∫
Ω

ρc
∂T
∂t

wdΩ +

∫
Ω

ρcviT,iwdΩ +

∫
Ω

kT,iw,idΩ =

∫
Ω

swdΩ−
∫

Γq

qNwdΓ
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FEM+FDM for linear convection-diffusion-reaction equations

Scalar linear convection diffusion equation
ut + viu,i − ku,ii = s

the equation is formally parabolic (due to the second order terms)
for ‖v‖ >> k the equation has dominating convection
in the limit k→ 0 the equation becomes hyperbolic

The equation has the standard weak formulation of the form∫
Ω

∂u
∂t

wdΩ +

∫
Ω

viu,iwdΩ +

∫
Ω

ku,iw,idΩ =

∫
Ω

swdΩ

(for homogeneous Dirichlet boundary conditions for simplicity)
For both types. hyperbolic and with dominating convection, standard finite
element procedures lead to oscillations of the solution

there are many methods for obtaining stable solutions to the equation
some of them are similar to the upwinding used for FDM

one of the most popular technique is to stabilize the formulation by adding
suitable second order terms (in the form of a special additional diffusivity)
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FEM+FDM for linear convection-diffusion-reaction equations

The important parameter for the stability and convergence of discretization
of convection dominated equations is the element Péclet number

Pe =
h‖v‖
2k

for linear convection diffusion equations the solutions of standard finite
element formulations and linear elements are stable when Pe < 1

for every proportion of velocity magnitude (inertia forces) to diffusion coefficient
there is a mesh size that guarantees the stability of solution

for many practical applications such mesh sizes are impractical, leading to billions
of degrees of freedom in the mesh
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Krzysztof Banaś, Mathematical modelling in science and engineering 7/16

FEM+FDM for linear convection-diffusion-reaction equations

Stabilized formulation for the scalar convection-diffusion equation:
one of many formulations for the stabilized finite element method uses
residuals of the original equation:

R(u) =
∂u
∂t

+ viu,i − ku,ii − s

with a similar expression for test functions:

R̄(w) = viw,i − kw,ii

the stabilized formulation uses the following integral statement:∫
Ω

∂uh

∂t
whdΩ +

∫
Ω

viuh
,iw

hdΩ +

∫
Ω

kuh
,iw

h
,idΩ

+
∑

e

∫
Ωe

R(uh)ωR̄(wh)dΩ =

∫
Ω

swhdΩ

ω is the coefficient of stabilization, integrals are calculated over element interiors
thanks to the use of residuals the formulation is consistent
it can be proven that the solutions to the stabilized problems converge to the exact

solution of the original equations
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FEM+FDM for linear convection-diffusion-reaction equations

For the special case of the time dependent heat equation (no Robin boundary
conditions) the stabilized integral statement is the following:∫

Ω
ρc
∂Th

∂t
whdΩ +

∫
Ω
ρcviTh

,iw
hdΩ +

∫
Ω

kTh
,iw

h
,idΩ

+
∑

e

∫
Ωe

RF(Th)ωR̄F(wh)dΩ =

∫
Ω

swhdΩ−
∫

Γq

qNwhdΓ

for stationary problems and linear elements (with zero second order derivatives
of shape functions inside elements), the stabilization term becomes in essence∫

Ωe

viTh
,iωviwh

,idΩ

and the stabilized method can be interpreted as the standard weak form for the
equation with suitably modified test functions wh + ωviwh

,i
the procedure of modifying test functions can be interpreted as corresponding
to the upwinding in the FDM and the family of related stabilization techniques
is often named streamline upwind Petrov-Galerkin (SUPG) method
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FEM+FDM for linear convection-diffusion-reaction equations

After applying the α-method for time integration the final integral
equation becomes (with Robin boundary conditions included):∫

Ω
ρc

Tn+1

∆t
wdΩ + α

∫
Ω
ρcviTn+1

,i wdΩ + α

∫
Ω

kTn+1
,i w,idΩ

+
∑

e

∫
Ωe

RF(Tn+1)ωR̄F(w)dΩ−
∫

ΓR

hcTn+1whdΓ

=

∫
Ω

swdΩ−
∫

Γq

qNwhdΓ−
∫

ΓR

hcTAwhdΓ

+

∫
Ω
ρc

Tn

∆t
wdΩ + (α− 1)

∫
Ω
ρcviTn

,iwdΩ + (α− 1)

∫
Ω

kTn
,iw,idΩ

The whole discretization procedure leads to the system of equations
(linear or non-linear) for each time step

the integrals for entries in the system matrix and the right hand side vector
directly correspond to the finite element weak statement above
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Incompressible fluid flow – the Navier-Stokes equations

The Navier-Stokes equations for incompressible fluid flow is an
example of non-linear convection-diffusion equations

Mass balance

∂ρ

∂t
+ ∇(ρv) = 0⇔∇ · v = 0

Momentum balance

ρ0(
∂v
∂t

+ (v ·∇)v)− µ∇2v + ∇p = f

Boundary conditions

v = v̂0 on ΓD

(µ∇v)n− pn = g on ΓN
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Comments

Different character of the two equations
elliptic mass balance (divergence free condition) – equivalent to
the so called pressure Poisson equation (derived from the
momentum balance, taking into account the mass balance):

ρ0vi,jvj,i = p,jj + f j,j

usually convection dominated momentum balance
historically, the Navier-Stokes equations denoted the equations
for fluid velocities, derived form the momentum balance
the name is also used for the whole system that must solved to
find the velocity field in fluid flow and, hence, denotes the
coupled equations for mass and momentum balance

the convective heat transfer equation is often combined with the
Navier-Stokes equations to describe the whole phenomena
related to mass, momentum and energy balance for
incompressible fluids
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Approximating the Navier-Stokes equations by the FEM

The Navier-Stokes equations and the convective heat transfer equation can
be approximated using the finite element method
For the momentum balance equations and the heat transfer equation, in the
case of dominating convection, standard finite element procedures lead to
the solutions with strong oscillations

the family of SUPG stabilization methods (introduced already for the time
dependent heat equation) can be used to effectively remove oscillations,
maintaining the high accuracy of the approximate solution

Moreover, the fact that divergence free condition is equivalent to the
elliptic equation for the pressure leads to the instability of the whole
formulation (so called ”chequerboard patterns” appearing for the pressure)

in order to deal with the stability problems several approaches have been
developed including

mixed formulations with different approximation spaces for velocities and pressure
stabilized formulations, that introduce additional second order terms into the weak

formulations of the problem
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Finite element formulation for the Navier-Stokes equations

Space discretization - with SUPG and pressure stabilization terms∫
Ω
ρ0
∂vj

∂t
wjdΩ +

∫
Ω

(ρ0vj,kvkwj + µvj,kwj,k − pwj,j) dΩ

+
∑

e

∫
Ωe

{Rj(v, p)ωR̄j(w, r) + vj,jδwk,k} dΩ

+

∫
Ω

vj,jrdΩ =

∫
Ω

fjwjdΩ−
∫
∂Ω

gjwjdS

Rj(v, p) = ρ0
∂vj

∂t
+ ρ0vj,kvk − µvj,kk + p,j − fj

R̄j(w, r) = ρ0wj,kvk − µwj,kk + r,j

w and r – test functions
ω and δ – stabilization parameters
equal order linear approximation for velocities and pressure
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Finite element formulation for the Navier-Stokes equations

System of ODEs for the vector of degrees of freedom u
Rearrangement of DOFs: uv - velocity DOFs, up - pressure DOFs(

Mvw(v) · u̇v

0

)
+

(
Avw(v) Apw(v)
Avr(v) Apr

)
·
(

uv

up

)
=

(
bw

br

)

α scheme for time integration

Mvw(vn+1) · un+1
v −Mvw(vn) · un

v

∆t
+

+α ·
(
Avw(vn+1)un+1

v + Apw(vn+1)un+1
p
)

= (α− 1) ·
(
Avw(vn)un

v + Apw(vn)un
p
)

+ αbn+1
w + (1− α)bn

w

Avr(vn+1)un+1
v + Aprun+1

p = bn+1
r
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Finite element formulation for the Navier-Stokes equations
Algorithms for time integration and non-linear problem solution can be
applied to the weak finite element statement
An example finite element formulation for a single fixed-point (Picard’s)
nonlinear iteration within the implicit Euler time integration for the
stabilized finite element method approximating the Navier-Stokes
equations reads:

Final formulation

∫
Ω

ρ
(vn+1

k+1)j

∆t
wjdΩ +

∫
Ω

ρ(vn+1
k+1)j,l(vn+1

k )lwjdΩ +

∫
Ω

µ(vn+1
k+1)j,lwj,ldΩ

−
∫

Ω

pn+1
k+1wj,jdΩ−

∫
Ω

(vn+1
k+1)j,jrdΩ +

∑
e

∫
Ωe

Rj(u, p)ωR̄j(w, r)dΩ

+
∑

e

∫
Ωe

(un+1
k+1)j,lδwj,ldΩ =

∫
Ω

ρ
(vn)j

∆t
wjdΩ +

∫
Ω

fjwjdΩ−
∫

ΓN

gjwjdΓ
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Finite element formulation for the Navier-Stokes equations

An example: the simulation of the von Karman vortex street by the
adaptive finite element method


	Convection-diffusion-reaction equations
	 Krzysztof Banas, Mathematical modelling in science and engineering   1/1

	Incompressible flows and the Navier-Stokes equations
	 Krzysztof Banas, Mathematical modelling in science and engineering   9/1


